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Abstract:

Background:

Among  electromagnetic  fields  treatments  used  in  orthopedics,  extremely  low-frequency  magnetic  fields  (ELF  MF)  need  more
detailed information about the molecular mechanisms of their effects and exposure conditions.

Objective:

Evaluation of the effects of an ELF MF exposure system, recently introduced among current clinical treatments for fracture healing
and other bone diseases, on Alkaline Phosphatase (ALP) activity and expression in a human osteosarcoma cell line (SaOS-2), as
marker typically associated to osteogenesis and bone tissue regeneration.

Method:

Cells were exposed to the ELF MF physical stimulus (75 Hz, 1.5 mT) for 1h. Cell viability, enzymatic activity, protein and mRNA
expression of alkaline phosphatase were then measured at different times after exposure (0, 4 and 24 h).

Results:

Data demonstrate that this signal is active on an osteogenic process already one hour after exposure. Treatment was, in fact, capable,
even after an exposure shorter than those commonly used in clinical applications, to significantly up-regulate alkaline phosphatase
enzymatic activity. This regulation is produced essentially through an increase of ALP protein level, without changes of its mRNA
concentration, while assessed magnetic field did not affect cell growth and viability and did not produce temperature variations.

Conclusion:

Tested low-frequency magnetic field affects cellular ALP expression with a posttranslational mechanism, without the involvement of
regulations  at  gene  transcription  and  mRNA  level.  This  molecular  effect  is  likely  produced  even  within  treated  tissues  during
therapies with this signal and may be implicated in the induction of observed effects in treated patients.

1. INTRODUCTION

Practical use of Electro-magnetic Fields (EMF) in the treatment of several pathological conditions, including bone
diseases,  has attracted the attention of recent literature and clinical applications of electro-magnetic stimulation are
becoming frequent [1 - 3]. Pulsed Electro-Magnetic Fields (PEMF) have been widely used for bone disorders treatments
in  animals  and in  humans  [4  -  6].  There  are  also  several  pieces  of  evidence  of  PEMF potential  applications  in  the
treatment of osteoporosis [7, 8]. Extremely Low-Frequency (ELF) Electro-Magnetic Fields (EMF), along with pulsed
EMF, have been shown to positively affect osteogenic processes [9 - 11]. Furthermore, it has been long known also the
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low intensity direct current ability to stimulate bone growth and remodeling [12 - 14].

Knowledge of molecular mechanisms underlying osteogenic effects of these signals appears very important for their
appropriate clinical applications. PEMF seem to affect osteogenesis stimulating proliferation and differentiation of bone
cells in vitro, increasing bone marker genes expression and inducing bone mineralization processes [15, 16]. ELF-MF
showed to  affect  bone  remodeling  suppressing  reabsorption  and  promoting  the  formation  of  bone  tissue  [3],  while
Capacitively Coupled Electric Fields (CCEF) have been proven to accelerate proliferation of osteoblast-like primary
cells and to increase bone extracellular matrix formation in vitro [17, 18].

Alkaline  phosphatase  (ALP)  activity  and  expression  are  typically  associated  markers  of  osteogenesis  and  bone
tissue  regeneration  [19,  20].  This  homodimeric  enzyme,  which  is  linked  to  cell  membrane  through
Glycosylphosphatidylinositol  (GPI),  has four  different  forms:  Tissue-nonspecific  (TNAP),  intestinal,  placental,  and
germ cell  [21,  22].  TNAP is  ubiquitously expressed in many tissues,  including liver,  bone,  and kidney,  and is  also
referred  as  the  liver/bone/kidney  type  [23,  21].  It  contributes  to  bone  tissue  formation  both  increasing  local
concentration of inorganic phosphate (Pi) and decreasing concentration of extracellular Pyrophosphate (PPi) [21, 20].
Within mineralization processes, TNAP hydrolyzes PPi, providing Pi for the hydroxyapatite formation.

Several  studies  demonstrated  that  cell  ALP  activity  and  expression  may  be  affected  by  prolonged  exposure  to
specific PEMFs in human mesenchymal stem cells [24, 11]. We previously reported the effects of a low-frequency (LF)
Electric Field (EF), generated by an apparatus of current clinical use (frequency 60kHz, frequency of the modulating
signal 12.5 Hz, 50% duty cycle, peak-to-peak voltage 24.5 V), on ALP activity [25]. Our signal induced a significant
increase of alkaline phosphatase enzymatic activity, in two different cell lines (bone SaOS-2 and liver HepG2), already
after one-h exposure [25].

