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Abstract: Suture line stress concentration and intimal hyperplasia are related to the long-term complications of end-to-
side and side-to-side anastomosis. Several factors, such as hemodynamic effects, biological activities and the mechanical 
properties of the blood vessels, are identified to influence the problem. Yet, it is not completely clear which are the factors 
that influence most the long-term complications and in what specific way. This study aims to examine if elastic 
(compliance) mismatch increases the stress concentration and intimal thickening at the suture line. Better compliance may 
be obtained by using grafts with similar mechanical properties to the host artery or by anastomosis techniques that utilize 
vein patches and cuffs (Taylor-patch and Miller-cuff anastomosis). The anastomosis model used in this study is a circular 
cylindrical system consisting of two semi-cylinders, interconnected by two hinges. The internal blood pressure is applied 
on the arterial walls. The static and dynamic responses are analytically derived in terms of radial and tangential 
displacements, internal forces and strains of the two blood vessels and rotation of their cross-section. Results suggest that 
increased elastic mismatch between the artery and the graft may promote elevated intimal thickening due to large 
incompatible angles at the junction, whereas there is no correlation between elastic mismatch and elevated stress 
concentration at the suture line. Another interesting application of the present model is the patching of arteries as applied 
in carotid endarterectomy. 

Keywords: Artery patching, elastic mismatch, end-to-side anastomosis, side-to-side anastomosis, suture line intimal 
thickening, suture line stress concentration. 

INTRODUCTION 

 In the field of cardiovascular surgery, there are several 
studies driven by the need to assess and prevent post-surgery 
complications. In the case of end-to-side and side-to-side 
anastomosis, long-term complications primarily involve the 
development of intimal hyperplasia that results in stenosis of 
the blood vessel. From the literature, among the factors 
considered to induce intimal hyperplasia are the arterial wall 
mechanics, hemodynamics, biological activities and 
compliance between the host artery and the graft. Yet, it is 
not completely clear which are the factors that influence 
most the development of intimal hyperplasia and in what 
specific way. 
 Special attention has been given to the effect of elastic 
(compliance) mismatch between the graft and the host artery. 
Recent end-to-side anastomosis techniques that use 
“compliant” patches or cuffs, are the Taylor-patch 
anastomosis and Miller-cuff anastomosis. Studies suggest 
that these techniques may reduce the stress concentrations at 
the suture line and therefore the generation of intimal 
hyperplasia [1, 2]. 
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 An end-to-side anastomosis develops intimal hyperplasia 
at two regions of the anastomosis: the suture line and the 
artery floor opposite of the distal anastomosis [3, 4]. 
Bassiouny et al. [3] found that the development of intimal 
hyperplasia at the suture line of conventional end-to-side 
anastomosis is promoted by healing mechanisms, 
compliance mismatch and triangulation of the anastomotic 
junction that may result in complex hemodynamic patterns. 
They also suggested that intimal hyperplasia on the artery 
floor is developed due to low wall shear stresses and 
hemodynamic factors that generate stagnation points at that 
region. Noberto et al. [5] experimentally investigated the 
effect of the expansibility of vein cuffs by jacketing the cuff 
with an artificial material. They concluded that the good 
patency rates of Miller-cuff technique are not correlated to 
the mechanical properties of the cuffs. Moreover, Noori  
et al. [6] studied the flow patterns of different end-to-side 
techniques and found that only the Miller-cuff technique 
appears to have better flow patterns due to its wider 
anastomotic cavity. Furthermore, clinical studies on side-to-
side anastomosis showed that this technique has larger 
patency rates and better fluid dynamics [7, 8]. Our study 
does not deal with the hemodynamic analysis and flow 
patterns of side-to-side related anastomosis. It focuses 
primarily on the suture line behavior in terms of 
displacements, strains, and stress concentration. 
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 To identify the problem of side-to-side related 
anastomosis by means of stress concentration, it must be 
noted that the local stress concentration of an arterial branch 
(referring to a branch that was not surgically formed) is 
primarily affected by the geometry of the junction [9]. In the 
case of anastomosis, the junction is additionally stressed due 
to the suture-arterial tissue contact at the stitching holes. The 
present study aims to investigate if the elastic mismatch 
constitutes a third factor for further stress concentration at 
the suture line, thereby influencing the development of 
intimal hyperplasia. 
 Results of this study suggest that elevated elastic 
mismatch between the artery and the graft/patch does not 
affect the internal forces of the blood vessels and the system 
is dominated by almost uniform axial hoop stress. 
Furthermore, elevated elastic mismatch decreases the radial 
displacements of the graft, the graft strains and the radial 
displacement at the junction. The far-field stresses of the 
artery and the graft are of the same magnitude regardless of 
the stiffness of the materials. The incompatible angle of the 
junction appears to be an important response parameter that 
is affected by the artery/graft compliance mismatch, whereas 
there is no correlation between elastic mismatch and elevated 
stress concentration at the suture line. 

METHODS 

 This section presents the mathematical formulation 
governing the static response of the side-to-side related 
arterial anastomosis. The system response is described in 

terms of the internal forces, the radial and tangential 
displacements, the strains of the blood vessels, and the 
rotation angle of their cross section. In addition, the dynamic 
behavior of the model is evaluated in order to examine its 
significance. 

