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Abstract:

Aim /Objective:

A Brain-Computer Interface (BCI) is a communication medium, which restructures brain signals into respective commands for an external device.

Methodology:

A BCI allows its target users like persons with motor disabilities to act on their environment using brain signals without using peripheral nerves or
muscles. In this review article, we have presented a view on different BCIs for humans with motor disabilities.

Results & Conclusion:

From the study, it is clear that the P300 based Electroencephalography (EEG)BCIs with Steady-State Visually Evoked Potential (SSVEP) non-
parametric feature extraction techniques work with high efficiency in the major parameters like Information Bit Transfer Rate (ITR), Mutual
Information (MI) rate and Low Signal to Noise Ratio (SNR) and achieve a maximum classification accuracy using Self Organized Fuzzy Neural
Network (SOFNN).
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Noise Ratio (SNR) and Self Organized Fuzzy Neural Network (SOFNN).
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I. INTRODUCTION

The  human  brain  has  a  huge  network  of  nervous
cells/neurons. The neurons fire inside the brain and produce an
electrical signal. These neurons transmit information from the
brain to discretionary muscles to control the motor organs [1].
When the neurons are not able to transmit signals among the
brain  and  nervous  system,  these  disorders  lead  to  coma  and
paralysis.  Such  kind  of  individuals  needs  Brain-Computer
Interface (BCI) for communication [2]. BCI systems enable a
person with motor disabilities to send commands to a device by
means of brain signals [3,4]. In order to control a BCI, the user
must  have  to  produce  brain  activity  patterns  that  can  be
transmitted to the system and translated into commands [5].
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The BCI system (Fig. 1) has subsequent components: (i) a
tool  to  record  brain  functionaries  either  invasive  Electro-
corticography  (ECoG)  [6]  or  non–invasive  Electroen-
cephalography  (EEG)  [7];  (ii)  a  preprocessor  that  minimizes
the artifacts and noises [8]; (iii) a decoder which decodes the
preprocessed  signal  into  an  impact  signal  [9]  for  (iv)  an
adscititious tool that might be a suitable application for the BCI
(e.g.,  an  automatic  mechanism,  a  display  monitor  etc.)  [10]
[11].  The  opinion  of  the  user  was  a  vital  feature  of  the  BCI
model  because  it  gives  the  previous  input  concerning  errors.
With this, it encourages the user to regulate the activity of the
brain to extend consideration and involvement within the work
or a task, therefore, observing to a neurofeedback principle, the
BCI is often considered as an impactful model with the active
response  (closed-loop  system)  [12  -  15].  A  BCI  could  be  a
communication  system  that  is  not  based  on  the  brain’s
conventional fasciculus output channels. The user’s objective is
delivered through brain signals (EEG) instead of by peripheral
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muscles and nerves, and these signals of the brain do not rely
on  his  or  her  production  on  fasciculus  actions.  The  BCI
provides a period of communication to the user and also to the
external world. The user gets a reflective response as the result
of  the  BCI  tasks,  which  response  will  have  an  effect  on  the
user’s resultant objective and its expression in signals from the
brain.

Fig. (1). Brain-Computer Interface (BCI) System.

2. BRAIN-COMPUTER INTERFACE TYPES

There  are  many  forms  of  BCI  determining  the  essential
reason for those tools to block the electrical signals which pass
among  neurons  within  the  brain  and  convert  it  to  a  signal
which is detected by external tools.

2.1. Invasive BCI

Invasive BCI tools are those deep-routed directly into the
brain to acquire signals without artifacts. Invasive BCIs do not
work with ECoG signals, hence they utilize direct brain signals
to  operate  leg,  limbs,  and  arms.  As  they  rest  inside  the  grey
substance, invasive tools make the best signals of BCI devices;
in  any  case,  they  are  at  the  risk  of  scaring  brain  -tissues,
perpetrating the signal to turn out vulnerable or maybe lost that
the body responds to an external object within the brain.