In the current study, we analyzed the effects of one-h exposure, using an extremely low-frequency magnetic (75 Hz,
1.5 mT), on ALP enzymatic activity and expression in cultured human SaOS-2 cells. This exposure was also tested in
the presence of three-dimensional collagen scaffolds. The magnetic stimulus was obtained by a recently introduced
device for clinical treatments requiring bone regeneration.

2. MATERIALS AND METHODS

2.1. Cell Cultures and Treatments

Human osteosarcoma SaOS-2 cells [26, 27] and human breast cancer cell lines MCF-7 [28, 29] and SK-BR-3 [30,
31] were cultured in Dulbecco’s modified Eagle’s medium, with 4.5 g/L glucose with L-glutamine (Bio-Whittaker,
Frederick, MD), 10% (v/v) fetal bovine serum (Sigma-Aldrich, St. Louis, MO), 100 mU/ml penicillin, and 100 mg/ml
streptomicyn (Bio-Whittaker) at 37ºC with an atmosphere of 5% CO2.

Cells were seeded at a density of 1x105 in each well of 24-well tissue culture plates and allowed to adhere for 24 h.
Cells were then exposed for 1 h to the magnetic field (75 Hz, 1.5 mT) at room temperature (22ºC). Simultaneously with
the exposure, under the same experimental conditions, negative control received no treatments: identical culture plates
containing identical cell numbers were kept in the same laboratory for the same 1 h time in an identical installation
without magnetic exposure. Cell viability, ALP activity, mRNA and protein level were assayed at 0 h, 4 h, and 24 h
after exposure.

2.2. ELF MF Exposure system

Generator system and field strength measures were fully described in previous studies [32, 33]. It consists of a pair
of  coils  of  copper  wire,  placed opposite  to  each other  and in  a  signal  generator.  Multiwell  plates  were  placed in  a
Plexiglass  holder  between  this  pair  of  coils  so  that  the  plane  of  the  coils  was  perpendicular  to  multiwell  plates.
Generator system (75 Hz, 1.5 mT) and holder were kindly provided from IGEA (Carpi, Italy). This winding results in a
uniform magnetic field between coils with the primary component parallel to the axis of the two coils. This uniform
field results from the sum of the two field components parallel to the axis of the coils and the difference between the
components perpendicular to the same axis. This installation allowed to perform controlled exposures of cells attached
to the bottom of each well of a 24-well tissue culture plate (well diameter, 15.6 mm; well volume, 3.4 ml). Fig. (1),
panel A shows the schematic geometry of multiwells in a simulation model (Comsol MultiphysicsTM) (growth area 1.9
cm2). Fig. (1), panel B shows a computer modeling of the magnetic field between the coils (Comsol MultiphysicsTM).
Arrows  indicate  magnetic  field  (H)  strength  and  direction,  demonstrating  a  constant  distribution  within  the  whole
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multiwell plate. Fig. (1), panel C shows a picture of the exposure system with the Plexiglass holder keeping multiwell
plate between coils.

Fig. (1). Description of ELF MF exposure system. Panel A shows the schematic geometry of multiwells used in a simulation model.
Panel B shows a computer modeling of the magnetic field between coils, with arrows indicating magnetic field (H) strength and
direction, demonstrating a constant distribution within whole multiwell plate. Panel C shows a picture of the exposure system with
the Plexiglass holder keeping multiwell plate between coils.

2.3. Measurement of Temperature of Culture Medium

Culture medium was added to each well of two 24-well tissue culture. As for the exposure experiment, one plate
was exposed to the ELF MF system and the other one (control) received no treatment. The temperature of exposed and
unexposed  medium  was  then  measured  several  times  (at  0,  15,  30,  45,  and  60  min),  using  an  electronic  contact
thermometer (Sigma-Aldrich, St. Louis, MO). Each measurement was carried out on at least eight different detections
and four different experimental sessions.