Anastomosis Model and Response to Static Loading 

 Fig. (1) shows the three end-to-side anastomoses and the 
side-to-side anastomosis techniques that can be analyzed by 
the proposed method. End-to-side anastomosis techniques 
include the conventional anastomosis, Taylor-patch 
anastomosis and Miller-cuff anastomosis [1-6, 10]. 
 The detailed stitching at the suture line can be modeled 
as a solid surface with cracks (microslits) as shown in  
Fig. (2a). The cracks are located between the sutures, and the 
embedding stress  σ s  is distributed parabolically along the 
stitch thickness according to the smooth contact solution of 
Hertz (Fig. (2b)). Therefore, the maximum embedding stress 
at the suture line is   maxσ s = 1.5σ s , where  σ s  is the average 
embedding stress. The average embedding stress increases 
when the stress concentration or the distance between 
sequential stitches is increased and/or the suture diameter is 
decreased. 

 By considering a vertical plane section in the end-to-side 
or side-to-side anastomosis of Fig. (1), the resulting system 
can be approximated by a two hinged circular model, 
consisting of two semicircles with different elasticity 
modulus, cross-sectional areas and moments of inertia. The 

 
Fig. (1). Sections that can be modeled as two hinged circular systems: (a) conventional end-to-side anastomosis; (b) Taylor-patch 
anastomosis; (c) Miller-cuff anastomosis; (d) side-to-side anastomosis. 
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two-hinged circular model consists of element I representing 
the graft that is connected to the artery side and element II 
representing the host artery (Fig. (3a)). Element I has 
thickness   t I , cross sectional area   AI , Young's modulus   E I  
and moment of inertia   I I , whereas element II has thickness 
  t II , cross sectional area   AII , Young's modulus   E II  and 
moment of inertia   I II . The unloaded centerline of the two 
elements is assumed to form a circle with radius R. The 
sutures are modeled by two hinges that separate the 
centerline into two semicircles. The varying angles of each 
element fall in the range  0 ≤ θΙ ≤ π  and  −π / 2 ≤ θΙΙ ≤ π / 2 , 
respectively, with their origins indicated in Fig. (3a). When 
subjected to uniform internal pressure  p , the system is 
deformed in the radial direction by   u(θ )  and in the 
tangential direction by   w(θ ) .  

 The problem is solved as a boundary value problem of 
continuous curved beams [11, 12]. The static differential 
equations governing the response of the system can be 
derived by considering the equilibrium of forces acting on an 
infinitesimal element of the circular ring shown in Fig. (3b), 
where   N (θ )  is the tangential tensile force,   Q(θ )  is the 
shearing force, and   M (θ )  is the in-plane bending moment. 
By using the radial, tangential and moment equilibrium of 
the infinitesimal element the resulting equations are, 
respectively 

  
dQi (θ )

dθ
− N i (θ ) = − pR       (1) 

  
dN i (θ )

dθ
+ Qi (θ ) = 0       (2) 

  
dM i (θ )

dθ
− RQi (θ ) = 0       (3) 

 Notation  i  takes the forms I, II when referring to 
elements I and II respectively. By assuming extensibility of 
the centerline, the tangential force   N

i (θ )  and moment   M
i (θ )  

can be expressed in terms of displacements as 

  
M i (θ ) = Ei I i

R2

dwi (θ )
dθ

− d 2ui (θ )
dθ 2

⎛

⎝⎜
⎞

⎠⎟
      (4) 

  
N i (θ ) = Ei Ai

R
ui (θ ) + dwi (θ )

dθ
⎛

⎝⎜
⎞

⎠⎟
      (5) 

 The symmetric boundary conditions of elements I and II 
are respectively 
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0( ) = 0,  QΙΙ 0( ) = 0  (7) 

and the continuity equations between the two elements are 

 
Fig. (2). (a) Stitching model as rigid connection points and slits 
along the suture line, (b) Stress concentration at the suture line. 

 
Fig. (3). (a) Two-hinged anastomosis model, (b) Typical element of circular sector under static loading. 
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 By combining Eqs. (1) through (8), the response of the 
two elements in terms of axial forces, shear forces, moments, 
radial and tangential displacements can be derived. For 
element I ( 0 ≤ θΙ ≤ π ) the normalized response is given by 

  

N Ι (θ )
pR

= Asinθ +1       (9) 

  

QΙ (θ )
pR

= −Acosθ     (10) 

  

M Ι (θ )
pR2 = −Asinθ     (11) 

  

uΙ (θ )
R

= BI ApR cosθ + 1
2AΙE Ι −

R2

2E Ι I Ι

⎛

⎝⎜
⎞

⎠⎟
ApR sinθ − 2BΙ

π
ApRθ cosθ + C Ι pR  

(12) 

  
wΙ (θ )

R
= −BΙ ApR sinθ + 2BΙ

π
ApRθ sinθ     (13) 

in which 

 
A = C ΙΙ − C Ι

BΙΙ + BΙ     (14) 

  
BΙ = π
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R2

E Ι I Ι

⎛

⎝⎜
⎞
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BΙΙ = π
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AΙΙE ΙΙ +
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E ΙΙ I ΙΙ
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C Ι = 1

AΙE Ι     (17) 

  
C ΙΙ = 1

AΙΙE ΙΙ     (18) 

 Furthermore, the strain of the middle-wall surface and the 
rotation of the cross section at any point along the circular 
arch are respectively 

  
ε I (θ ) = uI (θ )

R
+

1
R

dwI (θ )
dθ

= pRC I Asinθ +1( )     (19) 

  
ϕ I (θ ) = 1

R
duI (θ )

dθ
− wI (θ )

⎛

⎝⎜
⎞

⎠⎟
    (20) 

 Parameter  A  indicates the elastic and geometric 
mismatch between the host artery and the graft. The response 
of the artery (element II) can be easily obtained from 
equations (9) through (18) by assuming that the artery 
represents element I and the graft represents element II.  