Fig.  (2).  A  Person  with  Non-inheritable  Vision  Defect,  being
Interviewed  Concerning  his  Vision  BCI  on  CBS's.

BCIs specializing in motor neuroprosthetics mean to either
reestablishing  development  in  paralytic  individuals  or  to
provide  devices  for  supporting  them,  like  interacting  with
computers  or  robotic  arms.  This  experiment  utilizes  a  lot  of
refined  embedded  based  active  mapping  of  phosphenes  as
appeared  in  Fig.  (2).

2.2. Partially Invasive Brain-Computer Interfaces

Partially invasive BCI systems are deep-routed inside the
skull,  and  rest  is  fixed  externally  from the  brain,  rather  than
inside the grey substance. Signal quality exploitation, this sort
of BCI is somewhat vulnerable once it  correlates to Invasive
BCI.  They  generate  high-quality  signals  than  non-invasive
BCIs.  Partly  invasive  BCIs  have  the  minimum  threat  of
connective  tissue  development  when  placed  beside  Invasive
BCI.

2.3. Non-Invasive BCI

The non-invasive method is one within which the clinical
scanning sensors or devices that are fixed on caps or headbands
to  scan  the  brain  signals.  Here,  electrodes  cannot  be  fixed
straightforwardly on the predefined region of the brain but on
the scalp. One of the very popular devices beneath this class is
that  the  EEG  equipped  device  to  present  fine  temporal  re-
solutions. It is easy to utilize, minimal cost and transportable.
Non-invasive BCI has the lesser signal clarity once it includes
human action with the brain (skull distortion signal) which is
most secure of all sort. This type of device has been utilized to
make progress in enabling a patient to move muscle implants
and reestablish partial movement.

ECoG is a non-invasive technique. Here, the electrodes are
implanted in a thin plastic pad which is fixed on the cortex, at a
minimum  place  with  respect  to  the  meninx.  ECoG  based
robotic  BCI  devices  utilize  one-dimensional  control  uti-
lization. Light-weight Reactive Imaging BCI devices are still
inside  the  realm  of  theory.  These  would  include  embedding
optical tool inside the bone. The optical tool would be trained
on a single nerve cell. In this manner, each neuron's coefficient
will be estimated by a single detector. When nerve cell fires,
the  optical  tool’s  light-weight  pattern  and  its  wavelength
reflection would modify marginally so as to reduce the chance
of scar tissue development through non-invasive ECoG.

Fig. (3). Subject sporting the Emotive EPOC Headset Receiver.

2.4. The Emotiv Education Edition SDK

The EEG headset receiver, to extricate an individual's brain
waves to diagnose them, is an EPOC headset receiver. Insights
of an EPOC headset receiver are defined below. The Education
Edition  SDK  by  Emotiv  Systems  has  a  headset:  a  fourteen
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channel (in addition to CMS/DRL references, P3/P4 regions)
high  resolution,  neuro-signal  obtaining  and  process  wireless
neuro-headset receiver as represented in Fig.(3) &. (4) Channel
names upheld the International 10-20 regions are: AF3, F3, F7,
FC5, P7, T7, P8, O1, O2, T8, F4, FC6, F8, &AF4 [16].

Fig. (4). Illustration of the location of electrodes on the scalp.

The  Education  Edition  SDK  moreover  comprises  a  res-
trictive  package  toolbox  that  uncovers  the  Apis  and  identi-
fication libraries. The SDK gives a better improvement setting
that  combines  well  with  new  and  existing  systems.  Various
methods  for  obtaining  brain  signals  epitomize  EEG  and
Magnetoencephalography  (MEG).  These  methods  are  being
considered of MRI and Near-Infrared Spectroscopy (NIRS) to
provide an analysis of brain wave and chemical patterns; in any
case, they are impractically inferable due to their size [17].

