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Abstract: Background: Non-dimensional analysis is a powerful approach that can be applied to multivariate problems to 

better understand their behaviour and interpret complex interactions of variables. It is has not been rigorously applied to 

the parameters that define renal dialysis treatments and may provide insight into the planning of hemodialysis treatments.  

Methods: Buckingham’s non-dimensional approach was applied to the parameters that define hemodialysis treatments. 

Non-dimensional groups were derived with knowledge of a mass transfer model and independent of it. Using a mass 

transfer model, the derived non-dimensional groups were plotted to develop an understanding of key relationships 

governing hemodialysis and toxin profiles in patients with end-stage renal disease.  

Results: Three non-dimensional groups are sufficient to describe hemodialysis, if there is no residual renal function 

(RRF). The non-dimensional groups found represent (1) the number of half-lives that characterize the mass transfer, (2) 

the toxin concentration divided by the rise in toxin concentration without dialysis for the cycle time (the inverse of the 

dialysis frequency), and (3) the ratio of dialysis time to the cycle time. If there is RRF, one additional non-dimensional 

group is needed (the ratio between cycle time and intradialytic elimination rate constant). Alternate non-dimensional 

groups can be derived from the four unique groups. 

Conclusions: Physical interpretation of the non-dimensional groups allows for greater insight into the parameters that 

determine dialysis effectiveness. This technique can be applied to any toxin and facilitates a greater understanding of 

dialysis treatment options. Quantitative measures of dialysis adequacy should be based on dimensional variables. 

Keywords: Dialysis adequacy, non-dimensional analysis, dimensionless groups, hemodialysis, peritoneal dialysis, dialysis 
dose, Buckingham Pi theorem, Kt/V. 

INTRODUCTION 

 Since the beginning of clinical hemodialysis by Willem 
Kolff in the 1940s, much has been written about how to 
measure dialysis and how much dialysis ought to be given. 
Shinaberger has written a historical perspective on this, from 
the non-technical perspective [1]. 

 Numerous mass transfer models [2-4] have been 
developed to understand hemodialysis and can reproduce 
hemodialysis quite well. However, it remains a difficult area 
to understand without resorting to calculations which, 
practically, require a computer. This creates challenges when 
(1) deciding how patients should be treated and (2) studying 
the pathophysiology of end-stage kidney failure.  

 Fortunately, a number of tools exist to analyze complex 
multi-variate problems and simplify them, as these are very 
common in engineering. One in particular, grouping 
variables into non-dimensional groups, has proven effective 
and has a long history.  

 Non-dimensional grouping simplifies the analysis of 
complex problems by splitting the problem into two stages:  

 

 

*Address correspondence to this author at the Department of Chemical 

Engineering and Applied Chemistry, University of Toronto, 200 College 

Street, Toronto, Ontario, M5S 3E5, Canada; Tel: 416-978-7745; Fax: 416-

978-8605; E-mail: bradley.saville@utoronto.ca 

(1) grouping the dimensional variables (into non-
dimensional groups) and 

(2) relating the non-dimensional groups.  

 While non-dimensional groups have a physical 
interpretation and are often significant on their own, they do 
not replace dimensional values. 

 In 1914, Buckingham derived a theorem [5, 6], now 
known as the Buckingham Pi Theorem, which formalized 
the procedure for deriving non-dimensional groups. The 
power of the theorem is that one does not need prior 
knowledge of how the physical quantities in a given problem 
are related; one only needs to make an educated guess as to 
which quantities are relevant to the problem. If the equation 
which describes a given problem is known, it can aid in the 
physical interpretation of the non-dimensional groups. Also, 
equation(s), if non-empirical, can be used to derive non-
dimensional groups, with a small amount of algebra [7]. 

 The resulting dimensionless groups are a convenient 
means for scaling of processes and experiments [8, 9].  

 In complex systems, as Buckingham demonstrated, 
several unique sets of non-dimensional groups may be 
formed and transformations between these groups may allow 
one to gain insights into the physical system and/or develop 
better experimental designs [9]. If the relationships between 
the non-dimensional groups are known (by measurement or 
by theory) it may be possible to plot a multivariate problem 
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with six or seven dimensional variables on one 2-
dimensional plot in non-dimensional form, as done for pipe 
flow (which is a six variable problem) [5]. 

 Although dimensionless groups have been used to 
quantify the effectiveness of dialysis treatments, the non-
dimensional groups have not been formally derived, and 
their significance remains to be developed.  

 Furthermore, the relationship between key parameters 
and the non-dimensional groups has not been explored, and 
their relationship to concentration is not apparent in the 
literature. The goal of this work is to develop the relevant 
non-dimensional groups for renal dialysis, in an effort to 
improve our understanding of key parameters that lead to 
effective dialysis. 

Pseudo Non-Dimensional Groups in Hemodialysis 

 Kt/V, which appeared in Babb’s 1971 paper [2], was 
recognized as important when Gotch and Sargent re-
analyzed the data from NCDS [10]. However, Gotch and 
Sargent did not treat Kt/V as a non-dimensional group; they 
cast it as measure of dialysis and a substitute for urea 
concentration. At the time, this was an advance as urea 
concentration is a poor measure of dialysis because it is 
strongly dependent on protein intake. 

 Motivated by the solution of the exponential decay 
(differential) equation, Gotch defined Kt/V as: [10] 

Equation 1: Definition of Gotch's Kt/V. 

  

Gotch ' s Kt / V =

def

ln
C

pre

C
post

 

 Where Cpre and Cpost are concentrations pre- and post-
dialysis. 

 Gotch's Kt/V, in a slightly modified form developed by 
Daugirdas (with corrections for post-dialysis concentration 
rebound and volume change), has been adopted by the 
National Kidney Foundation of the United States of America 
to quantify dialysis [11], as it was recognized that while urea 
concentrations vary widely, the fluctuation of urea 
concentration can be used as a surrogate marker for unknown 
toxins. It has been used as the measure of dialysis in major 
randomized controlled trials, such as the HEMO study [12]. 

 Gotch’s Kt/V is not a bona fide non-dimensional group, 
as it is defined on the basis of concentration measurements 
and the use of a transcendental function. A proper non-
dimensional group, per the Buckingham Pi theorem, is a 
dimensionless algebraic construct of variables. It is not a 
ratio of one variable (concentration) at different time points 
operated on by a transcendental function.  

 Gotch does not consider Kt/V an algebraic construct. 
Furthermore, Gotch’s Kt/V is not sufficient to measure 
hemodialysis, unless one assumes a cycle time (e.g. 3/week).  

 The literal interpretation of Kt/V, as an algebraic 
construct (one multiplication and one division), is consistent 
with the principles of non-dimensional analysis. To avoid 
confusion in this work “Kt/V” as defined by Gotch 
(Equation 1) will be called “Gotch's Kt/V”; Kt/V not 
otherwise specified (Kt/V NOS) and “Buckingham Kt/V” 

will refer to the algebraic construct: the multiplication of K 
and t divided by V.  

 To measure hemodialysis with frequencies other than 
3/week (e.g. 4/week, 5/week et cetera), Gotch developed the 
“standardized Kt/V”. By simplifying the mass generation 
term and ignoring concentration rebound, it can be 
demonstrated that “standardized Kt/V” is: [13] 

Equation 2: Simplified definition of Standardized Kt/V. 

  

Std Kt / V =

def

const
G / V

C
pre

 

 Where: 

const = the number of seconds in a week (604,800), if all 
other units are in Système Internationale (SI). 

G = (urea) mass generation (mol/s)  

V = volume of distribution (m
3
) 

Cpre = pre-dialysis plasma concentration of urea 
(mol/m

3
) 

 Standardized Kt/V is dimensionless (by definition) but is 
not a dimensionless group (per the Buckingham Pi theorem). 
It contains the number of seconds in a week, which is not 
directly related to the mass transfer during hemodialysis.  

 It should be noted that the definition of “weekly Kt/V”, 
used to quantify peritoneal dialysis (PD), is almost identical 
to Equation 2. 

