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Abstract: Anesthesia drugs have impact on multiple outcomes of an anesthesia patient. Most typical outcomes include 

anesthesia depth, blood pressures, heart rates, etc. Traditional diagnosis and control in anesthesia focus on a one-drug-

one-outcome scenario. This paper studies the problem of real-time modeling for monitoring, diagnosing, and predicting 

multiple outcomes of anesthesia patients. It is shown that consideration of multiple outcomes is necessary and beneficial 

for anesthesia managements. Due to limited real-time data, real-time modeling in multi-outcome modeling requires low-

complexity model strucrtures. This paper introduces a method of decision-oriented modeling that significantly reduces the 

complexity of the problem. The method employs simplified and combined model functions in a Wiener structure to 

contain model complexity. The ideas of drug impact prediction and reachable sets are introduced for utility of the models 

in diagnosis, outcome prediction, and decision assistance. Clinical data are used to evaluate the effectiveness of the 

method.  
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1. INTRODUCTION 

 Real-time anesthesia decisions are exemplified by 
general anesthesia for attaining an adequate anesthetic depth 
(consciousness level of a patient), ventilation control, etc. 
One of the most critical requirements in this decision process 
is to predict the impact of the inputs (drug infusion rates, 
fluid flow rates, etc.) on the outcomes (consciousness levels, 
blood pressures, heart rates, etc.). This prediction capability 
can be used for control, display, warning, predictive 
diagnosis, decision analysis, outcome comparison, etc. The 
core function of this prediction capability is embedded in 
establishing a reliable model that relates the drug or 
procedure inputs to the outcomes. Traditional modeling, 
diagnosis, and control in anesthesia focus on a one-drug-one-
output scenario [1-7]. Typically, an anesthesia drug 
influences more than one patient outcomes. For monitoring, 
diagnosis, and control, it becomes essential that the impact 
of anesthesia drugs on multiple outcomes be taken into 
consideration. It has also been observed that each patient 
responses to drug inputs with very different dynamics. Even 
for the same patient, responses to the same drugs change 
with time, surgical stages, and patient conditions. As a result, 
it is necessary to establish multi-input-multi-output (MIMO) 
models in real-time and for individual patients. 

 Due to limited real-time data, individualized real-time 
patient modeling must have low model complexity. As a 
result, the task of real-time modeling in multi-drug-multi-
outcome modeling is of substantial challenge in complexity 
reduction. A basic information-oriented model structure (a 
special case of Wiener models) was introduced in [8-11], for 
patient anesthesia depth responses to propofol infusion as a  
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single-input-single-output (SISO) system. This simple model 
structure contained only a few parameters and could be 
easily identified in real-time. This paper introduced a method 
of decision-oriented MIMO modeling that significantly 
reduced the complexity of the problem. The method 
employed simplified and combined model functions in a 
Wiener structure to contain model complexity. The ideas of 
drug impact prediction and reachable sets were introduced 
for utility of the models in diagnosis, outcome prediction, 
and decision assistance. Clinical data were used to evaluate 
the effectiveness of the method.  

2. DATA ACQUISITION 

 The patient population age group was between 20 and 70 
years old. These patients were undergoing upper extremity 
arteria-venous fistula placement or thrombectomy, under 
intravenous unconscious sedation. Anesthesia was 
administered by an experienced anesthesiologist or 
registered nurse anesthetist. The patient was seen, examined 
and evaluated in the pre-operative holding area by an 
anesthesiologist. The anesthesiologist made sure that the 
patient was ready for the surgery. Labs were checked in the 
pre-operative holding area and 1 mg of Midazolam IV was 
administered to the patient, after receiving full consent for 
the surgery and the participation in this study. All risks and 
benefits were thoroughly explained to the patient while 
obtaining consent. 

 The patient was, then, taken to the operating room, 

placed on the OR table, started on face mask oxygen at a rate 

of   8L / min , hooked to the electrocardiogram monitor, 

noninvasive blood pressure cuff was placed on the 

contralateral arm, and the cuff cycle was set to measure 

blood pressure every three minutes. A pulse oximeter was 

hooked on the patient's contralateral index. 

