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Abstract: Head model and an efficient method for computing the forward EEG (electroencephalography)problem are 

essential to dipole source localization(DSL). In this paper, we use less expensive ovoid geometry to approximate human 

head, aiming at investigating the effects of head shape and dipole source parameters on EEG fields. The application of 

point least squares (PLS) based on meshless method was introduced for solving EEG forward problem and numerical 

simulation is implemented in three kinds of ovoid head models. We present the performances of the surface potential in 

the face of varying dipole source parameters in detail. The results show that the potential patterns are similar for different 

dipole position in different head shapes, but the peak value of potential is significantly influenced by the head shape. 

Dipole position induces a great effect on the peak value of potential and shift of peak potential. The degree of variation 

between sphere head model and non-sphere head models is seen at the same time. We also show that PLS method with the 

trigonometric basis is superior to the constant basis, linear basis, and quadratic basis functions in accuracy and efficiency. 

Keywords: Electroencephalography(EEG) and dipole source, localization potential head model integral equation.  

1. INTRODUCTION 

 Electroencephalogrphy (EEG) is a non-invasive method 
of measuring the electrical activity of the brain. Dipole 
source localization (DSL) has been widely used in analyzing 
electroencephalograms (EEG’s), which is a valuable tool in 
the pre-surgical evaluation of patients suffering from 
epilepsy [1] and basic brain research. In order to solve this 
inverse problem, one must solve the EEG forward problem 
to determine the surface potentials from the dipole current 
sources in the head volume. For a quantitative interpretation 
of electroencephalograms(EEG’s), a mathematical geometry 
is needed to approximate the human head. Spherical head 
models[2-4] have been commonly used in EEG problems. 
However, some key drawbacks are shown using spherical 
head models in [5, 6]. Nonspherical head models, such as 
ellipsoid models [6-9] and realistic head shape [10-13] based 
on segmented 3D magnetic resonance images are also 
applied. These realistic head models are more adequate to 
describe the human head than spherical models. However, 
excessive computing time is required. Therefore, such 
models are not convenient for the theoretical analysis. 

 For accurate localization of dipole current source, the 
information about the effects of the head shape and dipole 
source parameters on EEG field is necessary. The related 
work [6, 13-15] developed some information from different  
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aspects when using spherical or realistically shaped models. 
Boundary element methods (BEM’s) have been widely 
studied in EEG forward problem [16-20]. The performance 
of BEM methods is dependent on the selection of the basis 
and weighting functions. The comparison of accuracy was 
made between the BEM methods with constant, linear and 
second order basis function for the potential using spherical 
models in [16,17]. Currently, the efficiency of EEG forward 
solutions based on BEM for non-spherical head models is 
limited [5, 21]. In this paper, we use three analytical models 
(Figs. (1a-1c)), lengthwise ovoid, oblate ovoid model, and 
sphere to approximate human head aiming at investigating 
the effects of head shape and dipole source parameters on 
EEG fields. Point least squares(PLS) based on meshless 
method for solving EEG forward problem is developed and 
numerically implemented. Four kinds of basis functions; 
constant basis, linear basis, quadratic basis and trigonometric 
basis functions with compact support are applied. We 
include numerical comparisons of four kinds of basis 
functions in accuracy and efficiency. We organize the paper 
as follows. Section 2 provides the EEG field equations and 
our head models. In Section 3, we derive formula of Point 
Least Square (PLS) for computing the scalp electric 
potential. The description of numerical experiments is 
presented in section 4. In section 5, simulation results and 
discussion are presented. In section 6, conclusion is given. 

2. EEG FIELD EQUATION AND HEAD MODELS 

 The typical head model assumes that it is made up of a 

set of compartments with homogeneous and isotropic 
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conductivity. Let   be the space region occupied by the 

head and =S  be the boundary of .  Assume that   is 

divided by surfaces MjS j ,1,2,=,   (from the beginning of 

the scalp) into some subregions j  with constant isotropic 

conductivity j =  in each j . 
'
j  and 

''
j  denote the 

conductivities inside j  and outside j , respectively. 

),,(= 321 xxxx  and ),,(= 321 yyyy  are the coordinate 

vectors in 3R . 

 The physiology basis for EEG is that the electrical 
activity of active nerve cells in the brain produces small 
currents which reach the scalp surface and result into voltage 
difference. EEG forward problem aims at computing the 
scalp potential that is produced by assumed primary current 
in the head volume. The relationship between the scalp 
potential and dipole source can be derived from quasistatic 
Maxwell’s equations [22], that is,  
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where MkSx k 1,2,=, , )(yn j  is outward directed 

unit vector normal to the jth surface jS  and )(0 xV  is the 

potential in an infinite homogeneous medium with 

conductivity 0 , that is,  

.
||

)(
4

1
=)(

3
0

0 dv
yx

yx
yJxV p






 (2) 

 The primary current is generally modeled as a current 
dipole with moment q  located at qy , then we have  
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 The head model we will use is a new kind of analytical 
geometry, ovoid geometry. The surface equation of ovoid 
geometry can be expressed as  
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where a  is the length of longitudinal axis, and 0n  is called 

the index of ovoid. Note that  

1. When 1>0n ,   is lengthwise ovoid (Fig. (1a)).  

2. When 1<<0 0n ,   is oblate ovoid (Fig. (1b)).  

3. When 1=0n ,   is a sphere with the radius /2= ar  and 
center on z-axis (see Fig. (1c)).  

4. The oval cross-section with different index is shown in 
Fig. (1d).  

 Three-layer models can be seen in Fig. (2), representing 
scalp, skull and brain.  