2.4. 3D Scaffolds

Collagen scaffolds employed for our investigation were kindly provided by Finceramica (Faenza, Italy). Scaffolds
were produced by a process integrating an organic compound (collagen type I) with bio-active hydroxyapatite nano-
crystals  with  magnesium  salts.  For  treatments,  cells  were  layered  onto  cylindrical  scaffolds  (5  mm  height,  6  mm
diameter)  covered  with  standard  medium,  within  24-well  tissue  culture  plates.  Exposure  treatments  were  then
performed  after  24h.  Cells  were  exposed  for  1  h  in  the  same  conditions  described  for  other  treatments.

2.5. Scanning Electron Microscopy (SEM)

SaOS-2 cells  were seeded at  a density of 1x106  in each well  of 24-well  tissue culture plates in presence of one
cylindrical  collagen  scaffold  and  allowed  to  adhere  for  24  h.  Later,  scaffolds  colonized  by  cells  were  fixed  with
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glutaraldehyde, dehydrated with alcohol and dried with a critical point dryer (mod. K850; Quorum Technologies Ltd.,
East  Sussex,  United  Kingdom).  Each  sample  was  then  metalized  with  gold  and  observed  by  a  scanning  electron
microscope equipped with a transmission electron microscopy detector (S-TEM, mod. Zeiss Ultra Plus; Carl Zeiss SMT
AG, Oberkochen, Germany).

2.6. MTT and ALP Activity Assays

The Methyl Thiazolyl blue Tetrazolium (MTT) spectrophotometric dye assay was used to detect cell proliferation
ability,  which is  proportional  to  cell  number,  being an assay of  mitochondrial  metabolic  activity.  After  removal  of
medium, cells were incubated for 2 h in 1 mL of 1mg/mL MTT (Sigma-Aldrich) at 37°C. Formazan crystals were then
solubilized  adding  into  each  well  800  μL  of  dimethyl  sulfoxide  and  absorbance  was  detected  at  490  nm  with  a
microplate reader (Thermo Scientific, Waltham, MA).

ALP  activity  assay  was  performed  by  a  colorimetric  reaction  [25].  Cells  were  incubated  in  a  lysis  solution
containing 0.1% Triton-X 100 (Sigma-Aldrich), 50 mM citric acid (Sigma-Aldrich) (pH 5.5), and 5 mM p-nitrophenyl
phosphate (p-NPP) (Sigma-Aldrich), for 45 min at 37°C. During this time, ALP enzyme catalyses the hydrolysis of p-
NPP into p-nitrophenol (p-NP). The reaction was stopped with 1 M NaOH and the p-NP production, proportional to the
amount  of  enzyme  activity,  evaluated  by  measuring  absorbance  at  405  nm.  The  results  were  normalized  for  cell
number.

Each  test  was  carried  out  on  at  least  eight  cell  extract  samples  for  each  experimental  point  from  three  full
experimental replicates.

2.7. Cell Protein Extraction and Western Blot Analyses

After treatments, cells were washed and lysed as previously described [34]. Twenty micrograms of total protein
extract were separated by 12% SDS-polyacrylamide gels and transferred onto nitrocellulose membranes (GE Healthcare
Milano, Italy) in a cooling system at 100 V for 1 h. Membranes were saturated for 1 h at room temperature with 0.1%
Tween-20  (Sigma-Aldrich),  5%  dry  milk  (Bio-Rad  Laboratories,  Hercules,  CA)  in  PBS.  Membranes  were  then
incubated with an antibody against human tissue non-specific alkaline phosphatase (Abcam, Cambridge, UK) diluted
1:10,000,  overnight  at  4°C,  washed  several  times  and  incubated  with  peroxidase-conjugated  secondary  anti-rabbit
antibody (Santa Cruz Biotechnology, Santa Cruz, CA), diluted 1:10,000, for 1 h at room temperature. Specific bands
were  then  detected  by  ECL  Western  blot  system  (GE  Healthcare).  Antibody  against  GAPDH  (Santa  Cruz
Biotechnology)  were  used  to  perform  a  normalizing  control.  Densitometry  of  bands  was  performed  with  ImageJ
software  [http://rsbweb.nih.gov/ij/download.html].  Molecular  sizes  were  evaluated  referring  to  protein  molecular
weight  standards  (Bio-Rad Laboratories).  Each treatment  and analysis  was  performed at  least  in  triplicate  separate
experiments.

2.8. RNA Extraction and Reverse-Transcription

Total RNA was isolated from exposed and not exposed SaOS-2 cells as previously described [34].

