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Abstract:

Objective:

Nowadays, surface electromyography (sEMG) signals are used for a variety of medical interaction applications along with hardware and software
interfaces. These signals require advanced techniques with different approaches that enable processing the sEMG signals acquired in the upper
limb muscles of a person.

Methods:
The purpose of this article is to analyze the sEMG signals of the upper limb of a person exposed to temperature changes to envisage its behavior
and its nature. The anticipated diagnostic is a key factor in the health field. Therefore, it is very important to develop more precise methods and
techniques. For the present study, a heat chamber that allows controlling the temperature of the area where the patient rests his or her hand was
designed  and  implemented.  With  the  appropriate  hardware  interfaces,  the  sEMG signals  of  the  hand  were  registered  with  MatLab/Simulink
software for further analysis. The article explains the analysis and develops knowledge, through a probabilistic approach regarding the change in
the sEMG signals.

Results:
The results show that there is an activity in the sEMG signal response due to changes in temperature and it is feasible to detect them using the
proposed method.

Conclusion:

This finding contributes to research that seeks to characterize temperature’s effect in the biomedical field.

Keywords: Surface electromyography signals (sEMG), Signal analysis, Upper limbs, Temperature changes, Probabilistic approach, Biomedical
field.

Article History Received: May 12, 2020 Revised: August 11, 2020 Accepted: August 14, 2020

1. INTRODUCTION

Electromyography signals are currently an important field
of study due to their wide range of applications [1 - 6] One of
the lines of research involves medicine and technology, and it
may improve the quality of life of people. The present study is
a contribution to this area. It focuses on measuring myoelectric
changes  in  the  human  body  when  exposed  to  temperature
variations. The responses to temperature changes are important
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for  users  of  upper  limb  prosthesis  that  functions  with
myoelectric feedback [7] because it is related to how users feel
the prosthesis, and it may help them feel as if they have their
own extremity.

Currently, the robotic prosthesis of upper limbs that base
their functionality in electromyography signals (EMG) uses the
variations in forearm muscle contractions to control the speed
of  the  device  through  a  specific  method.  They  seek  a  link
between  the  EMG  signal  and  the  effort  by  the  muscle,
considering the influence of any other constant variable. This
can be expressed as EMG=f(F, Others).

The  present  study  aims  to  characterize  the  effect  of
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temperature  on  the  superficial  electromyography  or  sEMG
signal  considering  the  rest  of  the  variables  as  constant.  This
may be expressed as |sEMG|=f(T, Others). This effect may be
useful for robotic prosthesis to provide feedback to the human
body on the environment, in this case, on temperature.

In this research, a chamber [8] with a Proportional Integral
Derivative  (PID)  temperature  controller  was  designed.  This
way, the temperature was increased in steps up to 45 degrees
celsius. This was the highest temperature because the skin gets
injured  after  55  degrees  Celsius,  also  known  as  critical
temperature. Each change took place after the temperature was
stable for at least 20 seconds. The measure of neuromuscular
activities  can  be  performed  in  two  different  ways  [9],  by
inserting a needle in the body to obtain the data of the muscles
and with the help of electrodes placed in three strategic points,
so  the  data  obtained  is  known  as  Surface  Electromyography
(sEMG). The present study worked with the sEMG.

For  the  sEMG  signal  acquisition,  two  alternatives  were
used  throughout  the  experiment.  The  first  one  used  surface
electrodes  along  with  a  signal  conditioning  card  and  a  data
acquisition card, which allowed registering the information in
the MatLab/Simulink software. The second one used an MYO
bracelet  with  an  interface  of  the  same  manufacturer  that
allowed connecting with the MatLab/Simulink software. Thus,
in this test, one of the two devices for sEMG signal acquisition
was  placed  on  the  right  hand  of  the  patients  and  then  their
hands were placed within the chamber.