Mass transfer modeling 

 Hemodialysis is often modeled using a first-order 
ordinary differential equation, the solution of which is: [2] 

Equation 3: Dialytic equation with RRF (functional form). 

 

C t
var( )=

G

K
r

+ K
d

+ C
pre

G

K
r

+ K
d

e

K
r

+ K
d( ) t

var

V  

 Equation 4 applies to the interdialytic time period (where 
Kd is equal to zero): 

Equation 4: Interdialytic equation with RRF (functional 
form). 

 

C t
var( )=

G

K
r

+ C
post

G

K
r

e

K
r
t

var

V  

 Where: 

C(tvar) = concentration as a function of time [mol/m
3
] 

tvar  = time (variable) [s] 

G = (toxin) mass generation rate [mol/s] 

V = volume of distribution [m
3
] 

Kd = dialyzer clearance [m
3
/s] 

Kr = residual clearance [m
3
/s] 

Cpre = pre-dialysis concentration [mol/m
3
] 

Cpost = post-dialysis concentration [mol/m
3
] 
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 The above system consists of two equations, which can 
be solved simultaneously for the pre-dialysis and post-
dialysis concentration values.  

 An analytic form to determine the pre- and post-dialysis 
concentrations can be derived by applying the boundary 
conditions, C(t)=Cpost and C(T)=Cpre, to the functional form, 
where t is the duration of dialysis, and T is the dialysis cycle 
time (see Equation 33 and Equation 34 in Appendix 1B for 
the case without RRF). The parameters of hemodialysis (as 
above) are summarized in Table 1. 

 The above model assumes that there is no volume change 
and considers the body to have only one compartment. 

 If Kr is set to zero (by taking the limit Kr 0), in 
Equation 3 and Equation 4, simplified forms of the equations 
can be derived that do not account for residual renal function 
(see Appendix 1A). 

 If G and Kr are set to zero, one can demonstrate, using 
Equation 3, that ln(Cpre/Cpost)=Kt/V, which is the basis for 
the definition of Gotch’s Kt/V (compare with Equation 1). 

 While the above equations (Equation 3 and Equation 4) 
are widely accepted as the basis for a good model of 
hemodialysis mass transfer, it is interesting to note that the 
two largest randomized trials in hemodialysis (NCDS and 
HEMO study) found no statistically significant benefit for 
longer dialysis, contrary to the intuitive conclusions 
predicted from Equation 3 and Equation 4.  

Objectives 

 This work will develop a non-dimensional analysis of the 
parameters important in hemodialysis and examine them in 
the context of the mass transfer equations commonly used to 
model hemodialysis. It will demonstrate the value of non-
dimensional analyses and clarify the role of non-dimensional 
groups and pseudo non-dimensional groups (Gotch’s Kt/V 
for hemodialysis, Lysaght’s Kt/V for peritoneal dialysis, 
standardized Kt/V) in the dialysis treatment design and renal 
dialysis adequacy.  

 Ultimately, this analysis will also show that a single non-
dimensional group, alone, is insufficient to define 
hemodialysis treatments. The value of non-dimensional 
groups will be discussed vis-a-vis the dimensional values 
from which they are derived, and we will briefly examine the 

null result of two large randomized controlled trials in 
nephrology (NCDS, HEMO study). 

Methods 

 The Buckingham Pi Theorem was applied as described in 
detail elsewhere [5, 6, 14]. 

 In summary, the Buckingham Pi Theorem states that:  

If a system has n dimensional variables and k base 
units, there will be p non-dimensional groups, where 
p=n-k. 

 The standard mass transfer model, described in 
background section, was used to relate the parameters 
governing hemodialysis (see Equation 3 and Equation 4). 

 Plotting was done using formulae for the non-
dimensional groups. When the use of an iterative solution 
technique was required, the bisection method was used [15]. 
Numerical convergence was assumed when the solution 
between iterative steps was less than 10

-10
.  

 Curves representing the relationships between non-
dimensional groups were calculated independently using 
GNU Octave (University of Wisconsin, Madison, WI, USA) 
and MATLAB (Mathworks, Natick, MA, USA) directly 
from the fundamental mass transfer equations (Equation 3 
and Equation 4) and were used to confirm derived formulae. 

RESULTS 

 Application of the Buckingham Pi Theorem to 
hemodialysis, with the assumption that the system is 
dependent on only six variables (dialyzer clearance (K), 
dialysis time (t), toxin volume of distribution (V), toxin 
concentration (C), cycle time (T) and mass generation (G)), 
yielded three independent non-dimensional groups, as the 
(six) variables considered important only contain three 
fundamental units (length, time, quantity). These groups are: 

Equation 5: Non-dimensional group 1. 

  
1

=
Kt

V
 

Equation 6: Non-dimensional group 2. 

  
2

=
t

T
 

Table 1. Model Physical Quantities 

Symbol Quantity Common units In SI base units Non-dim. base units Comment 

t dialysis time min s time modifiable independent variable 

T cycle time min s time modifiable independent variable 

K (or Kd) dialyzer clearance ml/min m3/s length3 /time modifiable independent variable 

Kr residual clearance ml/min m3/s length3 /time independent variable 

G toxin mass generation rate mg/min mol/s quantity /time independent variable 

V volume of distribution L m3 length3 independent variable 

Cpre  pre-dialysis conc. mmol/L or mg/L mol/m3 quantity /length3 dependent variable 

Cpost  post-dialysis conc. mmol/L or mg/L mol/m3 quantity /length3 dependent variable 
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Equation 7: Non-dimensional group 3. 

  
3

=
CK

G
 

 One can develop different forms of 3, depending upon 
whether the concentration, C, refers to a pre- or post-dialysis 
value (Cpre versus Cpost). We refer to these forms as 3,pre and 

3,post. 

 Alternate non-dimensional groups that are equally valid 
are: 

Equation 8: Non-dimensional group 1a. An alternate for 
group 1. 

  
1a

=
KT

V
 

Equation 9: Non-dimensional group 3a. An alternate for 
group 3. 

  
3a

=
CV

GT

 

 One can show, algebraically, that the alternate Pi ( ) 
groups (Equation 8, Equation 9) can be obtained by 
combinations of Equation 5, Equation 6 and Equation 7: 

Equation 10: Relation between group 1 and group 1a. 

  

1a
=

1

2

 

Equation 11: Relation between group 3 and group 3a. 

  

3a
=

2 3

1

 

 Algebraically, it is simple to demonstrate that Equation 
5-Equation 9  are dimensionless.  

For example: 

  

length3

time

time

1

1

length3
= dimensionless  Equation 5 

 Additional alternate groups that are equally valid can be 
developed and shown to be dimensionless, as above.  

 Using the non-dimensional groups, the mass transfer 
equations (Equation 3 and Equation 4) can be re-cast into 
non-dimensional forms. 

 The previously derived non-dimensional groups can be 
used to create non-dimensional forms of the governing 
equations (Equation 3 and Equation 4): 

Equation 3 Non-Dimensional Forms (Kr=0) 

Equation 12: Dimensionless form 1 of Equation 3 (Kr=0). 

  

Kt

V
= ln

C
pre

K

G
1

C
post

K

G
1

 or 

  

1
= ln

3,pre
1

3,post
1

 

 Equation 12 can be used to show that Gotch’s Kt/V 
(Equation 1) is approximately equal to Kt/V, when 
G<<CpreK and G<<CpostK. Using Equation 10, it is possible 

to cast Equation 12 in a form without Kt/V (see Appendix 
1C).  

Equation 4 Non-Dimensional Forms (Kr=0) 

Equation 13: Dimensionless form 1 of Equation 4 (Kr=0). 

  

t

T
=

C
post

C
pre( ) V

GT
+1  or 

  
2
=

3,post 3,pre

1a

+1  

 Equation 13 can be re-arranged algebraically to yield: 

Equation 14: Dimensionless form 2 of Equation 4 (Kr=0). 