2.9. Real-Time PCR

Real-time PCR was performed with a Light-Cycler 480 (Roche Diagnostics, Mannheim, Germany) using SYBR
Green detection in a total volume of 20 μl with 1 μl of forward and reverse primers (10 mM) (Primm, Milan, Italy) and
10 μl of SYBR Green I Master-Mix (Roche Applied Science, Mannheim, Germany). Reactions included an initial cycle
at 95°C for 10 min, followed by 40 cycles of denaturation at 95°C for 10 sec, annealing at 56°C for 5 sec, extension at
72°C for 15 sec.

To analyze ALP expression level, the following primer sets were used: forward ALP 5’-GAA CGT ATT TCT CCA
GAC CC -3’; reverse ALP 5’-AAA GAC CTC AAC TCC CCT GA -3’ (designed on human liver/bone/kidney-type
alkaline phosphatase (ALPL) gene sequence, GenBank: AH005272.1); forward 18S 5’-CGA TGCTCT TAG CTG AGT
GT -3’; reverse 18S 5’-GGT CCA AGA ATT TCA CCT CT -3’.

Fold change of induction was determined by calculating the ratio between control and treatment normalized signals.
Each treatment was performed at least in triplicate separate experiments.

http://rsbweb.nih.gov/ij/download.html
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2.10. Statistical Analysis

Data are presented as mean ± standard deviations. Differences between exposed and unexposed cells were analyzed
by Student t-test. Differences were considered significant with p<0.05.

3. RESULTS

3.1. Cell Viability After ELF MF Exposure

We  first  examined  ELF  MF  effects  on  cell  viability  by  MTT  assay.  As  MTT  assay  is  proportional  to  cell
metabolism, values are proportional to proliferation and viability. SaOS-2 cells were treated with ELF MF for 1 h and
MTT assay was performed at different times (0, 6, 24, 30, 46, 52, and 144 h) after exposure. As shown in Fig. (2A),
there  are  no  significant  differences  between  control  and  exposed  cells  at  each  assayed  time.  Meanwhile,  total  cell
number tends to increase with the time as cell growth proceeds. Moreover, our treatment did not affect also the viability
of two breast cancer cell lines (MCF-7 and SK-BR-3) when assayed immediately after 1 h of ELF MF exposure (Fig.
2B). While our work was mostly aimed to study the effect of the apparatus on cell related to bone tissues, the use of
MCF-7 and SK-BR-3, both derived from breast cancers, but with different degree of malignancy was intended to test
our  signal  also  with  different  cell  lines,  essentially  also  showing  also  in  this  case  absence  of  toxicity.  Preliminary
observations indicate similar absence of effects also on Hep G2 cells (not shown).

Fig. (2). Viability of cultured cells after 1 h exposure with ELF MF as determined with MTT assay. (A) Viability time course of
control and exposed SaOS-2 cells. (B) MCF-7, SK-BR-3, and SaOS-2 viable cells immediately after MF stimulation, reported as
percentage  of  viability  of  unexposed  control  cells.  Reported  values  are  means  of  three  independent  experiments  ±  standard
deviations.

3.2. Effect of ELF MF on Culture Medium Temperature

In order to check for possible thermal effects of our signal, temperature of culture medium was measured several
times (0,  15, 30, 45, and 60 min) during exposure and compared with that of unexposed culture medium. Detected
temperatures  of  control  and  exposed  samples  are  plotted  in  Fig.  (3).  It  can  be  seen  that  there  are  essentially  no
temperature differences between unexposed and exposed culture medium at each analyzed time (until 60 min). Thus,
exposure did not produce any heating phenomenon which could be involved in observed results.

3.3. Alkaline Phosphatase (ALP) Enzymatic Activity After ELF MF Exposure

To  evaluate  ELF  MF  exposure  ability  to  increase  osteogenesis,  alkaline  phosphatase  enzymatic  activity  was
measured as  a  marker  of  the early  stages  of  this  process.  Fig.  (4)  shows the results  of  p-NPP assays performed on
SaOS-2 cells immediately, 4, and 24 h after one h exposures. Magnetic stimulation was able to induce a significant
increase of ALP activity in exposed cells compared to control cells. In particular, we observed the highest differential
value 4 h after exposure (about 35% increase), while both immediately and 24 h after treatment smaller differences
(about 20% increase) were observed. Since exposure does not affect cell numbers even after a very large number of
hours, as shown in Fig. (2), it was not necessary to correct for cell numbers.
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Fig.  (3).  Temperature  monitoring  of  culture  medium  during  exposure.  Culture  medium  was  exposed  or  not  to  ELF  MF  and
temperature (°C) measured every 15 min. Reported values are means of three independent experiments ± standard deviations.