The Case of Patched Carotid Artery 

 The problem of patching with longitudinal graft materials 
can be solved by developing a similar model in which the 
graft occupies a smaller part of the model. Longitudinal 
patches are frequently used for carotid endarterectomies 
[13]. The main post-surgery complications of this technique 
are the development of intimal hyperplasia, suture line 
bleeding and patch infection. 

 Fig. (4a) shows a patched carotid artery and the vertical 
plane section that can be approximated by two circular parts 
connected by two hinges (Fig. (4b)). The hinge locations 
correspond to the suturing position. To appropriately model 
this system we solved the general problem in which the 
hinges can be placed at the edges of any chord of the 

	  
Fig. (4). (a) Carotid endrarterectomy with longitudinal patch, (b) Two hinged anastomosis model with the hinges placed at the ends of any 
chord of the centerline. (I: patch, II: artery). 
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centerline. The origins of the varying angles of each part are 
shown in Fig. (4b) and have range  0 ≤ θΙ ≤ π − 2θ0  (patch) 

and  −π / 2 −θ0 ≤ θ
ΙΙ ≤ π / 2 +θ0  (artery), respectively. 

 The static differential equations governing the response 
of the system are expressed by Eqs. (1) through (5) and the 
symmetric boundary conditions of parts I and II are 
respectively 

  
M I 0( )= 0,  u

y

Ι 0( )= 0,  u
x

Ι π
2
−θ0

⎛
⎝⎜

⎞
⎠⎟
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du
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dθ
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⎛
⎝⎜

⎞
⎠⎟
= 0,  QΙ π
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⎛
⎝⎜

⎞
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(21) 

  
M ΙΙ π

2
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⎛
⎝⎜

⎞
⎠⎟
= 0,  uy

ΙΙ π
2
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⎛
⎝⎜

⎞
⎠⎟
= 0,  ux

ΙΙ 0( ) = 0,  
duy

ΙΙ

dθ
0( ) = 0,  QΙΙ 0( ) = 0  

(22) 
where  ux

i  and 
 
uy

i  are the global horizontal and vertical 
displacements respectively (  i = I  for patch and   i = II  for 
artery). The continuity equations between the two parts are 
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(23) 
 After calculations the response of the system is solved, 
providing the axial forces, shear forces, moments, radial and 
tangential displacements, strains of the middle wall surface 
and the relative rotation at the hinges. The complete 
expressions of the solution are presented in the Appendix. 

Effect of Dynamic Excitation  

 To answer the question if the dynamic vibration of the 
artery is significant and must be taken into consideration, the 
long-term dynamic response of element II has to be 
evaluated. The evaluation is performed in terms of 
dispersion graphs and the frequency coefficient. In 
particular, the graft is assumed to be rigid and the artery is 
modeled as a pinned circular arch (Fig. (5a)). This model 
constitutes the most unfavorable case of elevated elastic 

mismatch.  
 The analysis includes an extensibility of the centerline of 
the arch and rotary inertia, whereas shear deformations are 
ignored. By considering the equilibrium of forces acting on 
the infinitesimal element of Fig. (5b) the in-plane dynamic 
response is described by the following equations of motion: 

  

∂Q II (θ , t)
∂θ

− N II (θ , t) = ρAII R ∂2uII (θ , t)
∂t2 − p(θ , t)R     (24) 

  

∂N II (θ , t)
∂θ

+ Q II (θ , t) = ρAII R ∂2wII (θ , t)
∂t2     (25) 

  

∂M II (θ , t)
∂θ

− RQ II (θ , t) = ρRI II ∂2ϕ II (θ , t)
∂t2     (26) 

where ρ  is the artery density and   ϕ
II (θ , t)  is the rotation of 

the artery cross section. The rotation is expressed in terms of 
displacements as 

  
ϕ II (θ , t) = 1

R
∂uII (θ , t)

∂θ
− wII (θ , t)

⎛

⎝⎜
⎞

⎠⎟
    (27) 

 The tangential force   N
II (θ , t)  and moment   M

II (θ , t)  are 
expressed in terms of displacements as 

  
M II (θ , t) = E II I II

R2

∂wII (θ , t)
∂θ

− ∂2uII (θ , t)
∂θ 2

⎛

⎝⎜
⎞

⎠⎟
    (28) 

  
N II (θ , t) = E II AII

R
uII (θ , t) + ∂wII (θ , t)

∂θ
⎛

⎝⎜
⎞

⎠⎟
    (29) 

 By solving Eq. (26) for   Q
II (θ , t)  and using Eqs. (27) and 

(28), the shear force is 

  
Q II (θ , t) = E II I II

R3

∂2wII (θ , t)
∂θ 2 − ∂3uII (θ , t)

∂θ 3

⎛

⎝⎜
⎞

⎠⎟
+ ρI II

R
∂2

∂t2

∂uII (θ , t)
∂θ

− wII (θ , t)
⎛

⎝⎜
⎞

⎠⎟(30) 

 
Fig. (5). (a) Two-hinged artery segment under the assumption of rigid graft, (b) Typical element of arterial circular sector under dynamic 
loading. 
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 By substituting Eqs. (28) through (30) into Eqs. (24) and 
(25), and by assuming free-vibration conditions 
(  p(θ , t) = 0 ), we obtain two equations that include terms of 
displacements only: 

  

E II I II

R3

∂3wII (θ , t)
∂θ 3 − ∂4uII (θ , t)