The sEMG signals showed an evident change in the graphs
when the data was registered. This analysis could be performed
at a simple glance of the graphs with the help of a trained and
experienced  person  [10].  Although  there  were  significant
results with this method, a mathematical or statistical method
was  necessary  to  recognize  the  changes  in  real-time  and  to
neglect the physical or emotional aspects of the subjects. It is
important to note that all patients were healthy people with no
sign of disability. They were informed of the proceeding and
they agreed to participate in the tests acknowledging the risks
of warming their hand in the chamber.

Time and frequency analyses of the changes in the sEMG
signals  were  carried  out  to  examine  the  possibility  of
developing a mathematical model to characterize the effect of
temperature change over the signals. The study concluded that
the characteristics of the frequency domain of these signals had
a  better  performance  than  the  ones  obtained  from  the  time
domain  [11].  However,  these  characteristics  were  not
generalizable  because  every  patient  had  a  different  anatomy
and physiology.

The next step was analyzing the amount of data necessary
to successfully determine or characterize the system. If there
was less data, the curve did not behave as expected, and if there
was more data than the requirement, the amount of irrelevant
data also increased. Once the data was selected, the analyses
considered  the  changes  in  the  sEMG  signal  comparing  the

signal acquisition in the original temperature and once the new
temperature  was  reached.  In  other  words,  only  the  signals
registered in the starting temperature and the signals registered
once the new desired temperature was reached,  after  each of
the changes made, were considered.

The  data  obtained  was  analyzed  after  the  data  collection
process  ended.  According  to  previous  studies  [8],  with  the
development  of  a  probabilistic  analysis  program  using
optimization methods, a link between temperature change and
changes  in  sEMG  signals  was  established.  Therefore,  the
starting  point  for  the  analysis  was  acknowledging  that  the
sEMG  signals  indeed  reacted  to  temperature  change,
considering  the  remaining  variables  as  constants.

Since  there  are  variations  in  the  sEMG signals,  the  next
step was to look for characteristics in the behavior of time [10]
and frequency [11]. Both domains help explain and weigh the
changes  by  analyzing  statistical  parameters  that  may  be
combined with intelligent control techniques, such as neuronal
networks. This approach illustrates the potential of application
for  future  prosthesis  and  robotic  arms  in  the  field  of
biomedicine.

The rest of this article is organized in five sections. Section
2  describes  the  development  of  the  experiment  presented  in
previous  studies  [8],  emphasizing  signal  acquisition  and
treatment [10]. In section 3, the variable of interest is deduced,
contrasting it with probabilistic diagnostic techniques [12, 13].
In section 4, the relation of these variables obtained for every
patient  is  calculated  and a  probabilistic  description  based  on
this  behavior  is  developed.  Finally,  section  5  illustrates  the
results obtained and the conclusions achieved.

Notations: Standard notations are used in this paper. The
surface  electromyography  signals  will  be  denoted  as  sEMG
signals.

2. METHODS

The  right  hand  of  a  healthy  person  was  subjected  to
controlled  temperature  changes.  A  PID  controlled  heat
chamber was built to perform the experiment [8]. This chamber
had four 100 Watt lamps as a heat source. The hardware was
interfaced with MATLAB and Simulink to acquire the sEMG
signal data, with a sampling rate of 1024 [Hz], as well as the
chamber, the room and the body temperature.

Although data acquisition originally considered the three
temperatures (room, body and chamber), due to the approach
of the research, the chamber temperature was analyzed as an
independent variable,  capable of producing the changes.  The
other temperatures were considered invariants throughout time.
In  other  words,  the  tests  were  carried  out  in  a  controlled
environment to consider solely the temperature changes in the
chamber and the effects on the sEMG signals of the upper limb
of  the  human  body  exposed  to  this  temperature  variation.  A
general description of the experiment is shown in Fig. (1).
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Fig. (1). Block Diagram of the Experiment.

2.1. Hardware

An Olimex SHIELD-EKG-EMG was used to sample EMG
information  [14].  This  board  includes  an  Instrumentation
Amplifier  (INA321EA),  an  Operational  Amplifier  with
regulated gain and a Third Order “Besselworth” filter. Finally,
the total gain of the board was Gtotal = 2848.