 

C
pre

C
post

C
pre

=
G T t( )

C
pre

V
 or 

  

3,pre 3,post

3,pre

=
1a 1

3,pre

 

 The left hand side (LHS) of Equation 14 is commonly 
known as the urea reduction ratio (URR), if the solute 
removed is assumed to be urea. As URR is related to Gotch's 
Kt/V (see Equation 17), Equation 14 is thus related to 
Gotch's Kt/V. On inspection of Equation 15-Equation 17, it 
is apparent that Gotch’s Kt/V differs significantly from Kt/V 
NOS.  

 We will refer to the LHS of Equation 14 as the 
normalized fluctuation of concentration (NFC), as this is 
what it physically represents in the dynamic equilibrium 
state that characterizes the patient-hemodialysis machine 
system: 

Equation 15: Definition of NFC. 

 

NFC =

C
pre

C
post

C
pre

 

 Using Equation 5-Equation 9  (with C=Cpre), one can 
show that: 

Equation 16: NFC as a function of dimensionless groups. 

 

NFC =
GT

C
pre

T

Kt

V

G

C
pre

K
 

 Alternatively, 

  

NFC =
1

3a

1

3

 or 

  

1a 1

3

=
1

3

1

2

1  

 Where:  

C=Cpre. 

Equation 17: Relationship between URR and Gotch's Kt/V. 

  
Gotch ' s Kt / V =

def

ln 1 URR( )  

 An equation relating the non-dimensional groups (where 
C=Cpre and Kr=0) can be developed (refer to Appendix 1B 
for derivation) by combining Equation 3 and Equation 4 
(with the appropriate boundary conditions), and thus 
eliminating Cpost, as shown in Equation 18: 

Equation 18: Relationship between the non-dimensional 
groups. 

  

3
= 1+

2
-1

2

1
e 1

1 e 1
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 If one combines Equation 11 and Equation 18, a linear 
equation in 2 is obtained: 

Equation 19: Relationship of the non-dimensional groups to 
group 3a. 

  

3a
=

1

1

1

1 e 1
2
+

1

1 e 1

 

Residual Renal Function 

 If one applies the Buckingham Pi Theorem to 
hemodialysis and assumes that the system is dependent only 
on seven variables (Kr, Kd, t, V, C, T and G), then four non-
dimensional groups fully define the system. The first three Pi 
groups are shared with the case of Kr=0 (see Equation 5- 
Equation 7), where K in Equation 5 and Equation 7 
represents the dialyzer clearance (Kd). The fourth Pi group, 
which accounts for residual renal function, is: 

Equation 20: Non-dimensional group 4. 

  

4
=

K
r

K
d

 

 An equally valid non-dimensional group that can be used 
in place of Kr/Kd, is: 

Equation 21: Non-dimensional group 4a. An alternate for 
group 4. 

  
4a

=
K

r
T

V
 

 A non-dimensional form of Equation 4, after substitution 
of Equation 3 (to eliminate Cpost) and use of Equation 5-
Equation 7 and Equation 20, is: 

Equation 22: Relation of non-dimensional groups with 
residual renal function. 

  
3

=

1

4

+
1

4
+1

1 A( )
1

4

B

1 AB
  

 Where: 

A= exp 1( 4 + 1)( ) , 

  

B = exp
1 4

1
1

2

 

  
1

=
K

d
t

V
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2

=
t

T
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3

=
C

pre
K

d

G
, 

  

4
=

K
r

K
d

 

 Alternate forms of Equation 22 can be developed using 
the alternate Pi groups, as demonstrated in Appendix 1C. 
One alternate form is given in Appendix 2. 

Plots 

 Since three non-dimensional  groups are sufficient to 
fully define a patient's intervention (as defined by their 
physiologic parameters (V, C, G) and their treatment 
parameters (t, T, K)) if residual function is zero, it is possible 
to generate simple plots to demonstrate how the groups are 
related. This was done by solving simplified forms of 
Equation 3 and Equation 4, where Kr=0. 

 The case with residual function (Equation 3 and Equation 
4) requires four non-dimensional groups to be plotted 
simultaneously; this is possible if each 2-D curve is based 
upon constant values for two  groups. 

Use of Pre-Dialysis Concentration 

 Plots were generated based upon the pre-dialysis 
concentration. The pre-dialysis concentration was chosen as 
it is (1) thought to be of pathophysiologic significance [16], 
(2) easily measured, and (3) not affected by post-dialysis 
compartmental shifts, i.e. post-dialysis rebound. 

 The concentration of choice (i.e., pre-dialysis versus 
post-dialysis, versus time-averaged concentration) is 
somewhat arbitrary as is apparent in Gotch’s discussion of 
standardized Kt/V [13]. The major disadvantage of the mean 
concentration is that it is more complicated to calculate. 

Results in Graphical form  

 In Fig. (1), GT/(CV) (i.e., 1/ 3a) is plotted against Kt/V 
(i.e., 1) with constant t/T (i.e., 2) curves. An incremental 
increase in Kt/V leads to a smaller decrease in concentration 
(Cpre) when Kt/V is large, e.g., the difference in 
concentration is much larger when Kt/V is increased from 
1.0 to 2.0 than when Kt/V is increased from 2.0 to 3.0. It can 
be noted that this figure is similar to the “Kt/V nomogram” 
familiar to nephrologists, as GT/(CV) is linearly related to 
Standardized Kt/V. More discussion about this follows 
below. Solution of the trivial case (t/T ( 2)=1) leads to the 
equation CK/G=1; when t=T, GT/(CV)=Kt/V can be 
simplified to G/C=K. The slope of the curves in Fig. (1) 
decreases with increasing Kt/V ( 1) for t/T<1, i.e. 2<1. 
This reflects the fact that with small t/T ( 2) values, the 
(concentration) change during the interdialytic time becomes 
more significant, because large Kt/V ( 1) values result in 
near zero post-dialysis concentrations. 

 In Fig. (2), an alternate Pi group, KT/V ( 1a), is used in 
place of t/T ( 2). GT/(CpreV) (1/ 3a) is nearly independent 
of both t/T ( 2) and KT/V ( 1a) for small values of Kt/V 
( 1). Small Kr values (e.g., 5 ml/min) have a significant 
impact on the GT/(CpreV) (1/ 3,pre) value, demonstrating 
how residual renal function influences toxin concentrations 
in patients. Also, it is apparent that GT/(CpreV) values do not 
have a unique Kdt/V and KrT/V for a given KT/V, i.e., a 
given GT/(CpreV) value can be obtained from different 
combinations of Kdt/V and KrT/V values. KdT/V values were 
chosen so that a range of parameters are represented, e.g., 
KT/V=10 (from K = 200 ml/min, T = 33.6 h and V = 40 L) 
and KT/V=50 (from K = 300 ml/min, T = 56 h and V = 25 
L). 

 It also shows that the inverse of CpreV/(GT) for Kr=0 and 
KrT/V sum to the inverse of CpreV/(GT) for an arbitrary Kr, 
when KrT/V and Kt/V are small: 

Equation 23: Residual function summation approximation. 

  

C
pre

V

GT

1

Kr

C
pre

V

GT

1

Kr=0

+
K

r
T

V
  

if Kdt/V  1.5 and KrT/V  1.0 

 The data in Figs. (1-2) can also be plotted as t/T ( 2) 
versus G/(CpreK) (1/ 3,pre) as shown in Fig. (3). This form 
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Fig. (1). GT/(CpreV) (or 1/ 3a) versus Kdt/V (or 1) with constant t/T (or 2) and KrT/V=0. The benefit of increasing Kt/V a given amount is 

small for high values of Kt/V if t/T is small (t/T<0.5).  

This figure is similar to the “Gotch Kt/V-standardized Kt/V plot” (compare with Fig. 10), as GT/(CpreV) is linearly related to Standardized 

Kt/V for a constant T (see Equation 29). 