 The patient consciousness levels during anesthesia were 

measured by a BIS (bi-spectrum) monitor (Aspect Medical 
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Devices, Inc.). It was one of the anesthesia monitors 

commercially available and widely used in operation rooms 

[12,13]. The monitor provided continuously an index in the 

range of 
 
[0,100]  such that the lower the index value, the 

deeper the anesthesia state. Hence, an index value  0  will 

indicate “brain dead” and  100  will be “awake.” A bi-

spectral (BIS) electrode was placed on the patient's forehead 

before administering anesthesia to the patient. The electrode 

was connected to the BIS monitor, which in turn was 

connected to a special computer system to allow continuous 

recording and saving of the BIS values. The computer's 

software was a monitoring system designed by the 

Department of Electrical and Computer Engineering at 

Wayne State University. The system performed prediction of 

BIS values for the specific patient by generating patient 

models in real time using response data from the patient 

under anesthesia, see Figs. (1 and 2). 

 A baseline BIS value of at least 90 was recorded before 

the administration of anesthesia. The patient was given 

  
1 2 mcg / kg  of bolus IV Fentanyl at the beginning of the 

surgery and 
  
1 mcg / kg  bolus during the surgery as needed. 

The patient was started on intravenous propofol pump at a 

rate of 
  
50 mcg / kg / min  and titrated as needed during the 

surgery. All measured heart rates, blood pressures and pulse 

oximetry values were entered and saved manually into the 

computer every three minutes and following any bolus 

administrations. The propofol rate, any changes made to the 

propofol rate, and any propofol or Fentanyl bolus given were 

transmitted to the computer monitoring system automatically 

and continuously at the sampling rate of 1 Hz (one sample 

per second). Towards the end of the procedure, and after 

making sure no more surgical stimuli were applied to the 

patient, all anesthetics were turned off and the patient was 

awakened with the BIS value of more than 75. The patient 

was then taken to the recovery room on oxygen tank for a 

period of two hours of observation. 

 As a pilot study for methodology development, 

anesthesia procedure data from 5 patients were collected. 

The data set was not large enough for reliable statistical 

analysis, but provided sufficient data for developing our 

model structures and algorithms and to evelaute their 

potential advantages.  

3. RATIONALE FOR MIMO, REAL-TIME, AND 

INDIVIDUALIZED MODELING OF PATIENT 

DYNAMICS 

 In this section, we provide several reasons why it is 

important to consider multiple outcomes simultaneously, 

 

 

 

 

 

 

 

Fig. (1). Computer data acquisition system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. (2). Front panel of the system. 
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establish individualized models, and use real-time data to 

capture patient responses. 

 Typically, an anesthesia drug influences more than one 

patient outcomes. Fig. (3) shows a typical recording of a 

patient's response to propofol and fentanyl titration and bolus 

injections. For this patient, the anesthesia drugs not only 

reduced the patient BIS values to a lower level, but also 

depressed the blood pressure and made the heart rate 

fluctuate. For monitoring, diagnosis, and control, it becomes 

essential that the impact of anesthesia drugs on both 

anesthesia depth and blood pressures be taken into 

consideration. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (3). Drug inputs influence many patient outcomes. 

 

3.1. Individualized and Time Varying Patient Dynamics 

 Each patient responses to drug inputs with very different 

dynamics. Fig. (4) is another patient’s response to the same 

types of anesthesia drugs as in Fig. (3). In comparison to Fig. 

(3), this patient demonstrated slower response after drug 

changes or bolus injections, lower sensitivity near steady 

state, and more heart rate variations during the process. For 

example, this patient’s BIS index reached the steady state 

value of 75 after 750 seconds, in comparison to the steady 

state BIS value of 60 after around 1600 seconds in the 

patient data in Fig. (3). Similar disparity was also shown in 

blood pressures. In Fig. (4), the blood pressure dropped to 

the value around 90 mmHg, in comparison to the value of 65 

mmHg in Fig. (3). Consequently, to improve accuracy in 

anesthesia management, it is necessary to obtain 

individualized patient models. 