The  room  temperature  (Ta),  the  temperature  of  the
temperature-controlled chamber (Tc) and the body temperature
(Tb)  were  registered  by  three  different  LM35  sensors.  The
body temperature sensor was placed on the upper arm by the
biceps muscle. A NI PCI-6221 Data Acquisition was used to

interface  all  sensors  to  the  computer,  all  through  analog
channels.  Fig.  (2)  shows  the  heating  chamber  used  for  the
experiment.

The devices used for the acquisition of sEMG signals to be
sent to the system are shown in Fig. (3).

Myo Gesture Control Armband, 8 channels to measure
independent differentials signals.
Olimex  and  Shield  EKG/EMG,  1  channel  with
measure  settings  of  the  type  of  signal,  cardiac  or
muscular.

Fig. (2). Heat chamber and temperature control.
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Fig. (3). Devices used for data acquisition.

2.2. EMG Specifications

The  sEMG  signals  were  acquired  through  non-invasive
surface pre-gelled disposable electrodes. A reference electrode
was placed on the biceps and the other two were placed on the
right hands of the subjects at the flexor-pronator muscle group
to acquire the differential voltage [15]. Previous studies have
also shown these muscles, which are related to the middle and
ring  fingers,  that  show  more  signal  variation  when  the
temperature  change  is  sensed  than  other  muscles.  Tested
subjects  were  in  a  relaxed  position  to  avoid  artifacts  and
muscle  temperature  increase  due  to  contraction  [16,  17].

2.3. Focus Group

A group of ten healthy people, five men and five women,
were randomly selected as test subjects for this experiment. All

of them were students of the “Escuela Superior Politécnica del
Litoral (ESPOL)”. Their relevant characteristics are shown in
Table 1. However, it is important to note that the subjects were
average in terms of physical activity. In other words, they were
the people who did not carry out specialized physical activity
due to being students . Therefore, the analysis of the body mass
index  (BMI)  or  the  body  fat  percentage  (BFP)  was  not
considered in the present study. This element may be subject to
further research focused on a different population, for example,
athletes. The experiment consisted of three different tests, each
with  at  least  ten  iterations.  However,  not  all  of  them  were
applied  to  all  subjects.  Each  test  consisted  of  subjecting  the
patient's hand to three cycles of temperature variations. Each
change  took  place  after  the  previous  temperature  was  in  a
steady-state Tss for 20[s]. Each test is specified in Table 2.

Table 1. Characteristics of Tested Subjects.

Subject # Gender Height (cm) Weight (lbs) Age (years)
(Subject 1) male 158 186 25
Subject 2 female 160 186 25
Subject 3 male 167 139 24
Subject 4 male 153 112 24
Subject 5 male 179 206 23
Subject 6 female 165 175 25
Subject 7 female 169 146 24
Subject 8 male 170 187 26
Subject 9 female 161 150 22
Subject 10 female 165 196 24
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Table 2. Experiment Specifications.

Test # Initial Temperature (°C) Final Temperature (°C) Time in Steady-State (s)
1 30 35 20
2 35 40 20
3 40 45 20

2.4. Software

The main program was developed in Simulink (see Fig. 4).
A MatLab function made sure that the Tss was constant for each
step, so the temperature set point for the PID was automatically
changed, as explained in Table 2. Input and output signals were
interfaced with the DAQ through Simulink Desktop Real-Time
Library. Digital signal processing was carried out after all data
were collected.

In Fig. (5), two voluntary patients who were submitted to
the experiment can be observed. The purpose of obtaining the

sEMG data signals was to analyze the myoelectric response to
the temperature changes in the heating chamber.

In Fig. (6), the data obtained for subjects 1(a) and 2(b) is
shown, with the observed myoelectric response of the forearm
to temperature variations in the hand.

The temperature variation and sEMG responses of a single
subject in all six experiments are shown in Fig. (7). It can be
noticed  that,  in  the  time  domain,  sEMG  signal  magnitude
variation was produced while temperature variation occurred
[3].

Fig. (4). Simulink Control Software.
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Fig. (5). Subjects 1(a) and 2(b), sEMG signal measuring.

Fig. (6). Graphic of the temperature and myoelectric signals in time-domain.