Fig. (4). ELF MF exposure increases alkaline phosphatase activity. SaOS-2 cells were exposed or not to ELF MF for 1 h and after 0,
4, and 24 h, ALP activity assays were carried out. Values are reported as 405 nm absorbance and are expressed as means of three
independent experiments (each carried out with at least eight assay replicates) ± standard deviations.

3.4. Alkaline Phosphatase (ALP) Protein and mRNA Expression After ELF MF Exposure

To verify if increases obtained with p-NPP assays after ELF MF exposure were due to an increase of ALP intrinsic
enzymatic activity or of its protein expression levels, Western blot analyses were carried out. Protein levels of tissue
non-specific alkaline phosphatase were analyzed in control and treated SaOS-2 cells at the same previous assayed times
after exposure. This ALP isozyme form is the one specifically present in bone and also in numerous other tissues. Fig.
(5) shows as stimulated cells express an higher level of ALP protein immediately after treatment and even more at 4 and
24  h.  All  bands  in  the  upper  panel  of  Fig.  (5)  stand  for  ALP,  as  this  protein  migrates  variably  according  to  its
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phosphorylation, glycosylation and lipid level [21]. In particular, densitometric analysis of bands reveals about 40%
increase of ALP expression at 0 h after exposure, which becomes about 150% at longer times.

Fig. (5). ELF MF exposure increases alkaline phosphatase protein levels. SaOS-2 cells were exposed or not to ELF MF for 1 h and
after 0, 4, and 24 h, were lysed. ALP protein levels were determined by Western Blot analysis. Densitometric analysis of bands
reveals about 40% increase of ALP expression at 0 h after exposure, which becomes about 150% at longer times. Glyceraldehyde 3-
Phosphate Dehydrogenase (GAPDH) was used as normalization reference. Images shown are representative of three independent
experiments.

Real-time  PCR  analyses  were  performed  to  evaluate  ELF  MF  exposure  ability  to  affect  alkaline  phosphatase
expression also at mRNA level. Total RNA was extracted from SaOS-2 control and exposed cells and ALP mRNA
level was determined 0, 4, and 24 h after exposure. As shown in Fig. (6), the magnetic field produced by our apparatus
does not significantly affect ALP expression at mRNA level in all cases.

Fig. (6). Alkaline phosphatase mRNA levels are not affected by ELF MF exposure. SaOS-2 cells were exposed or not to ELF MF for
1 h and after 0, 4, and 24 h, total mRNA was extracted. ALP mRNA levels were determined by Real-time PCR calculating ratios
between  18S  normalized  signals  from exposed  and  control  cells.  Reported  data  were  expressed  as  means  of  three  independent
experiments ± standard deviations.

3.5. ALP Activity after ELF MF Exposure in Cells Seeded with Collagen Scaffolds

ALP enzymatic  activity  was  assayed  also  in  cultured  SaOS-2  cells  layered  onto  the  surface  and  within  the  3D
structure of collagen scaffolds, imitating bone tissue organization, and exposed for 1 h to ELF MF. Fig. (7) reports
results of p-NPP assays performed on cells colonizing collagen scaffolds 0, 4 and 24 h after MF exposure. Exposition
does not seem to affect cell numbers even after a very large number of hours and no corrections for cell numbers were
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performed. Nevertheless, reproducible MTT assay was not technically feasible on cells cultured within scaffolds and we
had to assume that cell viability within scaffolds was similarly unaffected by exposition as in common culture. Fig. (8)
shows that exposed cells layered onto scaffolds were able to colonize them inside, as assessed by scanning electron
microscope  analysis.  Similar  images  were  also  obtained  with  unexposed  cells  (not  shown).  Again,  stimulation
significantly  increased  alkaline  phosphatase  activity  and  this  increase  appears  even  larger  than  those  obtained  in
absence of collagen scaffolds. Control cells show decreased activity at 4 and 24 h and this could derive from specific
effects of scaffold culture conditions.