It should be noted that t/T=1 yields the trivial solution (CK/G=1), which represents continous dialysis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. (2). GT/( CpreV) (or 1/ 3a) versus Kdt/V (or 1) with constant KdT/V (or 1a) and KrT/V ( 4a) curves. The benefit of increasing Kt/V a 

given amount is small for high values of Kt/V. KrT/V and Kt/V values are approximately additive for Kt/V<1.8, as GT/(CpreV) is only weakly 

dependent on KT/V.  

has the advantage that both the ordinate and abscissa, in a 
physiologic context (for the case of zero RRF), vary only 
from zero to unity. The relation describing the lines is given 
by Equation 18. As (CpreK)/G (or 3,pre) represents the 
maximal concentration gradient, it is apparent that temporal 
gradients are higher if Kt/V ( 1) is high and when t/T ( 2) is 
low. The maximal concentration gradient has implications in 
the context of dialysis cycle time and treatment time. 

 For non-zero residual renal function, it is useful to plot 
G/(CK) (1/ 3) versus t/T ( 2) with constant Kt/V ( 1) and 
Kr/Kd ( 4) curves. However, it should be noted that the 
curves for larger values of Kr/Kd ( 4) do not 'collapse' on the 
RRF=0 curves, i.e., the difference is not constant for small 
values of Kt/V (data not shown), like in Fig. (2).  

 Fig. (4) shows the impact of KrT/V on CpreV/(GT), for 
various values of KT/V and Kt/V. These results demonstrate 
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Fig. (3). G/(CpreK) (or 1/ 3) versus t/T (or 2) with constant Kdt/V (or 1). Kr/Kd=0. This figure corresponds with Equation 18. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. (4). CpreV/(GT) versus KrT/V with constant KdT/V and Kdt/V. If the dialysis treatment parameters (t, T, K) and (other) physiologic 

parameters (G and V) remain the same (in conventional dialysis), as Kr decreases from a typical initial value of 10 ml/min, the Cpre increases 

approximately two fold.  

the importance of residual renal function: following the run 
in period, the predialysis concentration is approximately two 
fold higher in complete renal failure (Kr = 0), compared to 
the case where KrT/V ~ 1.0 (when dialysis is first initiated). 
If Kt/V values are smaller, a proportionally larger increase in 
pre-dialysis concentration is observed with loss of RRF 
(compare Kt/V=0.8 versus Kt/V=1.2). 

 Fig. (5) shows the Kdt/V required to maintain a constant 
CpreV/(GT) as KrT/V declines. If Kd, T, V, Cpre and G are 
invariant, Fig. (5) represents how t (the dialysis time) must 
be adjusted when Kr (residual clearance) declines. As the 
contribution of residual renal function (Kr) declines, much 

more aggressive dialysis is needed if the same pre-dialysis 
concentration is to be maintained. 

 As residual renal function declines, the dialysis cycle 
time would (ideally) be adjusted in order to maintain the 
same pre-dialysis toxin concentrations. Fig. (6) thus shows 
the KT/V value required to maintain a constant CpreV/(Gt) as 
Krt/V declines. If Kd, t, V, Cpre and G are constant, Fig. (6) 
can be used to predict how T (cycle time) would need to be 
adjusted when Kr declines. 

 Alternatively, a consistent pre-dialysis concentration can 
be maintained by adjusting both the dialysis time and the 
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Fig. (5). Kdt/V (or 1) versus KrT/V (or 4a) with constant KdT/V (or 1a) and CpreV/(GT) (or 3a). This plot demonstrates how Kdt/V would 

have to change to maintain the same pre-dialysis concentration if Kr declines and the other parameters (KdT/V, CpreV/(GT)) remain constant. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (6). KdT/V (or 1a) versus KrT/V (or 4a) with constant CpreV/(Gt) (or 3a/ 2) and Kdt/V (or 1). This plot demonstrates how KdT/V 

would have to change to maintain the same pre-dialysis concentration if Kr declines and the other parameters (Kdt/V, CpreV/(Gt) remain 

constant. 

cycle time. Fig. (7) thus shows the set of t and T values that 
lead to a constant pre-dialysis concentration, when other 
parameters are constant. 

 The conventional dialysis parameter, Gotch's Kt/V, is 
related to Kt/V (NOS), as shown in Fig. (8) with constant t/T 
curves. When t/T ( 2) is small, Kt/V ( 1) is approximately 
equal to Gotch's Kt/V. However, Gotch's Kt/V is only 
appropriate as a comparative measure of dialysis adequacy 
for a fixed cycle time. As shown in Fig. (8), owing to its 
dependence on T (or t/T ( 2)), Gotch's Kt/V increasingly 

deviates from Kt/V ( 1) as t/T ( 2) increases, and thus fails 
to adequately represent the peak pre-dialysis toxin 
concentration if the cycle time is adjusted.  

 Fig. (9) is similar to Fig. (8); it shows how Gotch's Kt/V 
varies with t/T ( 2) and constant (Buckingham) Kt/V ( 1) 
curves. Given that Gotch's Kt/V reflects the concentration 
fluctuation, Gotch’s Kt/V goes to zero as t/T ( 2) 
approaches unity. Indirectly, it demonstrates that Gotch’s 
Kt/V decreases with increasing frequency of dialysis. If the 
total dialysis time within a week is constant and frequency 
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Fig. (7). KdT/V (or 1a) versus Kdt/V (or 1) with constant CpreKd/G and Kr/Kd curves. This plot can be interpreted as the sets of t and T for 

constant Cpre, if other parameters are constant. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (8). Gotch's Kt/V versus the Buckingham Kt/V with constant t/T, when RRF=0. If (Buckingham’s) Kt/V (or 1) is small it is 

approximately equal to Gotch's Kt/V, for small values of t/T (or 2). Gotch's Kt/V is dependent on T and deviates more from K(d)t/V with 

larger values of t/T and an increasing value of K(d)t/V. This figure is a plot of Equation 25. 

(1/T) is increased, one would expect that this would lead to 
lower toxin concentrations and better outcomes (plot in 
supplemental materials). 

 A figure similar to Fig. (9) can be created for the 
normalized fluctuation of concentration (NFC) that, likewise, 
shows that the NFC decreases with increasing t/T, 
independent of the Kt/V ( 1) value (plot in supplemental 
materials). 

DISCUSSION 

 The alternate non-dimensional groups ( 1a, 3a) are 
important as they allow the equations to be re-cast to better 
understand the relationships between the different variables. 
For example, the exponential relationship between dialysis 
time (t) and pre-dialysis concentration (Cpre) is seen in Fig. 
(2), and is also obvious if Fig. (2) is re-plotted with the 
inverse of the ordinate (CpreV/(GT)) (plot shown in 
supplemental material). However, the same non-dimensional 
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groups cannot be used to understand the relationship 
between dialysis time (t) and the cycle time (T) because 4a 
(KrT/V) contains T (as shown in Fig. (7)). 

 If the residual renal function is zero, three non-
dimensional groups are sufficient to define a patient's 
dialysis intervention (as defined by their physiologic 
parameters (V, C, G) and their treatment parameters (t, T, 
K)). Thus, Figs. (1 to 3) represent different ways of plotting 
the same physical system (Equation 22, Equation 39) and are 
a family of equations related by variable transformations 
(such as Equation 10 and Equation 11).  

 The meaning and significance of the non-dimensional 
groups are described in detail below and are summarized in 
Table 2. 

Understanding Kt/V ( 1) 

 Physically, Kt/V (=(Kr+Kd)t/V or Kdt/V if Kr<<Kd) can 
be interpreted as a ratio of the treatment time and 
(intradialytic) system time constant; V/K is equal to the time 
constant describing the intradialytic transient behaviour of 
the system.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (9). Gotch's Kt/V versus t/T (or 2) with constant K(d)t/V (or 1). Gotch's Kt/V goes zero as t/T approaches unity. Kr=0. This figure is a 

plot of Equation 25. 

Table 2. The Non-Dimensional Groups of Renal Dialysis 

Pi group Dimensionless group Meaning Comment 

1 Kt/V dialysis time / 

(intradialytic) time constant 

Most important  group in the context of conventional 

hemodialysis.  

K is typically approximately equal to the dialyzer clearance (Kd). 

2 t/T dialysis time /  

cycle time 

Important determinant of fluctuation. 

3 (CK)/G 

 

mass removal rate / mass generation 

 

Represents the maximal dialytic concentration gradient when 

C=Cpre.  

K is typically approximately equal to the dialyzer clearance (Kd). 