3. DETECTION

The data  was  obtained from subjects  as  described in  our
previous  studies  [8,  10,  11].  The  chamber  was  designed  to
maintain  temperature  control.  As  changes  occurred  in
temperature, the readings of the sEMG signals clearly showed
changes. This is shown in Fig. (8), where it indicates how the

temperature  in  the  heating  chamber  varied  from  35[oC]  to
36[oC]  approximately.

The results of sEMG data acquired from a random subject
are shown in the lower part of Fig. (8). There were changes in
the  sEMG  signals  every  time  the  temperature  suffered  an
alteration, although these were low due to the scale used [8].
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Fig. (7). Myoelectric Response to six different Temperatures.

Fig. (8). Test # 1. Raw data from (upper) heat chamber and (lower) sEMG.

3.1. Algorithm

The  Approximated  Generalized  Likelihood  Ratio
algorithm  is  based  on  the  Optimal  Estimator,  which  uses
statistically optimal decision rules to detect changes in signals
[11]. The Optimal Estimator evaluates the statistical properties
of  the  measured  sEMG  signal  before  and  after  a  possible
change  in  model  parameters  [19,  20].

1)  Optimal  Estimator:  This  model  assumes  that  the

probability  density  function  of  the  process  yk  is:

(1)

The  detector  for  the  Optimal  Estimator  computes  the
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where  σ  0  and  σ1  are  the  standard  deviations  before  and
after a change.

This algorithm compares the log-likelihood ratio:

(2)

between  the  distributions,  before  and  after  the  change  at
time tj. with the threshold h. If the maximum Sj

k exceeds h, the
alarm ta is set.

This  method  applies  the  Approximated  Generalized
Likelihood  Ratio,  which  searches  for  an  abrupt  change  on
variance by using a combination of a growing and a fixed size
sliding window. This test determines whether the variances in
the growing and fixed-size window are different by comparing
the log-likelihood ratio with a threshold h. The time j at which
the  maximum  value  is  obtained  serves  as  the  maximum
likelihood  estimate  t̂  0  of  the  unknown  change  time  t̂  0.  In
practice, σ 0 and σ1 are unknown but can also be estimated.

3.2. Approximated Generalized Likelihood Ratio (AGLR)

This  method  employs  two  test  windows,  one  with  a
growing and one with a fixed-size window. Each continuously
moving over the signal from the last estimated time change tm-1

to current time tk.  The method is based on hypothesis Ho  and
hypothesis H1.

H 0: no change in statistical properties of the sequence and
the variance is θ̂ in the interval [tm-1:tk]

H1:  a change in statistical  properties at  tk-l,  and variances
are θ̂a and θ̂b, before and after change, respectively.

This method compares the log-likelihood ratio between the
probability density function of hypothesis H 0 and H1 with the
threshold h, as described in equation 3.

(3)

where L is the length of the fixed-size window.

When  g(k)  >  k  the  event  alarm  t͂m.  is  set  and  the  sliding
window procedure stops.

The  g(k)  function  can  be  rewritten,  for  implementation
purposes as:

(4)

The unknown variances before and after, (θ̂b, θ̂a), and the
one corresponding to H 0, (θ ̂0), can be calculated as:

Analogous to the Optimal Estimator, the m-th alarm time t͂m
is:

After  an  alarm  occurs,  tm  is  calculated,  maximizing
equation  5.

(5)

where j ϵ [tm-1 + L: t͂m] and Δ is to make sure that there are
still available data.

The estimated θb͂ and θ͂a are calculated for each j as follows:

3.3. AGLR Results

The Universität der Bundeswehr München released a series
of  MATLAB  scripts  for  the  detection  of  muscle  activation
intervals from sEMG signals on their web page. For the present
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experiment, the function saglrstepvar.m  was used. This is an
AGLR detector for sequential  detection of single or multiple
changes in random processes. This function is defined as:

(6)

Where y is a vector with filtered sEMG data, L is the size
of  the  sliding  window,  h  is  the  detection  threshold,  Δ  is  the
minimum number of  samples  used for  Maximum Likelihood
parameter estimation after the change, and mode specifies it is
a  'single’  event  or  ’multiple’  event  detection.  This  function
returns t0 and ta as vectors with detected change and alarm time,
g0 is the likelihood function for determination of change times
and ga indicates the test function of stopping rule.