Fig. (7). Alkaline phosphatase activity of SaOS-2 cells colonizing collagen scaffolds at 0, 4 and 24 h, after 1 h ELF MF exposure.
Values were measured as 405 nm absorbance and were expressed as means of three independent experiments (each carried out with
at least eight cell extract sample replicates) ± standard deviations.

Fig. (8). SEM images of SaOS-2 cells cultured inside collagen scaffold for 24 h, after exposure to ELF MF.

4. DISCUSSION

Different  physical  stimuli,  such  as  PEMF,  ELF EMF,  and  CCEF,  were  reported  to  positively  affect  osteogenic
processes  [12,  10,  14,  11].  These  observations  promoted  the  development  of  several  devices  to  be  used  in  clinical
practice  for  bone  diseases  therapeutic  treatment  [25,  35,  10].  Several  studies  identified  also  some  molecular
mechanisms underlying the beneficial  effects  of  these signals  on bone mineralization and remodeling.  This  is  very
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important in the perspective to employ more properly electro-magnetic fields for treatment of fractures and other bone
damages.  PEMF  exposure  increased  mRNA  amount  of  many  factors  involved  in  bone  growth,  protection  and
remodeling and enhanced deposition of calcium and other extracellular  matrix components in human bone marrow
mesenchymal  stem  cells  [36].  ELF-EMF  was  demonstrated  to  prevent  spinal  cord  injury-induced  osteoporosis,
suppressing bone reabsorption and inducing new tissue formation [3]. Hartig et al. [17] found that CCEF exposure of
osteoblast-like  primary  cells  enhanced  cell  proliferation  and  synthesis  and  secretion  of  extracellular  matrix-related
proteins.

In most cases, the ability of these magnetic or electric stimulations was found to increase the enzymatic activity
and/or  protein  expression  of  alkaline  phosphatase  [24,  11],  which  was  selected  as  a  marker  of  bone  regeneration
processes [19, 20]. In our previous work, we found significant increases of ALP activity, in two different human cell
lines, after one-h exposure to a low-frequency electric field from an apparatus used in clinical therapy [25] and this
signal did not significantly affect gene expression, suggesting that clinical applications of this signal should not produce
cytotossicity, genotoxicity and mutagenesis [37].

In the present study, we show the effects of short exposures to an Extremely Low Frequency Magnetic Field (ELF
MF) on human osteosarcoma cell line SaOS-2, which is an effective and widely used in vitro model of human bone
tissue [26]. SaOS-2 is a kind of osteoblast-like cell and widely used in the study of osteogenesis, expecially to analyze
the effect of electromagnetic signals [38, 39]. The wave was generated by a device recently introduced among clinical
treatments  of  fractures  or  other  bone  diseases.  One-h  exposure  condition  was  selected  as  similar  to  those  used  for
clinical  treatments  with the apparatus.  This  treatment  did not  affect  cell  proliferation and viability  of  bone derived
SaOS-2 and also of two breast cell lines, indicating a similar effect also on cells from a different tissue. Since clinical
treatments are aimed on tissues including many different cell types, this allows to exclude, at least at preliminary level,
relevant toxic effects on cell health and proliferation.

There  is  a  wide  literature  on  the  applications  of  electromagnetic  fields  in  the  treatment  of  bone  diseases  and
osteogenesis,  both  indicating  interesting  perspectives  and  need  of  further  investigations  [1  -  12,  40  -  43].  Several
investigations have already analyzed the molecular effects of longer exposure times to some signals comparable to that
used in this work [44 - 49]. In view of the difficulties, in clinical setting, related to so prolonged exposures (from 1 to 22
days), we considered relevant to obtain also data on biological effects and molecular mechanisms of a shorter term
exposure (1 h) to the ELF MF signal. In addition, to verify if responses to our stimulation were early or late, and if they
were lasting over time, each ALP analysis was performed immediately, 4, and 24 h after exposure. Differently as noted
in other studies [50], viability and proliferation of SaOS-2 cells, and of two other different cell lines (MCF-7, SK-BR-3)
were not affected from the 1h-exposure to our system. This excludes the possibility that observed ALP variations were
related to  cell  amounts  and other  general  conditions.  Using room temperature  to  perform exposures  is  certainly  an
approximation, but this is the best one to assure the highest reproducibility to avoid interference from the temperature
and CO2 controls of eukaryotic cell incubators, while identified mechanisms in these conditions should also be likely
active within complete living organism, although, as usually with data using experimental models with cultured cells,
this  may have to  be  fully  confirmed through further  research.  Observed effects  on ALP cannot  be  consequent  to  a
thermal effect of ELF MF exposure since no temperature variations were essentially detected.