3. POINT LEAST SQUARES BASED ON MESHLESS 
METHOD WITH COMPACTLY SUPPORTED 
FUNCTIONS 

 The techniques widely used to solve the EEG forward 
problem are the finite element method (FEM) and boundary 
element method (BEM). FEM for the anisotropic conducting 
compartments have an increased computational demand [23, 
24]. In contrast, BEM for isotropic conducting compartments 
can reduce much work. But the drawback of BEM is still the 
computational cost and the singularity in the vicinity of a 
surface separating two compartments. The meshless method 
with compactly supported functions has been widely applied 
in computing mechanics and fluid dynamics communities 
[25, 26]. Meshless method we use, a finite point method, is 

 

Fig. (1). Three head models: (a) lengthwise ovoid; (b) oblate ovoid; 

(c) sphere; (d) the relationship of the three head models. 

 

Fig. (2). (a) represents three layer lengthwise ovoids ( 3=0n ). (b) 

is three layer oblate ovoids ( 1/3=0n ). (c) is section of sphere  

( 1=0n ). (d) shows the relation of three head models. 
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to use Weighted Residual method with compactly supported 
trial functions, which is constructed by discrete points. 
According to the formula (1), we define the operate  
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 Then the formula (1) is equivalent to:  

).(=)( 00 xVxLV   

 Let the trial function of the potential be:  
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where )(xi  are basis functions, and ic  is a set of 
corresponding unknown coefficients. 

 We need to set the residual error:  

)()(= 0 xVxLVR   

 Then the general form of the method of weighted residual 
can be described as follows: 

0,=)( dyyR
S

  (7) 

where )(y  is weighting function. Generally, the weighting 
function is taken as the following form: 

),(=)(

1=

xx kk

n

k

   

where k  are coefficients and k  are basis functions. Thus, 
inserting each basis function into the formula (8), we have 
unified form for the method of weighted residuals as follows:  
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 If we choose the weighting functions as:  

),(=
)(

= ij
j

i
j xL

c

xR





  

then general least squares takes the form:  
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 Point of least squares is that we replace the integral by 
sum as follows:  
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where ix  are node points, m  is the number of basis 
functions.  

 Equivalently, we write the matrix form as:  

,= bcTTT  (9) 

where c  and b  are 1n  vectors, and T  and b  are as 
follows:  
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 It is seen that TTTA =  is a symmetric, positive definite 

and dense matrix. 

 Noting that the surface equation of the ovoid in spherical 
coordinate system is  

.
2
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 naS  

and the parametric form of the surface is the following  

 cossincos= 0
nax

 

 sinsincos= 0
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,cos= 1
0 naz  (13) 

we transform the domain of boundary surface integration in 
Eq.(11) into the rectangular region in spherical coordinate 
parameters  , and  , that is,  




 2<<0,
2

<<0:,D  (14) 

 According to the node point we divide the surface S  into 

subsurfaces mjs j ,1,2,=,  . The corresponding domain is 

sub rectangular 
 ,

jD . Except for the collocation points 

which are used to construct the trial function, a number of 

auxiliary points are also adopted (Fig. 3). Here we choose 

the constant basis, linear basis, quadratic basis and 

trigonometric basis functions with compact support as 

follows, respectively.  
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where   and   are the parameters of surface in spherical 
coordinates. According to the parametric form of surface Eq. 
(13), the collocation points are written as  

}.,1,=)),,(),,(),,((={ nizyxx iiiiiii   (19) 

 Noting that the elements of matrix in Eq.(11) need to 

handle boundary integrals, which show a strong singularity 

of the order 2r  because of the highly varying kernel 

),( yxF  in Eq.(12), we apply boundary regularization 

method which means that the singular points are replaced by 

the corresponding points on imaginary boundary surface 

[27]. Therefore, the formula (11) can be rewritten as: 
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Where;  

 cossinsincos= 222
0

1
0

222   naFEG n  

is the element of area dS , 0n  is the index of ovoid, x  and 

y  are defined as the form (13), and ix  are collocation 

points defined by Eq.(19)in which a  is replaced by 

0=~ daa  . Here 0d  is called boundary regularization 

parameter.  