 Even for the same patient, responses to the same drugs 

change with time and surgical stages, and patient conditions. 

The patient in Fig. (5) initially had a more sensitive response 

in BIS values to propofol infusion, see the BIS trajectory in 

the first 100  seconds in which the BIS value dropped from 

100 to 65 after the propofol rate was increased to 

  
75 mcg / kg / min . However, late in the time interval of 

 240 310  seconds, the BIS values became higher, around 

75, even though the same rate of propofol was administered. 

 

Fig. (5). Patient dynamics change with time. 

 

3.2. Multiple Drugs and Multi-Objective Anesthesia 

Administration 

 Our case studies involved both propofol and fentanyl. In 

Fig. (5), both drugs impacted multiple outcomes, although to 

a different degree. For instance, fentanyl had direct influence 

on blood pressure while it had no obvious influence on BIS 

values. In the time interval of 0-200 seconds, the initial 

injection of fentanyl bolus depressed the blood pressure from 

110 to 90, while there were no obvious changes on BIS 

values. The propofol input controlled both anesthesia depth 

and blood pressure significantly. During the time interval of 

350-1000 seconds, both of BIS value and blood pressure 

climbed up as the propofol titration rate was decreased.  

 Anesthesia management must consider all essential 

patient outcomes. For instance, if one focuses only on the 

anesthesia depth, propofol will be increased when the BIS is 

too high. However, if this occurs when a patient's blood 

pressures are low and if the patient's blood pressures respond 

to propofol sensitively, a much more cautious control action 

will be preferred since aggressive propofol increase may 

drive blood pressures to an alarming level. Consequently, a 

 

Fig. (4). Different patients demonstrate different dynamics. 
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multi-objective control strategy can potentially deliver a 

better anesthesia management. Some researchers 

investigated the problems of multi-variable feedback control 

with applications in anesthesia [14-17]. As a promising 

control strategy for regulation of anesthesia patient 

outcomes, model predictive control was applied to regulate 

two patient outcomes simultaneously [17]. Most of the 

previous work concentrated on population based models. 

 To understand the importance of the multi-objective 

anesthesia modeling and control, we made a comparison of 

control actions between the regulation of two patient 

outcomes (BIS and blood pressure) and the regulation of one 

patient outcome only. Fig. (6) illustrates the simulation 

results which were produced by the MATLAB function 

“scmpc” in the model predictive control toolbox. The data 

used for simulation were collected real-time patient data in 

operating rooms. The control actions (the propofol titration 

rate) were very different in the two cases. 

 The above discussions indicated that for enhanced 

anesthesia monitoring and control, it was necessary and 

beneficial to consider a patient as a multi-input-multi-output 

dynamic system whose characteristics changed substantially 

among different patients and over different time intervals. 

 However, MIMO systems contain far more parameters 

than single-input-single-output systems. In turn they require 

more input excitations to ensure model identifiability. A 

model is identifiable from a given set of data if the data can 

generate a unique estimate of the system. When data are not 

sufficiently rich in their information contents, they are not 

sufficient to generate a unique model. Consequently, 

parameters cannot be decided. It is well known [18] that the 

more the parameters the more rich information the data must 

contain. Input information richness can be enhanced by 

changing input values frequently, which are commonly 

characterized as “persistent excitation” conditions. 

Unfortunately, in anesthesia applications, the input is 

propofol titration which cannot be arbitrarily modified for 

modeling purposes. This implies that it is not only highly 

desirable but in fact necessary to reduce model complexity as 

much as possible. 

4. MIMO PATIENT MODELING FOR ANESTHESIA 

MONITORING AND CONTROL 

 A basic information-oriented model structure (a special 

case of Wiener models), for patient anesthesia depth 

responses to propofol infusion as an SISO system was 

introduced in [8-11]. This model can also be applied to relate 

other patient outcomes, such as blood pressure and heart 

rate, to input drugs. The basic idea from [8-11] is 

summarized below. 