∂θ 4

⎛

⎝⎜
⎞

⎠⎟
+ ρI II

R
∂2

∂t2

∂2uII (θ , t)
∂θ 2 − ∂wII (θ , t)

∂θ
⎛

⎝⎜
⎞

⎠⎟
− E II AII

R
uII (θ , t) + ∂wII (θ , t)

∂θ
⎛

⎝⎜
⎞

⎠⎟

                                                                                                                      − ρAII R ∂2uII (θ , t)
∂t2 = 0

 (31) 

  

E II AII

R
∂uII (θ , t)

∂θ
+ ∂2wII (θ , t)

∂θ 2

⎛

⎝⎜
⎞

⎠⎟
+ E II I II

R3

∂2wII (θ , t)
∂θ 2 − ∂3uII (θ , t)

∂θ 3

⎛

⎝⎜
⎞

⎠⎟
+

                   ρI II

R
∂2

∂t2

∂uII (θ , t)
∂θ

− wII (θ , t)
⎛

⎝⎜
⎞

⎠⎟
− ρAII R ∂2wII (θ , t)

∂t2 = 0

  

(32) 
 These partial differential equations are coupled through 
the radial and tangential displacement. By assuming a 
harmonic solution (with frequency ω ) of the form 

  u
II (θ , t) = U (θ )eiωt     (33) 

  w
II (θ , t) = W (θ )eiωt     (34) 

Eqs. (31) and (32) become 

  
− ∂4

∂θ 4 − ∂2

∂θ 2 kλ + k − 1
λ

⎛

⎝⎜
⎞

⎠⎟
U − − ∂3

∂θ 3 +
∂
∂θ

1
λ
− kλ

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥W ≡ L1U − L2W = 0

(35) 

  
− ∂3

∂θ 3 +
∂
∂θ

1
λ
− kλ

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥U − ∂2

∂θ 2 −1− 1
λ

⎛
⎝⎜

⎞
⎠⎟
− kλ − k

⎡

⎣
⎢

⎤

⎦
⎥W ≡ L3U − L4W = 0

(36) 

in which   k = ρAII R4ω 2 / (E II I II ) ,   λ = I II / ( AII R2 )  and  U  

and  W  are the normal functions of   uII  and   wII . The system 
of equations is then decoupled as 

  
L1L4 − L2L3( )U = 0     (37) 

  
L1L4 − L2L3( )W = 0     (38) 

 Therefore, the decoupled differential equations of the 
radial and tangential displacements are identical and are 
expressed respectively as 

  
U 6( ) +U 4( ) 2+ 2kλ( )+U 2( ) 1− k + kλ + k 2λ 2( )+U k + kλ − k 2λ − k 2λ 2( ) = 0  

(39) 

  
W 6( ) +W 4( ) 2+ 2kλ( )+W 2( ) 1− k + kλ + k 2λ 2( )+W k + kλ − k 2λ − k 2λ 2( ) = 0  

(40) 

in which   U
n( ) ,  W n( )  denote the nth partial derivative of  U  

and  W  with respect to θ . 

 To the authors' best knowledge, this is the first time that 
the decoupled equations of free vibration of an extensible 
circular arch with rotary inertia (by ignoring shear 
deformation) are correctly derived. The usual practice is to 
either include or ignore both rotary inertia and shear 
deformation. In this study, we deal with the problem of thin 

rings in which the effect of shear deformation is 
insignificant. 

Dispersion Curves 

 By using the wave propagation theory, the dynamic 
response of the system can be evaluated through the dynamic 
dispersion curves [14]. We assume that the radial and 
tangential displacements are expressed by the waves of type 

  u
II (θ , t) = Uei bθR−ωt( )     (41) 

  w
II (θ , t) = Wei bθR−ωt( )     (42) 

where  b  denotes the wave number. The wave equations 
along the circular ring are: 

  U (θ ) = UeibθR     (43) 

  W (θ ) = WeibθR     (44) 

 The expression   VP = ω / b  denotes the phase velocity of 
the system. The differential equations of the radial and 
tangential displacement are identical, therefore by 
substituting Eq. (43) in Eq. (39) and solving for the 

normalized phase velocity 
  
Vp / ( E II / ρ ) , one can obtain 

the dispersion relations of the circular ring as 

  

VP

E II

ρ

=
2b4 R4 + b2 R2

λ
− b2 R2 + 1

λ
+1

⎛

⎝⎜
⎞

⎠⎟
± 2b4 R4 + b2 R2

λ
− b2 R2 + 1

λ
+1

⎛

⎝⎜
⎞

⎠⎟

2

− 4b2 R2 b2 R2 −1( )2
b2 R2 + 1

λ
+1

⎛
⎝⎜

⎞
⎠⎟

b2 R2 b2 R2 + 1
λ
+1

⎛
⎝⎜

⎞
⎠⎟

(45) 
 In the case where the centerline of the ring is 
inextensible, the dispersion relation is given by 

  

VP

E II

ρ

= λ 1− b2 R2

1+ b2 R2
    (46) 

 Fig. (6) presents the dispersion curves of the system. All 
the curves decrease with increased wave number, indicating 
that the system is dispersive and its energy attenuates. 

 
Fig. (6). Dispersion curves. 
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Therefore, there is no concern of exhibiting abnormal 
increase of amplitude under dynamic loading. 

Frequency Curves 

 The free vibration of circular arches has been studied 
thoroughly by many researchers [15-20]. Veletsos et al. [17] 
and Austin and Veletsos [18] suggested approximate 
formulas to calculate the frequency coefficient spectrum of 
pinned circular arches. These formulas have proven to have 
adequate accuracy and are suitable for calculating the natural 
frequencies of such systems easily. 