4. DESCRIPTION OF THE NUMERICAL 
EXPERIMENTS 

 To demonstrate the performance of potentials in different 

head models versus the varying dipole source parameters, we 

perform simulations in three head models with indexes 

1/3=0n , 3=0n  and 1=0n . In simulations, we not only use 

the collocation points but also adopt a number of auxiliary 

points to construct the trial function. See Fig. (3). 

 The parameters are taken as the following: the 

conductivities: 
11

0 1=  m , 
110.33=  m , the 

length of longitude axis cma 19= , and the boundary 

regularization parameter cmd 0.5=0 . The collocation points 

are distributed over the part of surface with 

/3<<0/2,<<0  . We compute potentials in the 

following dipole source parameters. Dipole direction: 

,0)
2

2
,

2

2
(=q . The dipole q  was located on z  axis 

moving from cm3  to cm15 . 

 The forward calculation for EEG is divided into two 

steps. In the first step, we formulate the matrix T  in Eq. 

(11), which is independent of the parameters of dipole 

source. We need to compute boundary regularized double 

integrals in Eq. (20). We implement quadl in dbquadl based 

on Matlab which is a high order method using an adaptive 

Gauss/Lobatto quadrature rule. We solve linear systems by 

LU decomposition. In the second step, the potential in 

infinite homogeneous space related to the parameter of 

dipole source is computed. In order to test the accuracy of 

our method, we use the relative error as follows  
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where trM  is the value based on the approximation of 

higher order and M̂  is the value based on the approximation 

of lower order.  

5. RESULTS AND DISCUSSION 

 The simulations are conducted in three head shapes. 

Under the same dipole direction( /2,0)2/2,2(=q ), the 

maps of the potentials versus the sensor positions parameter  

( ) for different dipole position on z-axis are shown in  

Figs. (4-6). It is shown that their patterns are similar but 

there is a difference in magnitude. The peak potential value 

shifts from the right to the left as the dipole moves from the 

bottom toward the scalp in each head shape. The maps of 

potentials versus dipole position on Z axis for three head 

 

Fig. (3). The rectangular domain  ,
jD  corresponds to the 

parameterized surface 
js . The dots are collocation points and the 

circles are auxiliary points. 
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shapes are seen in Fig. (7), which shows the difference of the 

magnitude of potentials between three head models in the 

case of the same dipole position and direction. We also 

understand the degree of variation between the different head 

shapes. The difference between the oblate ovoid shape and 

the sphere shape is less than that between the lengthwise 

ovoid shape and sphere model. In Fig. (8), the peak 

potentials versus the dipole position in three head models are 

compared. We can find that the trends of peak potentials as 

dipole moving toward the surfaces are similar in different 

head models. The relative differences of potentials computed 

by four basis functions are presented in Fig. (9). It is seen 

that the relative difference of potential based on 

trigonometric basis is much better than that based on other 

three kinds of basis functions. The comparison of the 

computing time based on four kinds of basis functions can be 

seen in Table 1. It is seen that trigonometric basis has the 

advantage over other three kinds of basis functions in 

computing time. This result is true of the three head models 

is true.  

CONCLUSION 

 The analytic head model we introduced is less expensive 
and convenient to make theoretical analysis, which can be 
used to make further studies of other conductor properties of 
the head. Point of Least Squares (PLS) based on meshless 
method are applied. Simulations are implemented in four 
kinds of basis functions for three head models. We obtained 
the detail information about the effects of head models and 
dipole source parameters on EEG. The results indicate that 
potential patterns in different head shapes are similar, but 
there is a huge difference in the magnitude of potentials in 
different head shapes. The peak value of potential is 
significantly influenced by the head shape. Dipole location 
has great effect on the peak value of potential and shift of 

 

Fig. (4). Head model: lengthwise ovoid. Potentials versus the angle 

 , the sensor position parameter for dipole position qz from 

153 cm on z-axis. Dipole direction /2,0)2/2,2(=q . 

 

Fig. (5). Head model: sphere. Potentials versus the angle  , the 

sensor position parameter for dipole position 
qz from cm153  on 

z-axis. Dipole direction /2,0)2/2,2(=q . 

 

Fig. (6). Head model: oblate ovoid. Potentials versus the angle  , 

the sensor position parameter for dipole position 
qz from cm153  

on z-axis. Dipole direction /2,0)2/2,2(=q .  

 

Fig. (7). Comparison of potentials for the same dipole position on z 

axis( 15=qz ) and dipole direction /2,0)2/2,2(=(q ). 
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peak potential. We not only obtained the detailed 
information about the effect of head shapes and dipole 
source parameters on EEG fields, but also understand the 
degree of variation between sphere head model and non-
sphere head models. This provides necessary information for 
accurate localization of dipole current source. In comparison 
to PLS based on four kinds of basis functions, constant basis, 
linear basis, quadratic basis and trigonometric basis 

functions, we find that the trigonometric basis is superior to 
the other three basis functions in accuracy and efficiency. It 
is a significant reference for further computation of EEG 
forward solutions with anisotropic conductivity head model.  
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