4 Kr/Kd residual clearance / 

dialyzer clearance 

Important if Kr>0. Independent of the volume of distribution. 

1a KT/V cycle time / time constant Alternate for Kt/V. 

3a C/(GT/V) concentration / 

anephric concentration rise in the cycle time 

 

Alternate for CK/G. 

Important if Kr=0. 

May also be considered to be: 

mass of toxin in body / toxin generation during the cycle time 

4a KrT/V cycle time / interdialytic time constant Alternate for Kr/Kd. Independent of the volume of distribution, as 

Kr implicitly has the volume of distribution. 
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 On a physiologic basis, Kt/V ( 1) can be interpreted as 
being proportional to the ratio between the dialysis time and 
the time, t1/2, required to complete half of the change to reach 
the steady state concentration, i.e., the solution to Equation 3 
for t=  and Kr=0 is C( )=G/Kd (also known as the 
‘wearable kidney’ concentration): 

Equation 24: Kt/V interpretation. 

  

Kt

V
= ln 2( )

t

t
1/2

 

 Where:  

t = dialysis time 

t1/2  = the time required for the concentration to be 

reduced halfway to C  from Cpre, i.e. (Cpre+C )/2, 

defined as patient-dialysis machine system half-
life.  

C  = G/ Kd. 

 As a half-life (t1/2) can be recast as a time constant, Kt/V 

can also be interpreted as a ratio of the dialysis time and a 
time constant (see Appendix 3A). 

The practical implication is:  

- If Kt/V is high, the change in concentration (toward 

the steady-state value) in the latter stages of dialysis 
will be very small (Fig. 2). 

- If t/  is small, the change in concentration (toward the 

steady-state value) throughout the dialysis will be 
relatively large. 

There are three corollaries to this: 

(1) More frequent dialysis treatment for short time 

periods results in more optimal dialysis, i.e., short 

daily hemodialysis is more efficient as it makes use of 

the steeper part of the concentration decay curve. This 

was found experimentally [17], and discussed by 
Depner [18]. 

(2) Short daily dialysis (6x/week x 2h) and conventional 

hemodialysis (3x/week x 4h) have the same t/T value, 

but have different Kt/V values. A lower Kt/V can be 

better, i.e. be associated with lower toxin 

concentrations. 

 This can be seen from Fig. (3), as G/(CK) is larger for 

smaller values of t, if t/T, G, K and V are the same. 

This could also be demonstrated by plotting Equation 
19 (not shown), and is illustrated with an example:  

 If V=35 L, K=235 ml/min (14.1 L/h), G=X [mol/h], and 

one compares the schedule 1 (t=1.5 h, T=28 h (6x/week)), 
with schedule 2 (t=3 h, T=56 h (3x/week)) then: 

Schedule 1:  

 Kt/V= 14.1 L/h * 1.5 h / 35 L = 0.60 [-] 

 t/T= 1.5 h / 28 h = 0.054 [-] 

 CpreV/(GT) = 2.2 [-] (by Equation 19 or Fig. (2) 

 Cpre = 2.2 / 35 L * X mol/h * 28 h = 1.7X mol/L 

 

Schedule 2:  

 Kt/V = 14.1 L/h * 3 h / 35 L = 1.2 [-] 

 t/T= 3 h / 56 h = 0.054 [-] 

 CpreV/(GT) = 1.4 [-] (by Equation 19 or Fig. (2) 

 Cpre = 1.4 / 35 L * X mol/h * 56 h = 2.2X mol/L 

 Schedule 1 (6x per week) is characterized by lower toxin 
concentrations. Clinically, Williams et al. [17] found that 
these patients did better.  

 It should be noted that the above calculation can be 
represented by a non-dimensional plot of CpreKd/G versus 
KdT/V, with curves of constant tfii/Tfi, where Tfi is a fixed 
time interval (e.g. a week) and tfii, is the total dialysis time 
(e.g. 9 hours) in the fixed time interval Tfi (data in 
supplemental materials). 

(3) Matching the concentration fluctuation and mean 
concentration for different V values (with constant K) 
requires adjustment of both t and T. This follows 
from the fact that a scaling of the time axis does not 
change the concentration fluctuation or mean 
concentration. 

Kt/V ( 1) and Gotch's Kt/V 

Gotch's Kt/V represents two things:  

(1) a way to approximately scale for large and small 
volumes of distribution, and  

(2) a normalization for the urea mass generation, to 
remove its variability. 

 Physically, Gotch’s Kt/V represents the pre-dialysis to 
post-dialysis delta in concentration. It is dependent on the 
cycle time, which may appear to be counterintuitive, as 'T' 
does not appear in 'Kt/V'. 

 Kt/V ( 1) cannot directly be expressed as the 
concentration fluctuation, without further information (see 
Equation 12). Concentration fluctuation is not a function of 
Kt/V and only indirectly dependent on K if there is no 
residual renal function. Kt/V ( 1) is not dependent on T. 

 A relation between the two groups is (using Equation 16-
Equation 19): 

Equation 25: Relation between Gotch's Kt/V and 
Buckingham Kt/V ( 1) 

  

Gotch ' s Kt / V = ln 1+ 2

1
(

2
1)

1

1 exp(
1
)

1

 

 Equation 25 demonstrates that Gotch’s Kt/V depends 
upon the cycle time, which is part of 2. 

 Based on the Buckingham Pi Theorem, it is evident that 
Gotch’s Kt/V derives its predictive power from its relation to 
the non-dimensional group 1, to which it is approximately 
proportional in conventional hemodialysis schedules (see 
Fig. 8). As such, we believe Gotch’s Kt/V should be 
considered an approximation of the dimensionless Kt/V 
( 1), and has some utility for estimating the intradialytic 
time constant (described in Appendix 3A) when t/T ( 2) is 
small. 
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 A comparison between Gotch's Kt/V and Kt/V ( 1) is 
presented in Table 3. 

Understanding C/(GT/V) ( 3a) 

 GT is the mass generation during the interdialytic cycle 
time T. If GT is divided by V, it becomes a concentration. 
This concentration is equivalent to the change in 
concentration during the cycle time (T) if K=0. Therefore, 
CV/(GT) represents the concentration divided by the 
anephric rise in the concentration during the cycle time T. 
Alternatively, CV/(GT) can also be considered to be the ratio 
of (toxin) mass in the body to (toxin) mass generated in the 
time ‘T’. 

Understanding CK/G ( 3) 

 Physically, CK/G represents a ratio between the mass 
removal and mass generation. CK/G=1 ( 3=1) represents the 
outcome for a wearable kidney, where C is the steady state 
concentration, K the clearance and G the mass generation 
rate (see Equation 18, Fig. (3). Most nephrologists are 
familiar with the Cockcroft-Gault equation; it represents the 
case where CK/G=1, or K=G/C, where K is the patient’s 
clearance. 

 For conditions where t/T ( 2) does not equal unity, CK/G 
( 3) is equal to a multiple of the wearable kidney 
concentration.  

 If one re-arranges G/(CK) and recognizes that K can be 
interpreted as a rate constant (k) divided by the control 

volume (V), it can be cast as ratio of rate constants (see 
Appendix 3B). 

 If Cpre is chosen as the reference concentration and K is 
the dialyzer clearance, G/(CK) represents the mean mass 
generation relative to the peak mass removal rate in the cycle 
(if RRF=0). Thus, G/ CpreK reflects the maximal (temporal 
concentration) gradients encountered during dialysis; small 
values (<<1) represent high temporal gradients and values 
near unity represent minimal temporal gradients. 

Understanding t/T ( 2) 

 If the RRF is zero, t/T ( 2) is equal to unity less the ratio 
of the actual concentration change during the cycle divided 
by the maximum rise in concentration during the cycle. In 
other words, it is the concentration fluctuation avoided by 
dialysis divided by the maximum concentration fluctuation 
during a given cycle time T (from Equation 13): 

Equation 26: t/T in terms of concentration fluctuation 
avoided, if Kr/Kd=0. 