 The final frequency curves are a combination of the 
bending and extensional frequency coefficient curves, with 
the mathematical correlation of the natural frequency ω  to 
the frequency coefficient  Cn  being 

  
ω =Cn / R2π 2( ) E II I II / ρAII( ) . The bending (including 

rotary inertia) antisymmetric and symmetric frequency 
coefficients are expressed respectively as 

  

Cn = m4π 4

1− 1
m

⎛
⎝⎜

⎞
⎠⎟

2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

2

1+ 3 1
m

⎛
⎝⎜

⎞
⎠⎟

2

S
mπr

S
mπr

⎛
⎝⎜

⎞
⎠⎟

2

+Ω + 1+Ω mπr
S

⎛
⎝⎜

⎞
⎠⎟

2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−1
,   m = 2n  

(47) 

  

Cn = m4π 4

1− 1
m

⎛
⎝⎜

⎞
⎠⎟

2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

2

1+ 1
m2 + 2 1

m
⎛
⎝⎜

⎞
⎠⎟

2

S
mπr

S
mπr

⎛
⎝⎜

⎞
⎠⎟

2

+Ω + 1+Ω mπr
S

⎛
⎝⎜

⎞
⎠⎟

2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−1
,   m = 2n +1

 

(48) 

where  n  is the number of mode,  S  is equal to  πR , and  r  is 

the radius of gyration   I II / AII . In order to neglect shear 
deformation, the shear flexibility factor Ω  is set equal to 10.  

 The extensional frequency coefficients are expressed as 

  
Cm = mπ S

r
1+ 1

m
⎛
⎝⎜

⎞
⎠⎟

2

    (49) 

 Odd values of  m  represent antisymmetric modes, 
whereas even values of m represent symmetric modes of 
vibration. 
 As shown in Fig. (7) the resultant frequency curve and 
subsequently the free-vibration characteristics of the system 
are dominated by the first antisymmetric bending mode. It is 
clear that the natural frequency of a two-hinged artery is 
much larger than the frequency of the applied force (the 
frequency of a typical cardiac pulse is about 7 rad/sec). 
Therefore, the dynamic response of the system can be 
adequately approximated by the static response. 

RESULTS 

 The dynamic investigation of the anastomosis response, 
suggests that the dynamic effect is not significant for the 
long-term behavior of the two hinged model. The first 
natural frequency of the two-hinged circular arch appears to 
be large compared to the frequency of vibration (at least ten 
times larger). Additionally, the system is dispersive. 
Therefore, the static analysis constitutes an adequate 
approach for evaluating the anastomosis response. 

  We are particularly interested in calculating the response 
of the suture line in means of suture force  fs , displacements, 
strains and rotation of the cross section at the junction. The 
suture force is the resultant force of the tangential and radial 
forces at the junction ( θ

I = 0 ). The normalized suture tensile 
force   fs / pR  constitutes a stress concentration factor due to 
the artery/graft compliance mismatch and is calculated as 

  

fs

pR
= N Ι (0)

pR
⎛

⎝⎜
⎞

⎠⎟

2

+ QΙ (0)
pR

⎛

⎝⎜
⎞

⎠⎟

2

= 1+ A2     (50) 

 
Fig. (7). Frequency curves of first antisymmetric and symmetric modes. 



8    The Open Biomedical Engineering Journal, 2015, Volume 9  Roussis et al. 

 The normalized radial displacement at the junction 
( θ

Ι = 0 ), is obtained from Eq. (12) and expressed as 

  

uΙ 0( )
pR2C Ι

=
BΙΙ / BΙ( )+ C ΙΙ / C Ι( )

1+ BΙΙ / BΙ
    (51) 

 Furthermore, the normalized rotation of the cross section 
at the junction, for  C Ι << BΙ , can be derived from Eq. (20) 
as 

  

ϕ I (0)
pRC I ≈

4
π

1− C ΙΙ / C Ι

1+ BΙΙ / BΙ     (52) 

 For typical values of geometric and mechanical 
properties of the two blood vessels, parameter  A  ranges 
from 0 to ±0.01 . Thus, the stress concentration at the suture 
is insignificant. Furthermore, as can be seen from Eqs. (9) 
through (11), for low values of parameter  A , the solution is 
dominated by almost uniform axial hoop stress  N = pR , and 
the moments and shear forces acting along the blood vessel 
wall are almost zero. Based upon the situation, the strain of a 
blood vessel can be approximated by   ε

i (θ ) ≈ pRCi  and it 
depends on the elastic modulus of that blood vessel. 

 Fig. (8) plots the normalized radial displacement and 
approximate normalized rotation at the junction for a range 
of the ratios   B

II / BI  and   C
II / C I . From Eq. (51) and  

Fig. (8a), the radial displacement at the junction is 
minimized for values   B

II / BI  lower than 1. The radial 
displacement will never be equal to zero, due to the fact that 

  B
II / BI  will always have nonzero positive values. Equation 

(52) and Fig. (8b) indicate that the rotation of the cross 
section is minimized for large values of the ratio   B

II / BI  
and is equal to zero when   C

II / C I  is equal to unity, meaning 
that the term   AI E I  is equal to   AII E II . 

 The maximum rotation of the artery is developed when 
the graft is rigid (applies when   AII E II →∞  and 
  E II I II →∞ ). In this case, the cross section of the graft will 
not rotate, whereas the cross section of the artery will 
undergo large rotation approximated as 

II
IΙ Ι I

4( / 2) pR
A E

ϕ π
π

≈     (53) 

 For typical values of anastomosis properties, the resultant 
maximum value of Eq. (53) is about 10°. 