2.5. P300 EEG Based BCI

The  P300  is  an  Event  Relatedpotential,  a  quantifiable
electrical  charge  that  is  linearly  associated  with  impulse.  A
P300 BCI will linearly make an interpretation of an individual's
intention into electrical signals which control artificial devices
[18,19].  A  P300  speller  is  predicated  on  this  standard,  the
identification of P300 waves allows the user to enter charac-
ters. The P300 speller comprises of two various classification
issues.  The main classification is to locate the existence of a
P300 inside the graphical record (EEG). The second relates to
the  combination  of  various  P300  reactions  for  a  significant
possible character to spell [20].

3. FEATURE EXTRACTION

In a BCI framework,  the extraction of the feature begins
from  an  underlying  set  of  estimated  data  and  develops
determined qualities (features) intended to be instructive and
non-repetitive,  facilitating  the  next  learning  and  speculation
steps.  The  extraction  of  features  is  said  to  be  spatiality

reduction.  When  the  input  file  to  an  algorithmic  program  is
simply too large to process and it is assumed to be excess, at
that  point,  it  will  be renovated into a reduced set  of  choices.
This technique is named feature selection. The selected option
squares the measure of predicting important data from the input
file, so the predefined task will be performed by mishandling
this reduced outline instead of the entire initial data.

The extraction of the feature includes lessening the number
of resources required to clarify a large set of data. When per-
forming analysis of different data, one among the first issues
originates  from the  number  of  factors  considered.  Analyzing
with  a  larger  usual  range  of  factors  needs  a  large  amount  of
memory and computation power; collectively, it should cause a
classification  algorithmic  program  to  overfit  to  instruct  the
samples and sum up ineffectively.  The extraction of features
could  be  a  common  term  for  developing  combinations  of
variables, to initiate the input with adequate accuracy. From the
study  [21  -  29],  several  high-performance  feature  extraction
techniques have been reported, as listed in the summary. The
majority of the techniques listed from the study [21 - 29] are
reported  with  non-parametric  types  of  feature  extraction
techniques,  the study [29] alone used parametric AR method
for feature extraction.

4. CLASSIFICATION ALGORITHMS OF BCIS

The classification step followed throughout the BCI system
is to acknowledge the subject’s activity with the support of a
feature  vector  and  to  classify  it.  Either  regression  or
classification  algorithms  are  utilized  [30].  The  classification
algorithms  use  alternatives  of  extricated  variables  for  stipul-
ating boundaries among the feature sets [31].  As represented
the difference among any two modifications, for a two-target
case, each of a regression method or a classification method is
desired  to  have  the  parameter  of  1  that  may  be  operated
throughout  the  distributed  area  directly.  In  distinction,  the
classification  method  works  with  the  perseverance  of  3
functions,  one  for  every  3  boundaries  among  the  4  targets.

Therefore,  the  classification  method  may  collectively  be
helpful  for  two-target  applications  and  additionally,  the
regression  method  is  utilized  for  larger  targets,  once  these
targets are organized on one or many dimensions. Additionally,
the regression method was efficient for constant feedback i.e.
application that comprises constant control of movements [32].
In comparison, an on-line session gives away BCI framework
analysis throughout real-time conditions. This means, offline
simulation and cross-validation are effective ways to develop
and correlate new algorithms.However,  separate on-line ana-
lysis  will  result  in  better  BCI  performance  [33  -  46].  The
classification  algorithm  has  been  labeled  by  users  through
supervised  learning  in  the  feature  extracted  dataset.