  

t

T
= 1

C
pre

C
post( )

GT / V
 or 

  

t

T
= 1

fluctuation in the cycle

anephric rise in the cycle
 

Where: 

 Cpost-Cpre is the toxin concentration change due to 
dialysis.  

 GT/V is the anephric rise in toxin concentration (the 
maximum fluctuation for a given T). 

Table 3. A Comparison Between Gotch's Kt/V and the Buckingham Kt/V 

 Gotch's Kt/V Kt/V ( 1) (Buckingham Kt/V) 

Dependence on T Yes **  No 

Relation to concentration fluctuation Yes No 

Relation to clearance Proportional (approximately) for small values only

and when t/T is small 

Related linearly; changes in Kt/V are exactly 

proportional to changes in K 

Relation to mean concentration Independent of mean concentration Insufficient to determine mean concentration; one 

needs to know T and G in addition to K, t and V 

Meaning of large value Large concentration fluctuation - may be due to 

long dialysis or infrequent dialysis 

Long dialysis time relative to the patient's toxin 

removal half-life (during hemodialysis) 

Meaning of small value Small concentration fluctuation – may be due to 

short dialysis or very frequent dialysis 

Short dialysis time relative to the patient's toxin 

removal half-life (during hemodialysis) 

Calculation Complex 

Complex – requires evaluation of a transcendental 

function  

Simple 

Multiplication of K and t divided by V 

Relation to urea Not specific to urea, but applied to it almost 

without exception 

Not specific to urea 

Physical interpretation A ratio of concentrations. 

 

Dialysis time / (toxin) interdialytic time constant 

A non-dimensional group per the Buckingham Pi 

theorem 

No Yes 

**It should be noted that in unequally spaced dialysis schedules (with a time-dependent cyclical steady state) that Gotch’s Kt/V is dependent on the lengths of the intradialytic times 
and interdialytic times, as suggested by its’ dependence on the cycle time (T) in the case of equally spaced dialysis sessions (data not shown). 
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Understanding Kr/Kd ( 4) 

 Kr/Kd characterizes the impact of RRF in hemodialysis. It 
relates the mass turnover for a wearable kidney to the mass 
turnover due to the native kidney. 

Understanding KrT/V ( 4A) 

 KrT/V can be understood as a ratio of the cycle time and 
interdialytic time constant. Like Kr/Kd, it characterizes the 
impact of RRF, and represents the fractional removal of a 
substance from the control volume during the cycle time.  

Gotch’s Kt/V and Standardized Kt/V  

 Gotch has published a figure, which relates Gotch’s Kt/V 
and standardized Kt/V (see Gotch et al. [13, 19]). We believe 
this is a pseudo non-dimensional form of Fig. (1). 

 Standardized Kt/V, which represents a normalized 
concentration (C/(G/V)), is dependent on t and K separately. 
When t approaches T (i.e., 2 1), Gotch’s Kt/V goes to 
zero (see Fig. 9). As shown in Fig. (1), when K becomes 
large, or V becomes small, the concentration (Cpre) decreases 
by a very small amount; the slope (GT/(CpreV))/(Kt/V), or 
(1/ 3a)/ 1, is small for large values of Kt/V (i.e., 1>2) and 
values� ( 2)<0.25. Physiologically, this occurs because the 
dialysis is so effective that it drives the toxin concentration 
to near zero, and the behavior of the system is therefore 
governed predominantly by the concentration rise in the 
interdialytic period. 

 Gotch et al. [13, 19] present the concept of continuous 
clearance, and incorrectly illustrate this concept by failing to 
recognize that their results are based upon an implicitly 
assumed cycle time (T) and dialysis time (t). Continuous 
clearance, i.e., t/T=1, is in fact characterized by a Gotch 
Kt/V equal to zero (see Equation 1). Using Equation 2 and 
Equation , one can show that: 

Equation 27: Standardized Kt/V, if t/T=1. 

  
Std Kt / V =

def

const
V

K
 

 The Gotch figures were created by varying K or V, but 
the lines that Gotch et al. claim to represent weekly 
frequency really represent constant lines of T and t/T, which 
have some similarity to Fig. (1). Using Equation 19 and 
Equation 25, it is possible to show that: 

Equation 28: Relation between 3a, 2 and Gotch's Kt/V 
for Kr=0. 

  
3a
=

1
2

1 e

 

Where: 

  is Gotch’s Kt/V 

 Since CpreV/GT can be transformed, with some 
multiplication, to standardized Kt/V, it can be shown (using 
Equation 2, Equation 19 and Equation 25) that: 

Equation 29: Standardized (Std) Kt/V and Gotch's Kt/V for 
Kr=0. 

  

Std Kt / V =
const

T

1 e

1
2

  or 

  

Std Kt / V = fn
1

const

T
,

2
,  

 Fig. (11) shows the relationship between standardized 
Kt/V and Gotch’s Kt/V, while independently varying K, t 
and V (for several constant values of T). Fig. (10) shows 
how standardized Kt/V depends on const/T, Gotch’s Kt/V, 
and t/T, similar to a figure developed by Leypold et al. [20]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (10). Standardized Kt/V versus Gotch's Kt/V. There are two sets of curves with fixed const/T values. In the first set (Var V) t=2.5 h, 

K=259.289 ml/min and V is varied. In the second set (Var K) t=8 h, V=40.6 L and K is varied. The spread between the two sets of lines 

increases as t/T increases (compare with Fig. 1) and as Kt/V increases. It should be noted that the Var V and Var K curves are only 

dependent on const/T and t/T; in other respects they are the same. 
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 The variation of K and V yields the same set of curves; 
the variables K and 1/V are interchangeable (see Fig. (10). 
However, the variables K and t (or 1/V and t) cannot be 
treated interchangeably, as t is also present in 2. Also, it 
should be noted that the ‘T var’ curves cannot be written as a 
mathematical function of Gotch’s Kt/V, as most values of 
Gotch’s Kt/V represent two Standardized Kt/V values, i.e., 
the ‘T var’ curves fail the vertical line test.  

 The Gotch figure thus does not completely capture the 
true relationship between the quantities plotted (Gotch’s 
Kt/V and standardized Kt/V) and may be misleading. 
Consequently, the relationship between Gotch’s Kt/V and 
standardized Kt/V may be poorly understood among 
engineers and nephrologists. 

Normalized Fluctuation of Concentration (NFC) and 
URR 

 Physically, NFC (defined by Equation 15) can be 
interpreted as the anephric concentration rise between 
dialysis sessions relative to the pre-dialysis concentration (in 
the dynamic equilibrium state), if the dialysis sessions are 
equally spaced and there is no residual renal function. 

 Urea reduction ratio (URR) is equal to the NFC, if the 
concentrations considered are those of urea.  

 As the anephric rise is dependent on the length of the 
interdialytic time, decreased spacing of dialysis sessions with 
the same Kt/V for a given patient, i.e., constant G and V, 
will lead to a decrease in URR, because the anephric rise in 
concentration between dialysis treatments has been reduced 
(see Fig. 9) and the supplemental materials. 

Peritoneal Dialysis, Non-Dimensional Groups and Kt/V 
( 1) 

 Lysaght developed an expression for Kt/V for peritoneal 
dialysis [21]. However, Lysaght’s Kt/V is not related to the 
dimensionless Kt/V ( 1), but rather, is more closely related 
to Gotch's standardized Kt/V and Gotch's Kt/V for 
hemodialysis (see Equation 2).  

 Owing to their distinctly different definitions, it is not 
appropriate to compare Gotch's Kt/V and Lysaght's Kt/V, 
which, unfortunately, makes it difficult for nephrologists to 
compare patient outcomes from peritoneal dialysis and 
hemodialysis.  

Standardized Kt/V and Lysaght's Kt/V for Peritoneal 
Dialysis 

 The definitions of Standardized Kt/V and Lysaght’s Kt/V 
are similar (compare Equation 2 and Equation 9), but neither 
are bona fide non-dimensional groups. Standardized Kt/V 
represents a concentration expressed relative to G/V, with a 
time factor (604,800 seconds) to make it look like a genuine 
non-dimensional group (see Equation 2). Lysaght’s Kt/V is 
similar but lacks the adjustment factor; Lysaght’s definition 
of Kt/V for peritoneal dialysis actually has units of 1/time 
[21]. 