4.1. Wiener Model Structure 

 Propofol titration was administered by an infusion pump. 

The dynamics of a patient's BIS response to a drug infusion 

could be divided into several blocks. The response from the 

titration command to the drug infusion at the needle point 

was the infusion pump dynamics and could be represented 

by a transfer function 
  
G

i
(s) . Similarly, the BIS monitor 

dynamics could be represented by a transfer function 
  
G

m
(s) . 

 The patient dynamics was a nonlinear system. Although 

the actual physiological and pathological features of the 

patient required models of high complexity, for prediction or 

control purposes it was not only convenient but essential to 

use simple models as long as they were sufficiently rich to 

represent the most important properties of the patient 

response. Understanding the information used by 

anesthesiologists in infusion control, we characterized the 

patient response to propofol titration with three basic 

components: (1) Initial time delay 
 p

 after drug infusion: 

During this time interval after a change of the infusion rate, 

the BIS value did not change due to the time required for 

drugs to reach the target tissues and to complete volume 

distribution. (2) Dynamic reaction: This reflected how fast 

the BIS value would change once it started to respond, and 

was modeled by a transfer function 
  
G

p
(s) . (3) A nonlinear 

 
(a) 

 

(b) 

Fig. (6). Anesthesia managements differ when multiple outcomes 

were considered. (a) Propofol control based on a combined 

performance criterion on BIS and blood pressures. (b) Propofol 
control based on BIS only. 
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static function for sensitivity of the patient to a drug dosage 

at steady state: This was represented by a function or a look-

up table 
 
f . The meaning of these system blocks was 

illustrated in Fig. (7). Combined with infusion pump and 

monitor models, this model structure for titration response 

was a special case of the Wiener models shown in Fig. (8). 

 

Fig. (7). Simplified patient model structure. 

 

 

Fig. (8). Wiener model structure. 

 

 To establish patient models for monitoring and control, 

clinical data were collected. One of these data sets was used 

in this paper. The anesthesia process lasted about 76 

minutes, starting from the initial drug administration and 

continuing until last dose of administration. Propofol was 

used in both titration and bolus. Fentanyl was injected in 

small bolus amount three times, two at the initial surgical 

preparation and one near incision. Analysis showed that the 

impact of Fentanyl on the BIS values was minimal. As a 

result, it was treated as a disturbance and not explicitly 

modeled in this example. The drug infusion was controlled 

manually by an experienced anesthesiologist. The 

trajectories of titration (in 
  
mcg / sec ) and bolus injection 

(converted to 
  
mcg / sec ) during the entire surgical procedure 

were recorded, which are shown together with the 

corresponding BIS values in Fig. (10). The patient was given 

bolus injection twice to induce anesthesia, first at   t = 3  

minute with 20 mcg and then at   t = 5  minute with 20 mcg. 

The surgical procedures were manually recorded. Three 

major types of stimulation were identified: (1) During the 

initial drug administration (the first 6 minutes), due to set-up 

stimulation and patient nervousness. (2) Incision at   t = 45  

minute for about 5 minutes duration. (3) Closing near the 

end of the surgery at   t = 60  minute. 

 The data from the first 30 minutes and in the interval 

where the bolus and stimulation impact was minimal 

(between   t = 10  to   t = 30  min.) were used to determine 

model parameters and function forms. By optimal data 

fitting using the least-squares method [18], we derived the 

estimated parameter values. For this data case, the patient 

sensitivity function shown in Fig. (9). Under a sampling 

interval   T = 1  second, which was the standard data transfer 

interval for the BIS monitor, the combined linear dynamics 

was estimated. The z-transfer function of the patient model 

with propofol infusion rate as the input and BIS 

measurement as the output was identified as  

  
P(z) =

0.01872z
2 0.08813z + 0.09016

z
5 1.159z

4
+ 0.7501z

3 0.5989z
2
+ 0.2984z 0.2678

    (1) 

with sampling interval   T = 1  second. 

 

Fig. (9). Drug sensitivity function (Titration). 