Two other tests were analyzed; these are shown in Figs. (9
and  10).  It  must  be  noticed  that  in  Fig.  (10),  a  single
temperature  variation  cycle  is  analyzed.

Afterwards, raw data was filtered to be sent to the AGLR
script. This filtering process included DC and trends removing
using notch filter at 60[Hz] and 120[Hz].  Finally, with upper
Root  Mean  Squared,  RMS,  the  envelope  was  obtained  [16].
This was set to be y vector.

Full parameters sent to the AGLR algorithm were:

For Test # 1: L = 960; h = 90; Δ = 80

For Test # 2: L = 1000; h = 35; Δ = 80

For Test # 3: L = 960; h = 66; Δ = 80

The  results  of  previous  studies  showed  the  need  to
determine  a  sliding  window  for  each  subject.  This  was

established  through  many  samples  and  an  estimated  time  in
which  the  change  occurred  knowing  the  time  when  the
temperature  in  the  chamber  changed  [18].  Each  parameter
corresponds  to:

Size L of the sliding window determines the minimum
distance of sequential changes.
Threshold h is a balance between false alarms (small
h) and let through small events (large h).
The  option  Δ  is  a  parameter  for  estimation  of  the
maximum likelihood  after  the  change  to  a  minimum
number of δ samples.

In  Fig.  (11),  the  result  is  observed  after  executing  the
software  of  the  AGLR  estimator  in  MatLab  for  Test  #  1.  It
highlights 10 points of change with the dotted line, which will
be stored in the vector of the body temperature named tcEst, for
further  analysis.  The detail  of  the estimated change points  is
shown in Table 3.

%Error 1 and %Error 2 also appear in Tables 3, 4, 5. They
are calculated as follows:

(7)

(8)

Results of the AGLR estimator for Test # 2 and Test # 3
are shown in Figs. (12 and 13) with the corresponding tcEst on
Tables 4 and 5.

Table 3. Disturbance observed and estimated time comparison, Test # 1.

tc# tcPert tcObs tcEst %Error1 %Error2
tc1 11 13 13.2695 18.18 20.63
tc2 17 19 19.6719 11.76 15.72
tc3 35 35 39.9609 0 14.17
tc4 49 44 50.1777 10.20 2.40
tc5 66 64 66.0176 3.03 0.03
tc6 71 72 76.5645 5.63 7.84
tc7 88 91 87.4980 3.41 0.57
tc8 105 102 101.8984 2.86 2.95
tc9 121 120 122.8418 0.83 1.52
tc10 127 127 127.4082 0 0.32

Table 4. Disturbance observed and estimated time comparison, Test # 2.

tc# tcPert tcObs tcEst %Error1 %Error2
tc1 10 10 10.7148 0 7.15
tc2 18 19 19.2363 5.55 6.87
tc3 37 37 38.0938 0 2.96
tc4 45 44 44.6094 2.22 0.87

𝑓[𝑡0, 𝑡𝑎, 𝑔0, 𝑔𝑎] = 𝑠𝑎𝑔𝑙𝑟𝑎𝑡𝑒𝑝𝑣𝑎𝑟(𝑦, 𝐿, ℎ, ∆, 𝑚𝑜𝑑𝑒)  

%𝐸𝑟𝑟𝑜𝑟1 = 100 ∗ |
𝑡𝑐𝑃𝑒𝑟𝑡−𝑡𝑐𝑂𝑏𝑠

𝑡𝑐𝑃𝑒𝑟𝑡
| 

%𝐸𝑟𝑟𝑜𝑟2 = 100 ∗ |
𝑡𝑐𝑃𝑒𝑟𝑡−𝑡𝑐𝐸𝑠𝑡

𝑡𝑐𝑃𝑒𝑟𝑡
| 
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Table 5. Disturbance observed and estimated time comparison, Test # 3.