Numerical Example of End-to-Side Anastomosis 

 The proposed analytical model is applied to an end-to-
side anastomosis problem and the elastic parameters and 
response quantities are calculated in order to illustrate the 
applicability of the proposed relations. The geometric and 
mechanical properties of the models of Perktold et al. [1] are 
adopted, and the far-field stress values of this paper are 
verified against the finite element calculations of Perktold  
et al. Table 1 lists the problem parameters and response 
values of a conventional anastomosis (artery-ePTFE graft) 

and a Taylor-patch anastomosis (artery-vein patch-ePTFE 
graft). 
 The radial displacement of the junction appears to be 
larger in the case of artery/vein anastomosis than in the case 
of artery/ePTFE anastomosis, whereas the stiffer the blood 
vessel or graft the lower is the developed strain. The far-field 
stresses are approximated according to Hooke's law 
( σ = Eε ). We can observe that the stresses are not affected 
by the mechanical properties of the blood vessels, due to the 
fact that a stiffer graft (large elasticity modulus) will develop 
lower strains than a soft blood vessel (low elasticity 
modulus). The far-field stress of the graft would be exactly 
equal to the far-field stress of the artery if they had the same 
thicknesses. For the artery and vein the far-field stress as 
calculated by this study is 53 kPa and for the ePTFE graft the 
far-field stress is 75 kPa. The finite element results of 
Perktold et al. are 50 kPa and 60 kPa respectively, which 
they compare well with our results. 
 The rotation of each cross section at the junction, as 
calculated by Eq. (20), is listed in Table 2. In both cases, 
element I is stiffer than the host artery, causing larger 
rotations angles for the host artery than the graft or vein. 
When the ePTFE graft is used, instead of the vein, the 
rotation angle of the artery is increased, creating larger 
incompatible angles that may cause injury of the arterial 

 
Fig. (8). (a) Normalized displacement at the junction, (b) 
Normalized rotation of the cross section at the junction. 
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tissue and may promote the development of intimal 
hyperplasia. Fig. (9) shows the incompatible angles at the 
junction of the artery/vein anastomosis and the artery/ePTFE 
graft anastomosis. 

Numerical Example of a Patched Carotid Artery 

 Kamenskiy et al. [13] studied a finite element model of a 
patched carotid artery. They used an exponential hyperelastic 
material law and modeled the stitches as fixed rigid contacts.  

 Table 3. lists the properties used in the analysis and the 
corresponding response values derived from our analysis. 
The geometric data of the model of Kamenskiy et al. were 
not given explicitly, therefore we used their figures and 
typical values for carotid arteries from the literature [21, 22]. 
The patch width was taken from Kamenskiy et al. to be 
about 2.7 mm. The elastic modulus for our calculations was 
taken at a pre-stretch of 1.08. 

 Fig. (10) plots the total displacements along the PTFE 
patch and the artery. We can observe that the artery response 
is much larger than the patch response and that the most 
significant response value appear to be the relative rotation 
between the artery and the patch at the junction 
ΙIΙ

0( / 2 ) (0)ϕ π θ ϕ+ −  (Table 3). Note that, the forces and 
strains are found to be almost uniform along the patch and 
the carotid.  
 Kamenskiy et al. particularly calculated the cyclic strain 
(the difference of Von Misses strain between systole and 
diastole) and the Misses effective stress 

 
σ eff  values. Table 4. 

list the maximum cyclic strain and the far field stresses as 
calculated by Kamenskiy et al. and by this study. Our 
calculations compare well with the finite element 
calculations of Kamenskiy et al. Note that the far-field 
stresses strongly depend on the thickness of the blood vessel 
and that Kamenskiy et al. modeled the stitches as rigid 
contacts resulted to stress concentration at the suture line. On 

Table 1. Parameters of end-to-side anastomosis of Perktold et al. and response values as proposed by this study. 

 Artery(II) /vein(I) Artery(II) /ePTFE graft(I) 

   p = 13.33 kPa ,   R = 2 mm ,   E
II = 410 kPa ,   t

II = 0.5 mm  

  E I  (kPa) 820 7500 

  t I  (mm) 0.5 0.35 

  BI   0.3678 0.1175 

  BII  0.7356 0.7356 

  C I  2.439e-3 3.809e-4 

  C II  4.878e-3 4.878e-3 

A 0.00221 0.005271 

 ε
I (0) / ε I (π / 2)  0.0650/0.0652 0.0101/0.0102 

 ε
II (π / 2)  0.13 0.13 

  u
I (0) / uI (π / 2)  (mm) 0.173/0.092 0.053/-0.0006 

 σ
I  (kPa) 53.33 75.00 

 σ
II  (kPa) 53.32 53.32 

Table 2. Rotation angles at the anastomosis junction as proposed by this study. 

 Artery(II) /vein(I) Artery(II) /ePTFE graft(I) 

 ϕ
I (0)  (degrees) -1.58 -1.20 

 ϕ
II (π / 2)  (degrees) -3.16 -7.52 

 
 
Fig. (9). Rotation of the cross sections at the junction of (a) 
artery/vein anastomosis, (b) artery/ePTFE anastomosis. 
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the other hand, the model proposed in this study has hinges 
that result in relative rotations of the connected parts. 