 

 The actual BIS response was then compared to the model 

response over the entire surgical procedure. Comparison 

results are demonstrated in Fig. (10). Here, the inputs of 

titration and bolus were the recorded real-time data. The 

model output represented the patient response very well. In 

particular, the model captured the key trends and magnitudes 

of the BIS variations in the surgical procedure. This 

indicated that the model structure contained sufficient 

freedom in representing the main features of the patient 

response. 

4.2. Simplified System Functions 

 The linear patient dynamics in (1) could be approximated 

by a simple system. The plant in this case was identified as 

a 5 th order difference equation in (1). The system could be 

well approximated by a continuous-time system that 

consisted of a pure time delay and a first-order dynamics, 

sampled with sampling interval   T = 1  second. The 

continuous-time system’s transfer function was estimated by 

using the least-squares algorithm as  

  
P(s) = e

5s 0.93

73s +1
.            (2) 

 The step responses of the original system and the 

simplified system 
  
P(s)  are shown in Fig. (11). Since this 
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model contained only three parameters, it was much easier to 

be identified in real time. 

 It is also possible to use a simplified nonlinear function 

which has only three parameter  r , ,  b  to represent the 

sensitivity function 
 
f :  

  

y = r u ±
erf u( )
erf b( )

u .  

 This function can be linear or nonlinear which is 

determined by the sign of ± . Fig. (12) shows an example of 

this function. 

4.3. MIMO Patient Modeling 

 In principle the above SISO method can be employed in 

MIMO models, by considering an  m -input and  n -output 

system as a collection of  m n  subsystems, each of which 

represents one input and one outcome relationship. For 

example, if two drugs (propofol and fentanyl) are present 

and three outcomes (depth, blood pressures, and heart rates) 

are considered, we may view this as a collection of  6  

subsystems, including propofol-to-depth, propofol-to-BP, 

propofol-to-HR, fentanyl-to-depth, fentanyl-to-BP, fentanyl-

to-HR subsystems. This approach, however, involves many 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (10). Actual and model responses. 

 

Fig. (11). Step responses of the original system and the simplified 

system. 
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model parameters and encounters high system complexity in 

modeling processes. For example, if each submodel contains 

only  L  parameters, the over system will have   6L  

parameters that must be updated in real time, which is a 

substantial complexity in this application. 

 

Fig. (12). The sensitivity function is simplified by a nonlinear 

function which has three parameters:  r , , b . The sign of ±  

determines the function's shape. 

 

 Modifications to the above approach were made to 

reduce modeling complexity by the following combination 

method. Since both propofol and fentanyl went through 

similar propagation and metabolism to influence blood 

pressure and heart rate, it was reasonable to use the same 

time delay and same dynamic response speed for both 

models. They, however, demonstrated very different 

sensitivity [19]. As a result, it was reasonable to use only one 

scaling factor to represent the difference between propofol 

and fentanyl in their impact on the blood pressure and heart 

rate. Furthermore, fentanyl did not have influence on BIS 

index [19]. This method reduced significantly the number of 

model parameters. For example, if each model contained  L  

parameters, in the case of two drugs and three outcomes, this 

method would reduce the number of parameters from   6L  to 

  3L + 3 . For this application, we had   L = 11  ( 8  parameters 

for the 5th order linear system and  3  for the nonlinear part) 

for the initial model structure; or   L = 6  (6 parameters for the 

simplified delay system and  3  for the nonlinear part) after 

simplification. The above method of combining submodels 

reduced model complexity from   6L = 66  to  3L + 3 = 36  for 

the initial model structure; or from   6L = 36 to  3L + 3 = 21  

for the simplified delay system. These complexity reductions 

were substantial in making real-time MIMO modeling a 

feasible option in anesthesia applications which were not 

data rich. 

5. MULTI-OBJECTIVE ANESTHESIA PREDICTIVE 

DIAGNOSIS 

 Here, we considered a special case that involved two 

outcomes: the anesthesia depth 
 
y

B
 and and mean blood 

pressure 
 
y

P
. The continuous control was provided by 

propofol titration whose rate was denoted by  u . Propofol or 

fentanyl bolus injections could be used when necessary to 

assist. Also, blood pressures might also be reduced by 

vasodilation agents or other means if necessary. 