Sufficiency  

 In the case of zero residual renal function, there are three 
non-dimensional groups. The Buckingham Pi Theorem 
therefore suggests that there should be a function fn2 that 
relates the three Pi groups: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (11). Standardized Kt/V versus Gotch's Kt/V. There are three sets of curves with constant T values. In the first set (Var V) t=2.5 h, 

K=259.289 ml/min and V is varied. In the second set (Var K) t=8 h, V=40.6 L and K is varied. In the last set (Var t) V=40.6 L, K=259.289 

ml/min and t is varied. One should take note of the fact that the lines of the third set (Var t) cross the lines of the other two sets and represent 

curves of constant KT/V. All of the Var t curves go to 64.3752 as t/T goes to unity (data not shown), as per Equation . The spread between 

the three sets of lines increases as t/T increases (compare with Fig. 1) and as Kt/V increases. 
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Equation 30: Relation of Pi groups. 

  3a
= fn

2 1, 2( )  or 

  

CV

GT
= fn

2

Kt

V
,

t

T
 

 If two Pi groups are known, the third can be determined 
using the function fn2 or a function related to fn2. We have 
illustrated this using several equations that relate 1, 2, and 
various forms of 3 or 3a. 

 Kt/V ( 1) by itself is insufficient to determine 3a, as 
demonstrated via Equation 11, which shows that 3a depends 
upon 1, 2, and 3, and by Equation 19, which shows that 

3a depends upon 1, and 2. If the cycle time, T, is 
assumed or fixed, as is frequently done, knowledge of 1 (K, 
t and V) is sufficient to solve for C/(GT/V) ( 3a).  

 Equation 19 is a good first approximation of fn2 when C 
is Cpre; it also demonstrates that there only is a weak 
dependence on t/T ( 2) for the range of parameters typical in 
conventional hemodialysis (K=200-300 ml/min, t=2-4 hours, 
T=56 hours). 

Approximately Constant G/V 

 Using the non-dimensional analysis and the mass transfer 
model, it is possible to surmise that G/V is approximately 
constant in a group of individuals for each of the most 
important toxins associated with end-stage renal disease 
(ESRD), if RRF=0:  

 If Kt/V is fixed (e.g., 1.2) and T is fixed (e.g., 56 h), 
CpreV/(GT) will be essentially invariant (for typical Vs and 
Ks), as it only weakly depends on t/T, as shown via Fig. (1) 
and Equation 19. 

 If the pre-dialysis concentration (Cpre) of uremic toxins is 
predictive of survival, it should be similar for people with a 
similar survival. Thus, in conventional dialysis, Cpre is 
invariant for a given Kt/V and T. However, if T is altered, or 
if K changes due to changes in RRF, Cpre can increase or 
decrease. Nonetheless, for a given Kt/V and T, once T, Cpre, 
and CpreV/GT are fixed, it follows that G/V must be 
invariant. This can be shown algebraically; using Equation 3 
and Equation 4 (for the case of Kr=0), it is possible to show 
that Gotch’s Kt/V (Equation 1) and Standardized Kt/V 
(Equation 2) are independent of G/V. 

 Direct measurement of toxin concentration is required to 
verify this. It is possible that a subset of patients have a G/V 
that deviates significantly from the norm; such a “high G/V 
subset” would have high toxin concentrations, despite being 
“dialyzed well” by matching Gotch’s Kt/V. 

Scaling for Size 

 Kt/V (like Gotch’s Kt/V) does not scale perfectly for 
patient size, unless t/T is also matched. If one assumes K, 
G/V and T are constants, it is apparent from a plot of 
Equation 19 that the concentration is not perfectly matched 
as t/T changes. Increasing t/T leads to a decreased CV/(GT), 
which must result in a lower C, if Kt/V, G and T are constant 
and V is increased. 

 Thus, smaller individuals on (conventional) hemodialysis 
theoretically have slightly higher toxin concentrations, if 
treatment is based on matching Kt/V or Gotch’s Kt/V 
(instead of matching toxin concentrations) and K values are 
equal.  

 If one assumes that Kt/V=1.20, K=250 ml/min, and T=56 
h, and two individuals are compared with a V of 40 L and 25 
L, the t values will be 3.2 h and 2 h respectively. The values 
of CV/(GT) (or 3a) for the two individuals will be 1.397 
and 1.410 respectively, based on Equation 19.  

 This difference is likely not clinically significant. Also, 
larger individuals typically can tolerate slightly higher blood 
flow rates and thus have slightly higher K values than 
smaller individuals, meaning that the difference is often 
smaller that suggested by the above calculation. 

Residual Renal Function 

 Residual renal function is known to be a predictor of 
survival. Fig. (4) shows that the concentration of toxins 
increases approximately two fold from initial prescription of 
renal dialysis to complete kidney failure. 

 Figs. (5 and 6) show that the intensity of dialysis required 
to compensate for the loss of RRF is significant. If an 
individual with V=35 L and initial renal clearance Kr = 8 
mL/min is conventionally dialyzed thrice weekly (i.e., T=56 
h, with a Kd=250 ml/min to a target of Kt/V=0.9 at dialysis 
initiation), once complete renal failure occurs (Kr = 0), the 
required Kt/V to maintain the same (toxin) concentration 
would be more than five times higher, at 4.71 (by iterative 
solution of Equation 22 – calculation in supplemental 
material). If the same person were dialyzed 5x weekly, the 
Kt/V would have to be approximately 1.14. Alternatively, 
the same pre-dialysis toxin concentration could be achieved 
by reducing T to 29.1 h, while keeping Kt/V constant at 0.9. 

 Toxin concentrations in individuals on dialysis without 
RRF are significantly higher than those with some RRF, 
unless the cycle time and dialyzer clearance are adjusted to 
compensate. One could speculate that it is not coincidence 
that the loss of RRF is correlated with the reduction in 
median survival.  

 It has been speculated that the HEMO study failed as it 
did not have a sufficient separation between the high dose 
and low dose groups [22], and we believe that this, in part, 
was a result of noise due to RRF. The RRF exclusion 
criterion in the study was >1.5 ml/min/(35 L). If this 
exclusion criterion is multiplied by the cycle time (56 h), one 
obtains a KrT/V value of 0.144. For the two Kt/V values that 
were compared (1.32 versus 1.73), it is apparent from Fig. 
(4) that similar values for CpreV/(GT) can be obtained for the 
RRF range in the study: CpreV/(GT) = 1.19 for Kt/V=1.32, 
KT/V=28.8 and KrT/V=0.144, versus CpreV/(GT) = 1.18 for 
Kt/V=1.73, KT/V=28.8 and KrT/V=0. 

 The NCDS RRF exclusion criterion was even higher (3 
ml/min) and it can be shown using Fig. (4) that the toxin 
concentrations in the high intensity (long dialysis time) 
group and low intensity (short dialysis time) group likely 
overlapped. 

 The role of residual function was not well appreciated by 
nephrologists at the time of NCDS and the HEMO study. We 
believe this is due to the fact that it is non-trivial to calculate, 
and its contribution not apparent if dialysis adequacy is 
assessed using Gotch’s Kt/V. This issue is resolved if (1) 
measures of dialysis are based toxin concentrations and (2) 
the dimensionless mass transfer analysis developed in this 
paper is employed as a guide to design dialysis schedules 
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and understand the effect of residual renal function on toxin 
concentration. 

Dialysis Measurement 

 The pseudo nondimensional groups (Gotch’s Kt/V, 
Lysaght’s Kt/V, Standardized Kt/V) were important steps 
forward approximately twenty-five years ago, and a 
significant improvement over what preceded them 
(measuring urea concentration); yet, they are impractical 
measures of dialysis. They are (1) nontrivial to calculate, (2) 
their interpretation, as indicators of (toxin) concentration, is 
complicated, and (3) it is not possible to directly compare 
patients with normal renal function and pre-dialysis patients 
to patients receiving dialysis treatment. Indeed, one cannot 
even compare different dialysis modalities (peritoneal 
dialysis, hemodiafiltration, hemodialysis), making it difficult 
to recommend the most appropriate/effective treatment 
regimen. 