 If the size of the patch is increased, i.e the angle  θ0  is 
decreased, the relative rotation of the carotid and the patch at 
the junction will be increased (Fig. (11)). The largest relative 
rotation at the stitched junction is developed when  θ0 ≈ 30° . 
Therefore, thinner strips of patches seem to be more 
appropriate in order to prevent post-surgery complications. 

DISCUSSION 

 The present study examined the correlation of elastic 
(compliance) mismatch against the suture stress 
concentration and development of intimal hyperplasia at the 
suture line of side-to-side related anastomosis. The static 

analysis of the system under internal pressure appears to give 
an adequate estimation of the long-term response, compared 
to the dynamic analysis, and is utilized to calculate the 
displacement at the junction (Eq. (51)), the strains developed 
at each blood vessel (Eq. (19)), and the incompatible angles 
at the junction (Eq. (20)). 
 The analysis considers an idealized two-hinged circular 
model, consisting of two semicircles. Therefore, the 
applicability of this study is limited to the analysis of 
anastomosis regions that can be approximated by the 
idealized model of Fig. (3).  

 Results of this study suggest that elevated elastic 
mismatch between the artery and the graft does not affect the 
internal forces of the blood vessels and the system is 
dominated by almost uniform axial hoop stress  N = pR . 
Furthermore, elevated elastic mismatch reduces the radial 
displacements and strains of the graft, reduces the radial 

 
Fig. (10). Scheme of global deformation of patched carotid model. 
The scales of the undeformed and deformed configurations are 
equal. 

 
Fig. (11). Relative rotation of the cross section of the PTFE patch 
and the carotid artery at the junction as a function of angle  θ0 . 

Large values of  θ0  correspond to thinner patches. 

Table 3. Parameters and response values of the patched 
carotid. 

Parameters 

 p  (kPa) 17.332 

 R  (mm) 5.5 

  t I  (mm) 0.3 

  t II  (mm) 0.6 

  E I  (kPa) 8000 

  E II  (kPa) 845 

 θ0  (degrees) 76 

Response values 

  D1
II  (N) -0.00398 

  D2
II  0.000993 

  fs / ( pR)  1 

 ε
I (0)  0.0397 

IΙ
0( / 2 )ε π θ+  0.188 

 σ
I (0)  (kPa) 317.76 

IΙ
0( / 2 )σ π θ+  (kPa) 158.88 

  ux
I (0)  (mm) -0.0529 

  
umax

I  (mm) 0.0128 

  
umax

II  (mm) 1.985 

  
wmax

I  (mm) 0.0513 

  
wmax

II  (mm) 0.908 

 ϕ
Ι (0)  (degrees) -0.00185 

ΙI
0( / 2 )ϕ π θ+  (degrees) -1.386 

ΙIΙϕ ϕ−  (degrees) -1.384 
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displacement at the junction, whereas the far-field stresses 
are of the same magnitude regardless of the material used. 
For typical geometrical and mechanical properties of the 
artery, parameter  A  has very low values. This favors the 
suture response by indicating insignificant stress 
concentration at the suture line in the presence of elastic 
mismatch (Eq. (50)). 
 From Fig. (8b) and Fig. (9) the incompatible angle of the 
junction appears to be affected by the difference between the 
mechanical properties of the two blood vessels. Whenever 
blood flow creates almost zero shear stresses at the artery 
wall (e.g. stagnation points, low fluid velocities, reverse 
flows etc.), conditions for hyperplasia set in. At such cases, 
the compliance mismatch between the prosthetic graft and 
the host artery plays an important role in the development of 
intimal hyperplasia in the following sense. The higher the 
compliance mismatch, the higher will be the incompatible 
angle at the junction between the graft and the artery and the 
blood flow at the suture line is disturbed even more. In order 
to minimize the rotation of the arterial cross section and 
avoid elevated intimal thickening, the term   AI E I  must be 
equal to   AII E II . Frequently, the graft is stiffer than the host 
artery. Therefore, in order to obtain zero rotation the graft 
thickness has to be decreased to satisfy the equality 
  AI E I = AII E II . 
 In the case of geometric mismatch (when the thicknesses 
of the two blood vessels differ), the far-field stresses and 
therefore the embedding stresses of the host artery and the 
graft are not equal. Their values are of the same magnitude 
as long as thicknesses are also of the same magnitude. 
Additionally, when the graft thickness is increased the 
compliance parameter  A  is also increased. 

 For the case that the hinges are placed at the edges of any 
chord of the full circle, the response value that is 
significantly affected is the rotation at the junction. By 
increasing the absolute value of angle  θ0  the relative 
rotation at the junction is decreased (Fig. (11)). In the case of 
the patched carotid, the arterial part exhibits large 
displacements that may lead to softening of the tissue and 
development of aneurysm after a long time period. 
Additionally, it is likely that the large rotation angle at the 
junction promotes (along with other parameters) the 
development of intimal hyperplasia, injury of the arterial 
tissue, and infection of the patched region. 