 From a system viewpoint, we had a system with two 

types of control inputs: one main control variable  u  that was 

continuously managed, and another pulse types of control  v  

that was used only when it was needed. The system had two 

outputs 
 
y

B
 and 

 
y

P
. The basic strategy was to use  u  to 

achieve control objectives as much as possible. When  u  

alone could not achieve certain control objectives, v  was 

used to assist u  to reach the goal. 

 This paper was focused on predictive diagnosis: (1) 

Given the current input  u , what would be the outcomes in 

the near future? (2) If the input was changed to a new value, 

what would be the impact of this change? (3) If we wanted 

the outcomes to settle at a new level, would it be possible to 

achieve it with assistance from  v ? 

5.1. Basic Ideas and Analysis 

 We first considered a patient whose BIS response to 

propofol titration rate  u  (
  
mcg / kg / min ) was modeled by 

the transfer function  

  

x
B

= e B
s K

B

T
B
s +1

U (s); y
B

= 100 f
B
(x

B
(t)) + d

B
 

where 
 B

 was the initial delay, 
 
K

B
 was the drug sensitivity, 

 
T

B
 represented the response speed of the patient, 

 
f

B
 was a 

nonlinear sensitivity function, and 
 
d

B
 was an external 

disturbance to the BIS value; and 
  
U (s) was the Laplace 

transform of input drug rate; and whose mean blood pressure 

response to propofol titration was represented by the 

simplified delay model  

  

x
P

= e P
s K

P

T
P
s +1

U (s); y
P

= 110 f
P
(x

P
(t)) + d

P
 

where those parameters had the same meanings as in the BIS 

model. 

 We used 
  
w(t) = [y

B
(t), y

P
(t)]  to represent the outputs. In 

real implementations of our prediction algorithms, the 

patient models would be generated in real-time, using actual 

input-output data. Here, for methodology description we 

used the above models to show how outcome prediction was 

performed. Although several methods, such as artifical 

neural networks, could also perform time series prediction, 

they carry far more complexity than our model structures. 

For anesthesia applications, our method had two advantages: 

(1) The model introduced in this paper was simple in 

structure and contained less numbers of system parameters 

without sacrificing much accuracy. As a result, it was easy to 

be identified in real time. (2) Each parameter in the model 

had physiological meanings that could be understaood by an 

anesthesiologist. 
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 The output vector 
  
w(t)  was initially at an equilibrium 

point with 
  
w(t

0
) = [y

B
(t

0
), y

P
(t

0
)]  and input 

  
u(t

0
) = u

0
. 

When 
  
u(t)  was increased from 

  
u

0
 to 

  
u

0
+ , the outcome 

  
w(t)  started to change due to this input jump. Outcome 

prediction showed how
  
w(t)  would change in the near future 

and where it would settle to a new equilibrium. When the 

patient model was available, outcome prediction could be 

calculated from the model as follows. 

 From 

  

x
B

= e B
s K

B

T
B
s +1

U (s) , the response 
   xB (t)  to  

jump at 
  
t
0
 was calculated to be: 

   
x

B
(t) = 0 , 

  
t t

0 B
, and 

   
x

B
(t) = K

B
(1 e

(t t
0 B

)/T
B ) , 

  
t t

0
>

B
. As a result, for 

  
t > t

0
, we had  

   
x

B
(t) = x

B
(t

0
) + x

B
(t)  

and  

   
y

B
(t) = 100 f

B
(x

B
(t)) = 100 f

B
(x

B
(t

0
) + x

B
(t))  

 Furthermore, 
  
y

B
(t)  would settle at the new equilibrium 

value 
  
100 f

B
(x

B
(t

0
) + K

B
) . Following the same analysis, 

we had also  

   

x
P
(t) =

0, t t
0 P

K
P
(1 e

(t t
0 P

)/T
P ) , t t

0
>

P
.
 