5. DISCUSSION

The majority of the individuals with disabilities will have
to manage their activities using brain signals, the EEG signals
were mostly an applicable choice of input signals for the BCI
system. EEG signals were acquired from channels associated
with persons with motor disabilities. The corresponding comm-
ands were derived from EEG signals, which support the brain
signal pattern. If the amplitude recorded from the brain signals
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throughout the trials was larger than the limit, then the system
identifies a command for processing. For e.g. “turn right” and
“turn left” command is detected, whereas positive or a negative
potential recorded from the brain signal seems larger than the
connected  threshold.  If  each  value  were  matched  with  the
threshold value,  there  will  be  “no action”,  brain  signal  order
was  identified.  The  common  benchmarked  electrode  place-
ments are C21, C23, A1, A3, A19, A20, and A21, which are
mostly  used  in  BCI  experimentations.  As  far  as  the
conventional  P300  were  concerned,  they  deal  with  Event-
Related Potential (ERP) related stimulus, such type of stimulus
produces comparatively less accuracy than the SSVEP based
visual stimulus techniques. The SSVEP is an oscillatory signal
that  evokes  in  the  occipital  lobe  of  the  EEG in  reaction  to  a
visual stimulus, which was modified at a certain frequency. In
SSVEP  based  BCIs,  the  visual  stimulus  was  modulated  at
various  frequencies.  Once  a  BCI  user  aims  attention  on  a
bound pattern, the related stimulating frequency predominantly
generates in the spectral illustration of the EEG signal obtained
at  occipital  sites,  such  action  connected  to  the  dominant
frequency  were  executed  [47,48].  BCI  study  [27]  presents  a
high-speed speller BCI with a rate of conveying 40 characters
that  have  been  presented  for  13  subjects  involving  in  visual
stimulus,  hence  this  study  proves  that  SSVEP  has  been  a
promising  analysis.  In  feature  extraction  methods,  SSVEP
based  non-parametric  extraction  technique  has  given  more
information  like  time-domain  features  and  spatiotemporal
features,  which  were  most  predominant  than  the  ERP  based
Parametric feature Extraction Technique. Many neural network
classifiers  like  SVM,  PNN  were  presented  in  several  BCI
studies  but  the  classification  accuracy  seems  comparatively
lesser than the hybrid variety of neural network classifiers (e.g.,
(SOFNN)).  In  SSVEP  based  visual  stimulus,SOFNN  Classi-
fiers are more predominant in processing the raw EEG signals
such that it spontaneously evokes Mu and Beta frequencies for
Right  and  left-hand  motor  imagery  movements  and  achieves
classification accuracy with high ITRs and low SNR [49 - 60].
Several  analyses  had  the  accuracy  of  BCIs  and  produced
suitable data bit rate, though the inherent major challenges in
the  brain  signal  process.  However,  the  recent  vital
improvements,  issues,  and  problems  are  yet  to  be  resolved.
Such tasks  were  performed using invasive,  non-invasive  and
partially invasive BCIs for the persons with motor disabilities.
Majority  of  the  researchers  ignored  partially  invasive  and

invasive  methodology  due  to  its  practical  difficulties.  In
common,  speller  based  BCIs  with  the  combination  of  Brain
signal to audio and brain signal to text with SSVEP parametric
feature  extraction  seems  to  be  much  efficient  than  the
conventional  type  of  BCIs.  For  resolving  the  practical
drawbacks,  a  new  concept  of  P300  with  Global  System  for
Mobile  Communications  (GSM)  based  BCIs  with  SSVEP
based  Statistical  feature  extraction  technique  for  EEG
operations  with  an  additional  operation  of  transmitting  the
brain  signals  to  text  as  well  as  audio  during  emergency  will
perform more efficiently than the above existing conventional
type of BCIs for reducing the practical difficulties of a person
with motor disabilities.

CONCLUSION

This  work has  analyzed the  progression of  BCI systems,
discussing essential parts of different BCI models and the most
significant objectives that have driven BCI analysis in the past
twenty years. It has been noticed that a lot of progress has been
made  in  the  analysis  of  BCI.  Various  neuroimaging
methodologies  are  included  in  this  progress  which  are  to  be
implemented in BCI; (I) EEG, that presents satisfactory quality
signals  with  high  versatility  and  is  beyond  the  regular
methodologies; (ii) fMRI works with large integer scale, that
squares the measure of attempted viable methods for confining
active zones inside the brain; and (iii) Invasive methods, that
are significant techniques to deliver high quality signal that are
required  in  some  dimensional  control  applications  e.g.
neuroprostheses  management.  BCI  studies  have  considered
time,  frequency,  and  spatial  components  of  brain  signals
individually. These signal dimension interdependencies are the
latest developments in BCI. BCI analysis suggests that creative
improvements  are  awaiting  in  the  near  future.  These
accomplishments and furthermore the potential for brand new
BCI applications have clearly given a valuable improvement to
BCI  analysis  including  multidisciplinary  researchers  e.g.
neuroscientists,  mathematicians,  engineers,  and  medical  re-
habilitation  experts,  among  others.  Interest  within  the  BCI
domain is predicted to expand based on the possibilities. In the
future, the BCI system may become another model of human-
machine combination with various levels in the day to day life
of individuals with motor disabilities.