tc# tcPert tcObs tcEst %Error1 %Error2
tc1 14 14 15.3105 0 9.36
tc2 20 21 21.3516 5 6.76
tc3 38 37 40.4219 2.63 6.37
tc4 47 46 50.8672 2.13 8.23
tc5 65 66 66.8926 1.54 2.91
tc6 71 72 71.7324 1.41 1.03
tc7 90 87 90.8008 3.33 0.89
tc8 98 96 99.7305 2.04 1.77
tc9 115 117 118.3672 1.74 2.93
tc10 122 123 123.2402 0.82 1.02

Fig. (9). Test # 2. Raw data from (upper) heat chamber and (lower) sEMG.

Fig. (10). Test # 3. Raw data from (upper) heat chamber and (lower) sEMG.
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Fig. (11). Results of AGLR algorithm for Test #1.

Fig. (12). Results of AGLR algorithm for Test # 2.
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Fig. (13). Results of AGLR algorithm for Test # 3.

3.4. Artificial sEMG Signal Generation

Since the change in sEMG signals of the upper extremities
respond  to  changes  in  temperature,  their  characteristics  are
assessed  based  on  the  analysis  of  their  media.  A  random
variable of  the means of  the data was used as a  result  of  the
sectioning  of  the  data.  The  appropriate  criterion  was  always
specified [21], which allowed representing their behavior using
a Gamma function of two parameters [22], as can be observed
in Fig. (14).

According to previous studies [23], we proceed to develop

a model that  allowed generating the sEMG signal artificially
and whose response we appreciate in Fig. (15).

To  validate  the  artificial  signal,  the  real  response  was
compared to the artificial one using a statistical analysis that
may be seen in Fig. (16).

These  results  allowed  us  to  determine  that  the  artificial
sEMG signal is a good representation, from the statistical point
of view, of the real sEMG signal. For tests, intervals with 95%
confidence for large samples were used.

Fig. (14). Behavior of the means of |sEMG| using the Gamma function of two parameters.
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Fig. (15). Excitation signal and signal response |sEMG| real and artificial.

Fig. (16). Analysis of the means of the real (a) and artificial (b) signals.

4. RESULTS AND DISCUSSION

The sEMG signals acquired through the Olimex card meet
the typical characteristics of these signals in the forearm in the
resting  state.  This  validates  the  shape  of  the  sEMG  signal.
Also,  any  change  in  it  will  be  the  product  of  an  external
variable. In our case, the temperature is the external variable

because it is the only parameter that is changed throughout the
experiment. This may be expressed in the function |sEMG| = f
(T, Others).

Due to the behavior of the data, this study seeks to obtain a
relationship  between  |sEMG|  and  T,  and  to  establish  the
behavior of |sEMG| before changes in temperature, by means
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of the Gamma probability density function. This may be used
for the characterization of the relationship between |sEMG| and
T  by  developing  an  emulator  of  these  signals  to  be  able  to
compare against the real ones.

CONCLUSION

The  heating  chamber  fulfills  the  function  of  keeping  the
temperature constant, which allows manipulating the reference
signal applied to test subjects.

The  responses  obtained  from  the  test  subjects  show  that
there  are  changes  in  the  sEMG  signals  when  temperature
changes, which allow us to consider that there is some kind of
relationship between them.

The values of the time change obtained from observation
tcObs and the AGLR estimator tcEst are very close to the moment
when the disturbance is introduced tcPert.  Therefore,  one may
affirm that the sEMG signals depend on the temperature.

The artificially generated signal is a good representation of
the real signal |sEMG|. This may be used as a contribution to
future research in the biomedical field, for example, to simulate
the  lost  characteristic  of  environment’s  thermal  perception
(temperature)  in  prostheses.

For future studies, two elements need further research and
analysis. On one hand, the effect of the BMI and the BFP of
the  subjects  of  the  experiments  must  be  explored  for
populations with specific characteristics, like athletes. On the
other hand, the effect on the sEMG signals of the environment
and the body temperature outside the chamber must be subject
to deeper analysis.
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