 As a result, for 
  
t > t

0
, we obtained  

   
x

P
(t) = x

P
(t

0
) + x

P
(t)  

and  

   
y

P
(t) = 110 f

P
(x

P
(t)) = 110 f

P
(x

P
(t

0
) + xP (t))  

and 
  
y

P
(t)  would settle at the new equilibrium value 

  
110 f

P
(x

P
(t

0
) + K

P
) . 

 The models were used in the following capacity to assist 

an anesthesiologist to make decisions in anesthesia 

administration. 

Drug Impact Prediction 

 Drug impact prediction was an extension of outcome 

prediction. The outcome prediction provided the future 

outcome trajectories when one drug decision was made and 

implemented. Drug impact prediction was an assessment of 

future outcomes when several drug decisions were being 

considered. This prediction capability allowed an 

anesthesiologist to evaluate and decide the optimal choices. 

Reachable Sets 

 Suppose that the output vector 
  
w(t)  was initially at an 

equilibrium point 
  
w(t

0
) = w

0
. The question here was to 

determine if the propofol titration control alone was 

sufficient to achieve a designated target 
 
w

f
. If the answer 

was affirmative, then assistance from  v  was not needed. 

Otherwise,  v  must be used such that after applying a bolus 

injection  v , 
 
w

f
 became reachable. The reachable set of the 

outputs under one drug actions exhausted all possible values 

of that drug and determined the set of the outputs that could 

be reached. If the desired outputs were outside this reachable 

set, the second drug, in our case it was either the fentanyl 

bolus or propofol bolus, must be used so that the new 

reachable set contained the desired output values.  

5.2. Case Studies 

 To demonstrate our ideas presented in the previous 

sections, clinical data were collected and analyzed, as 

detailed in Section 2. One of the case data sets, shown in Fig. 

(3), was used here. The three inputs included propofol 

titration, propofol bolus injection, fentanyl bolus injection. 

The two outputs were the BIS index and MAP. Since the 

fentanyl bolus had very small impact on the BIS index, we 

neglected the submodel from the fentanyl bolus to the BIS 

index. As a result, there were a total of  5  submodels: 

propofol titration to BIS and MAP, propofol bolus to BIS 

and MAP, and fentanyl bolus to MAP. 

 The patient data were used to identify these models, with 

the identified model listed below.  

1. BIS to propofol titration: 
  
x

B
(s) = e

3s 0.0163

46s +1
U (s)   

 
  
y

B
(t) = 100 9 * (x

B
(t) (erf (0.4 * x

B
(t)) x

B
(t)))  

2. BIS to propofol bolus: 
  
y

B
(s) = 100 e

15s 200

2000s +1
U (s)   

3. MAP to propofol titration: 

  
y

P
(s) = 110 e

250s 0.1

200s +1
U (s)   

4. MAP to propofol bolus: 

  
y

P
(s) = 110 e

25s 42

4000s +1
U (s)   

5. MAP to fentanyl bolus: 

  
y

P
(s) = 110 e

100s 80

4000s +1
U (s)   

 Fig. (13) illustrates the identified model outputs with the 

real patient outcomes. The models captured the main trends 

of the BIS and MAP quite well. We should emphasize that 

this was achieved with a very low model complexity. This 

trend information was similar to what an anesthesiologist 

usually required in making anesthesia drug administration 

decisions. 

 The models can be used for drug impact prediction. For 

example, suppose the propofol rate is increased by 

  
30 mcg / min  at 

  
t
0

= 80  second. Fig. (14) shows how this 

drug infusion rate change affected the BIS value and MAP. 

In any time instant, to provide decision assistance to an 

anesthesiologist, different drug infusion strategies could be 
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considered and their impact on the outputs was plotted to 

evaluate and compare consequences of such actions in the 

near future. For example, to understand drug impacts 

prediction of increasing propofol rates by  10,20,30,40,50 , 

we plotted all these cases simultaneously. These impact 

predictions are plotted in Fig. (15). 