SUMMARY

Authors
(Year)

Sample size /
Subjects&
Stimulus
Duration

Stimuli
Frequency

Range
(Hz)

Stimulus Levels Analysis Method/ Feature
Extraction

Reports/Results

Pieter-Jan
Kindermans,

et.al,
(2014)

10 Samples &
125 ms

256Hz 300ms, post
stimulus

ERP Features High efficient Unsupervised P300 speller BCI
has been presented

Dandan Huang,
(2012)

5 Healthy
Subjects

(2 out 5 Subjects
got 200 samples)

256Hz Not Applicable Spatio-Temporal Features High-Performance 2D BCI wheelchair has
been Reported, with an average classification

accuracy of 70% to 80%

Eric C Leuthardt,
et.al,

(2006)

4 subjects
3male & 1 female

180Hz 12-time intervals,
post-stimulus

ECoG Features (Amplitude
in specific Frequency

bands)

ECoG based BCI scheme is more efficient
than EEG based BCIs. All the four controls

achieved 73% to 100% of performance
efficiency, but this method is invasive.



Brain-Computer Interface for Persons The Open Biomedical Engineering Journal, 2019, Volume 13   131

Authors
(Year)

Sample size /
Subjects&
Stimulus
Duration

Stimuli
Frequency

Range
(Hz)

Stimulus Levels Analysis Method/ Feature
Extraction

Reports/Results

Damien Coyle,
et.al,

(2005)

3 healthy Subjects 128Hz Not Applicable Self-Organizing Fuzzy
Neural Network-based
Time Series Prediction

(Statistical Time Features)

High Efficient classification accuracy,
Information transfer rate (ITR) and Mutual
Information (MI) rate have been achieved.

YaninaAtum,
et.al,

(2010)

Single Subject 1024Hz Not Applicable Discrete Dictionary-based
Feature Extraction

Approach

The wrapped wavelet samples represent the
best performance over the temporal patterns.

Pieter-Jan
Kindermans,

et.al,
(2012)

Akimpech P300
database, which

covers 22 subjects
performing

Spanish Language
Spelling

256Hz 300ms, post-
stimulus

ERP Features Results show Unsupervised P300 speller
models perform better than supervised

models in specific areas.

Xiaogang Chen,
et.al,

(2012)

12 subjects Not
mentioned

Stimulation Levels
varies between each

subject from (o –
1s)

SSVEP Features High performance, High speedSpellerBCI for
communication has been reported, with high-

speed information transfer rate of 5.32 bps

Masaki
Nakanishi,

et.al,
(In Press)

13 Subjects Not
mentioned

Visual Stimulus is
used, Stimulus

levels
Not seen

SSVEP (time-domain)
Features

High-Speed SSVEP- BCI in real
timeapplications. Achieved an average of
166.91 bits/min for Information Transfer

Rate.
C. Guger,

et.al,
(2009)

100 subjects
32 female and 68

male

256Hz 800ms, Post
Stimulus

Features are not apparently
seen but LDA is used to

choose the accurate
features.

High accuracy has been reported for the
persons with motor disabilities, with a

spelling accuracy of 80% to 100%

Tie-Jun Liu, et.al,
(2009)

3 subjects 1000Hz Not Applicable AR feature extraction
Model

Real-Time BCI- System Based on Motor
Imagery is reported with the best accuracy

levels.
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