 In conclusion, the primary contribution of this study is 
that through the proposed model and analysis the optimal 
graft characteristics can be obtained in order to minimize the 

incompatible angle at the anastomosis junction and the 
development of intimal hyperplasia. The proposed model is 
analytical and is characterized by generality. In order to 
minimize the post-surgery complications of end-to-side 
anastomosis, side-to-side anastomosis or artery patching the 
following techniques are proposed for surgical application: 
(a) Ideally, the graft and the host artery should have the same 
elasticity modulus and same thickness; (b) If the graft is 
stiffer than the host artery, the graft thickness should be 
smaller than the artery thickness (aiming to satisfy the 
equality   AI E I = AII E II ); and (c) In the case of artery 
patching, given that the patch is stiffer than the artery, the 
patch width should be as small as possible. 
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APPENDIX 

 The problem of patching with longitudinal graft materials 
can be solved by the general model that has two hinges 
placed at the edges of any chord of the full circle scheme 
(Fig. (4b)). By combining Eqs. (1) through (5) and Eqs. (21) 
through (23) the response of the two elements in terms of 
axial forces, shear forces, moments, radial and tangential 
displacements of the artery/element II 
( −π / 2 −θ0 ≤ θ

ΙΙ ≤ π / 2 +θ0 ) are respectively 
ΙI II

1( ) cosN D pRθ θ= +       (54) 

ΙI II
1( ) sinQ Dθ θ=       (55) 

( )ΙI II
1 0( ) sin cosM RDθ θ θ= − +       (56) 

 Furthermore, the strain of the middle wall surface and the 
rotation of the cross section at any point along the circular 
arch are respectively 

Table 4. Comparison between results of Kamenskiy et al. and this study. 

 Kamenskiy et al. calculations This study 

Patch maximum cyclic strain 0.02 0.0214 

Carotid maximum cyclic strain 0.1 0.1012 

Patch far field stress 
  
log10 (σ eff )  (Pa) 5.5 5.502 

Carotid far field stress 
  
log10 (σ eff )  (Pa) 5.4 5.201 
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ε II (θ ) = uII (θ )

R
+ 1

R
dwII (θ )

dθ
= pR

AII E II
+

D1
II cosθ
AII E II

     (61) 

  
ϕ II (θ ) =

D1
II R2

E II I II sinθ +θ sinθ0( )  (62) 

 The strain and rotation at the junction ( θ = π / 2 +θ0 ) are 

  
ε II π

2
+θ0

⎛
⎝⎜

⎞
⎠⎟
= pR

AII E II −
D1

II sinθ0

AII E II  (63) 

  
ϕ II π

2
+θ0

⎛
⎝⎜

⎞
⎠⎟
=

D1
II R2

E II I II
cosθ0 + sinθ0

π
2
+θ0

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥  (64) 

 The response of the graft (element I) can be easily 
obtained by using equations (54) through (64) and by 
assuming that element II represents the graft and element I 
represents the artery. 

 The normalized suture tensile force   fs / pR  constitutes a 
stress concentration factor due to the artery/graft compliance 
mismatch and can be calculated as 

( ) ( )

2 2
ΙI ΙI

0 0 2 2II II
1 1 0

( ) ( )
2 2 2 sins

N Qf D D pR pR
pR pR pR

π πθ θ
θ

⎛ ⎞ ⎛ ⎞+ +⎜ ⎟ ⎜ ⎟
= + = − +⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

(65) 
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ΙI II II

2 1 0II II II II II II II II( ) cos sin sin
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A E E I E I A E

θθ θ θ θ
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3 3 3
ΙI II II

2 1 0II II II II II II II II II II( ) sin sin cos sin
2 2 2
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θθ θ θ θ θ θ
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and 

  
D2

II =
pR2 sinθ0

AII E II
+ D1

II cos2 θ0

R
2AII E II

− R3

2E II I II

⎡

⎣
⎢

⎤

⎦
⎥ + sinθ0

R3

E II I II
sinθ0 − cosθ0

π
2
+θ0

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
 (60) 



Analytical Side-to-side Related Anastomotic Strategies The Open Biomedical Engineering Journal, 2015, Volume 9    13 

[15] L. L. Philipson, “On the role of extension in the flexural vibrations 
of rings”, J. Appl. Mech., vol. 23, pp. 364-366, 1956. 

[16] D. G. Ashwell, A. B. Sabir, and T. M. Roberts, “Further studies in 
the application of curved finite elements to circular arches”, Int. J. 
Mech. Sci., vol. 13, no. 6, pp. 507-517, 1971. 

[17] A. S. Veletsos, W. J. Austin, L. Pereia, C. A, and S.-J. Wung, “Free 
In-Plane Vibration of Circular Arches”, J. Eng. Mech. Div., vol. 98, 
no. 2, pp. 311-329, 1972. 

[18] W. J. Austin and A. S. Veletsos, “Free vibration of arches flexible 
in shear”, J. Eng. Mech. Div., vol. 99, no. 4, pp. 735-753, 1973. 

[19] J. Kirkhope, “In-plane vibration of a thick circular ring”, J. Sound 
Vib., vol. 50, no. 2, pp. 219-227, 1977. 

[20] M. S. Issa, T. M. Wang, and B. T. Hsiao, “Extensional vibrations 
of continuous circular curved beams with rotary inertia and shear 
deformation, I: Free vibration”, J. Sound Vib., vol. 114, no. 2, pp. 
297-308, 1987. 

[21] A. Delfino, N. Stergiopulos, J. E. Moore Jr, and J.-J. Meister, 
“Residual strain effects on the stress field in a thick wall finite 
element model of the human carotid bifurcation”, J. Biomech., vol. 
30, no. 8, pp. 777-786, 1997. 

[22] A. V. Kamenskiy, J. N. MacTaggart, I. I. Pipinos, J. Bikhchandani, 
and Y. A. Dzenis, “Three-Dimensional Geometry of the Human 
Carotid Artery”, J. Biomech. Eng., vol. 134, no. 6, pp. 064502.1-
064502.7, 2012. 

 
 
Received: August 07, 2014 Revised: September 21, 2014 Accepted: September 25, 2014 
 

© Roussis et al.; Licensee Bentham Open. 
 

This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/-
licenses/by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited. 
 