 

Fig. (13). Multi-input-multi-output patient model. 

 

 

Fig. (14). Outcome predictions. 

 

 To study the reachable sets, suppose at a given time the 
BIS index was 70 and the MAP was 80 mmHg. Fig. (16) 
shows all potential patient steady-state outcome sets when 
various drugs were administrated. From Fig. (16), different 
designated targets could be achieved through administrating 
different drugs. For example, to depress the patient blood 
pressure without changing BIS values, only fentanyl bolus 
was needed. But, to push the BIS value to a low level of 60 
without much effect on blood pressures (mean arterial 
pressure of 80 mmHg was usually the desired level during 
anesthesia), it would be better to use propofol bolus than 
propofol titration. This was reflected in the reachable set of 
propofol bolus that had less impact on the MAP. We should 
also point out that one may also use propofol bolus with a 
reduced propofol titration to keep MAP unchanged. 

 

Fig. (16). Reachable outcomes from the current outcome with 

different drugs inputs. 

 

6. DISCUSSIONS AND CONCLUSIONS 

 This paper investigated the problem of real-time 
monitoring, diagnosing, and predicting multiple outcomes of 
anesthesia patients. For enhanced anesthesia management, it 
is essential to view the anesthesia patient dynamics as a 
multi-input (multi drugs) and multi-output (multi outcomes) 
system. For predictive diagnosis and decision assistance, a 
simplified Wiener model structure was introduced and 
studied for its suitability in representing the patient responses 
to drug infusion. Furthermore, a method of consolidating 
submodels was introduced which could significantly reduce 
the total number of MIMO system parameters. The identified 
models were shown to have significant utility in anesthesia 
decision assistance, by developing outcome impact analysis 
and reachable sets. 

 A traditional modeling paradigm for describing the 
releationship between input drugs and patient responses is 
the pharmacokinetic-pharmacodynamic (PKPD) compart-
mental model structure. Pharmacokinetics concerns the 

 

Fig. (15). Drug impact prediction. 
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dynamic process of drug distribution in the body, and 
pharmacodynamics decribes the effects of the drug on the 
body. The most frequently used PKPD model structure was a 
three-compartment model published in [20]. PKPD models 
have been used for anesthesia controller design and 
monitoring [1-5, 7]. An alternative modeling methodology 
was physiological models which further detailed physiolo-
gical processes to complement simple compartmental models 
[21]. Both model structures aimed to derive generic models 
for a targeted patient population. Due to their high 
complexities, deriving model parameters required a large 
data set. As a result, they were mostly useful for off line 
modeling, or at most partial parameter updating online with 
some selected parameters [1, 3]. Consequently, these models 
were not individually tuned for a patient. Our approach 
aimed to use real-time data on a specific patient to derive 
individualized model for that patient. This can potentially 
provide more accurate models since patien-to-patient 
variations are substantial.  

 For multi-objective anesthesia diagnosis, several resear-
chers considered multivariate models [14,15,22]. In [14,22], 
the neural-fuzzy systems were used to model patient 
dynamics. In [15] a multi-variable piecewise-linear model 
was used to relate drugs and surgical stimuliations to patient 
outcomes such as heart rate, BIS index, and blood pressure. 
However, neural-fuzzy systems are black-box models whose 
system parameters do not carry clear physiological 
meanings. This implies that an anesthesiologist won’t be 
able to provide direct inputs to adjust or limit model 
parameters. Furthermore, the models in [14,15,22] contained 
many parameters and hence were highly complex. The initial 
learning phase for neural-fuzzy systems is usually time 
consuming which limits their utility in using small real-time 
data sets to derive a reliable and individualized patient 
model. Our approach used a simplified model structure that 
contained only 3-4 parameters that reflected an anesthsiolo-
gist’s understanding of a patient’s dynamic response, such as 
time delay, speed, and sensitivity. Consequently, his/her 
knowledge could be used to adjust or bound parameters. The 
reduced parameter set made it suitable for real-time multi-
objective patient modeling due to its reduced complexity.  
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