We found significant  increases of ALP activity and expression in 1 h ELF MF-exposed SaOS-2 cells.  Alkaline
phosphatase activity and protein expression increased immediately after treatment and even more at 4 h. In particular,
we analyzed mRNA and protein expression of bone ALP isozyme, the tissue-nonspecific ALP (TNAP). Increases of
protein expression were higher than those observed for enzymatic activity of ALP. Increases of ALP enzymatic activity
(about 20% fold increase) and protein expression (about 40% fold increase) resulted comparable immediately after 1 h
exposure. However, at 4 and 24 h increase rates become very different; at these times enzymatic activity increases were
about  35%  and  20%  respectively,  while  those  of  ALP  protein  were  much  higher  (about  150%  increase).  Since
essentially no ALP mRNA variations were observed, this means that the increases of ALP enzymatic activity following
treatment with ELF EMF are just consequent to the increase of the ALP protein concentration. Furthermore, the fact
that the increases in ALP activity and expression were still  evident after 24 h suggests that ELF MF effects on the
enzyme activity and expression last over time. The higher level of enzymatic activity in control samples at 24 h can be
attributed to the normal proliferation increase of cells number, being essentially proportional to it, while increases due
to ELF MF exposure produce a significantly higher ALP value at each time point.

Magnetic field exposure increased ALP protein expression without changing its mRNA level at all tested times.
Therefore, our treatment, rather than acting at transcriptional level, likely affects post-transcriptional, post-translational
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or degradation regulation mechanisms of ALP expression, affecting either mRNA translation efficiency and/or half-life
protein stability. While our data do not allow to indicate which mechanism may be responsible for this regulation, there
are several pathways described in the literature which could provide this effect [51].The fact that the effect does not
affect mRNA expression allows also to exclude the possibility of genotoxic effects.

Moreover, we demonstrated that a short-term exposure to our signal caused a significant and lasting increase of both
ALP enzymatic activity and protein expression, without affecting cell viability and proliferation. In fact, in the same
experimental conditions, MTT analysis showed no significant differences in SaOS-2 cell number between control and
exposed cells, even 144 h after 1 h-exposure. These data confirm that ELF MF treatments, within analyzed conditions
which are also similar to those used in clinical treatments, do not cause cytotoxicity, do not interfere with cell growth
and do not produce direct effects on gene regulation.

The signal of our apparatus was also tested on SaOS-2 cells within 3D scaffolds, which are aimed to physically
improve  replacement  of  damaged  tissues  within  surgical  processes  [52].  These  scaffolds  were  structured  trying  to
mimic  bone  tissue  morphological  organization.  Cells  layered  onto  scaffolds  were  able  to  colonize  them  inside  as
verified through scanning electron microscope analysis (Fig. 8). In experimental conditions similar to previous analyses,
we also found a significant increase of alkaline phosphatase activity, mainly 4 and 24 h after exposure, again with no
effect on cell viability. Control ALP activity results lower in cells cultured within scaffolds, especially after 4 h and this
might  be  consequent  to  the  different  cell  culture  conditions.  Comparing  these  results  with  those  obtained  without
scaffolds, the stimulatory effect on the ALP activity induced by examined magnetic field is stronger. This may mean
that within scaffolds, with the different microenvironment around cultured cells, exposure can induce improved changes
of the activity and/or protein expression of this membrane enzyme and possibly better regeneration effects on tissues.

CONCLUSION

These  data  demonstrate  relevant  ELF  MF  effects  on  cellular  ALP  expression  and,  considering  the  role  of  this
enzyme in these processes, provide additional information to validate the exposure to these signals as a procedure to
increase osteogenesis in clinical treatments [19, 20]. This is also supported by the fact that these effects resulted evident
and significant already 1 h after exposure, which is a time period similar to those used in these clinical applications.
Moreover, we firstly highlighted an ELF MF-induced modulation of ALP protein expression, with a posttranslational
mechanism without  the  involvement  of  regulations  at  transcriptional  and translational  level,  which  are  not  directly
affected from the used physical signal.
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