 We believe that dialysis measurement should progress 
into a post-urea era. It should be based on toxin 
concentrations, and should be independent of treatment 
modality, in the same way that control of blood sugar in a 
diabetic is focused on achieving a target blood sugar level, 
even though there are several possible ways to achieve that 
goal (e.g., glyburide, metformin, lifestyle modification, 
insulin). 

Limitations 

 The mass transfer model used in this manuscript assumes 
that there is no volume change. Volume change during 
dialysis is a factor known to affect the hemodynamics, but, 
generally, does not appreciably affect the concentrations. 
Post-dialysis concentration rebound was not addressed. 

 We are aware that Gotch’s equation for Kt/V has been 
superceded by equations developed by Daugirdas. We 
believe that Daugirdas’ equation is, essentially, Equation 1 
with corrections for effects from (1) post-dialysis 
concentration rebound and (2) interdialytic volume change. 

 While toxin shifts between body compartments may be 
relevant in the pathophysiology of ESRD, the goal of the 
rebound calculation in urea mass transfer modeling is to find 
the pre-dialysis to post-dialysis delta, so that K/V can be 
estimated. Also, it is not proven that the gradients following 
dialysis are physiologically more important than the 
gradients in the intradialytic period. 

 Both volume change during the cycle and multiple pool 
models can be analyzed with a non-dimensional approach; 
however, they are beyond the scope of this work.  

 We have assumed that there is equal spacing of dialysis, 
as is commonly done [13, 16]. This is not true, but 
accounting for the actual treatment intervals (e.g., M/W/F) 
complicates the analysis significantly and we found in the 
past that it does not significantly alter the conclusions (data 
not shown).  

CONCLUSIONS 

Insights from Non-Dimensional Analysis 

 This paper has demonstrated the value of non-
dimensional groups in dialysis, and has illustrated the 
physical interpretations of these groups. 

 Non-dimensional forms of the mass transfer equations 
can confirm a number of well known experimental findings, 
which may not be immediately apparent on examination of 
the governing equations (Equation 3 and Equation 4):  

1. Increasing dialysis frequency leads to lower toxin 
concentrations for a fixed total dialysis time within a 
week. 

2. RRF has a considerable effect on pre-dialysis 
concentration (see Fig. 4); thus, it is not surprising 
that RRF is a predictor of survival. 

3. The toxin concentration, expressed as the toxin mass 
generation rate (G) divided by the volume of 
distribution (V), is approximately constant in a group 
of individuals for the most important toxins 
individually associated with end-stage renal disease. 

 Plots were created using the dimensionless groups that 
characterize hemodialysis, to facilitate understanding of the 
dominant factors/parameters in hemodialysis, including: 

1. The change in dialysis dose required to replace lost 
RRF is considerable – a factor of five or more (Figs. 5 
and 6). 

2. There is a set of schedules based on the dialysis dose 
and time between treatments that can achieve the 
same pre-dialysis toxin concentration (Fig. 7).  

3. Gotch’s Kt/V and URR decrease with increased t/T 
values (see Fig. 9 and supplemental materials), which 
makes their interpretation more difficult as the 
dialysis frequency is varied. A lower URR may result 
in lower toxin concentrations when the frequency of 
dialysis is higher. 

Implications of the Findings 

 We believe the assumption of constant G/V implicit in 
Gotch’s Kt/V should be investigated through direct 
measurement of toxins, as a subset of patients may have an 
abnormal G/V and thus are disadvantaged by matching 
Gotch’s Kt/V. 

 Our model analysis also provides a possible reason for 
the null outcome for the HEMO and NCDS studies; it is 
possibly due to effects of residual renal function leading to 
similar pre-dialysis toxin concentrations.  

 The adoption of Gotch’s Kt/V may have led to a focus on 
dialysis time per session instead of toxin concentration, 
dialysis frequency, fluid balance and patient well being. We 
believe it is time to re-focus on (toxin) concentrations. The 
EUTox group [23] has developed a large list of compounds 
that are elevated in renal failure. These concentrations in 
renal failure are presented as a ratio relative to the 
concentrations found in healthy individuals. It is time for 
physicians to re-double their efforts to identify the 
compounds responsible for the mortality and morbidity of 
renal disease, so that engineers can build better dialyzers to 
target the important toxins and biochemists and physicians 
can develop targeted pharmaceuticals. The dimensionless 
mass transfer model presented can aid in this effort, as it 
makes it easier to follow toxin concentrations and show how 
they vary under different treatment modalities. The 
dimensionless groups enable scaling for patient size and a 
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greater understanding of complex interactions; however, 
non-dimensional groups do not replace dimensional values.  

Bottom Line Conclusion 

 Dialysis modalities (e.g. peritoneal dialysis, 
hemodialysis) should be quantified the same way, as shown 
via the theoretical development presented in this paper. This 
requires a transition from the historical measures 
independently developed for each treatment modality. In 
fact, we believe that the different measures to assess dialysis 
adequacy have hindered direct comparisons between 
hemodialysis and peritoneal dialysis, and have also hindered 
understanding of end-stage renal disease.  

 It is time to move towards objective, quantitative 
measures of dialysis adequacy based on the concentrations of 
toxins, or concentrations of toxins normalized by the 
concentrations of those toxins found in healthy individuals.  
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APPENDIX 1A 

 If the limit Kr 0 is applied to Equation 3 and Equation 
4: 

Equation 31: Dialytic equation – functional form. 

 

C t
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Equation 32: Interdialytic equation – functional form. 
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APPENDIX 1B 

 An analytic form to determine the pre- and post-dialysis 
concentrations can be derived by applying the boundary 
conditions to the functional form (Equation 31 and Equation 
32): 

Equation 33: Dialytic equation without RRF - analytic 
form. 
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Equation 34: Interdialytic equation without RRF - analytic 
form. 
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 Where t is the duration of dialysis, and T is the dialysis 
cycle time. Other variables are defined in the text, and/or are 
described in Table 1. 

 If Equation 33 is substituted into Equation 34 the result 
is: 

Equation 35: Interdialytic equation without RRF and 
without Cpost. 
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 If the above is multiplied by K/G, the result is: 

Equation 36: Non-dimensional form of interdialytic 
equation without RRF and without Cpost. 
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 Using Equation 5, Equation 6, Equation 7, the above 
equation becomes:  

Equation 37: Alternate form of Equation 18. 
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 It is possible to show that Equation 37 is Equation 18, as 
the following is true: 
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APPENDIX 1C 

 Equation 12 in a form without Kt/V: 

Equation 38: Dimensionless form 2 of Equation 3 (Kr=0). 
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APPENDIX 2 

 Equation 39: Alternate form of relation of non-
dimensional groups with residual renal function - compare 
with Equation 22. 
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APPENDIX 3A 

Equation 40: Alternate Kt/V interpretation. 

 

Kt

V
=

t
 

Where: 

 = the intradialytic time constant of the patient-
hemodialysis machine system and the time to 
complete 63.2% of the change to the wearable kidney 
concentration, C( ). 

t = dialysis time. 

APPENDIX 3B 

 If one re-arranges G/(CK) and recognizes that K can be 
interpreted as a rate constant (k) divided by the control 
volume (V), it can be cast as ratio of rate constants: 

Equation 41: G/(CK) as ratio of rate constants. 

 

G

CV

k
 

Where: 

G/(CV) = mass generation per mass (in the control 
volume) or the fractional mass generation rate.  

k = fraction of mass removed per time 

 It can be noted that in a biological context, such as 
bacterial growth, G/(CV) may be constant. In dialysis, this is 
not believed to be the case, as the waste products in the body 
(organic and inorganic compounds) are themselves not 
thought to produce additional waste. 

SUPPLEMENTAL MATERIAL  

 Supplementary material is available on the publisher's 
Web site along with the published article. 

 Calculations_24.xls -contains some additional figures. 

 Loss_of_RFF_calc6.xls - contains loss of RRF 
calculation.  
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