
14 The Open Biochemistry Journal, 2009, 3, 14-17  

 

 1874-091X/09 2009 Bentham Open 

Open Access 

Calcium-Induced Conformational Transition of Trout Ependymins  
Monitored by Tryptophan Fluorescence 

Bernhard Ganss
1,2

 and Werner Hoffmann*
,1,3

 

1
Max-Planck-Institute for Psychiatry, Department of Neurochemistry, D-82152 Martinsried, Germany 

2
CIHR Group in Matrix Dynamics, University of Toronto, Toronto, Ontario M5S 3E2, Canada 

3
Institute of Molecular Biology and Medical Chemistry, Otto-von-Guericke-University, D-39120 Magdeburg, Germany 

Abstract: Ependymins are secretory, calcium-binding sialoproteins which are the predominant constituents of the cere-

brospinal fluid of many teleost fish. A bound form of these regeneration-responsive glycoproteins is associated with col-

lagen fibrils of the extracellular matrix. Here, the tryptophan fluorescence of ependymins was monitored at various Ca
2+

 

concentrations. Two distinct states were identified with a relatively sharp transition at about 1 mM Ca
2+

. In agreement 

with previous circular dichroism measurements, this strongly supports the hypothesis that a calcium-induced conforma-

tional change is important for the interaction of ependymins with components of the extracellular matrix. Such interac-

tions with constituents of various basal laminae would also explain the important roles of piscine ependymins as well as 

invertebrate and mammalian ependymin-related proteins for cell adhesion processes and cell migration. 
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INTRODUCTION 

 Ependymins are unique calcium-binding secretory pro-
teins of the endomeninx of many teleost fish (for review, see 
[1]). Here, fibroblast-like cells synthesize these glycopro-
teins together with a number of extracellular matrix (ECM) 
molecules [1-4]. Fish ependymins are highly divergent [5-7]. 
The most conserved feature of piscine ependymins, other 
than the sequence F-E-E-G-V-x-Y-E/D-I/L-D between the 
two canonical N-glycosylation sites [6], is the presence of 
sialic acid residues in the N-linked sugar moiety [8]. As also 
shown for other extracellular proteins, e.g. fibrinogen [9], 
these acid structures are responsible for the calcium-binding 
capacity of ependymins [8].  

 An ependymin-related gene has been detected also in 
human where it is expressed mainly in brain, heart, and 
skeletal muscle. This gene was originally termed UCC1 be-
cause it is up-regulated in colon cancer [10]. Nowadays, this 
gene and its various mammalian homologs are named 
MERPs [11]. Ependymin-related genes are also present in 
invertebrate deuterostomes such as sea cucumbers [12] as 
well as protostomes [13]. Generally, there is only little 
amino acid sequence similarity between these ependymin-
related proteins. Strictly conserved are four cysteine resi-
dues, a tryptophan residue and a few other positions. Fur-
thermore, all ependymin-related proteins contain at least one 
N-glycosylation site. 

 Originally, piscine ependymins were detected when 
studying neuroplasticity in the goldfish (for review see [14]).  
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Also interference of anti-sense ependymin-mRNA with 
memory consolidation has been reported [15]. However, 
ependymins are also attracting increasing interest because 
they share several characteristics with glycoproteins in-
volved in cell contact phenomena [1]. For example, in the 
goldfish, infusion of ependymin antibodies blocks the sharp-
ening of the regenerating retinotectal projection [16], and 
increased synthesis of ependymins in the optic nerve has 
been reported during its regeneration [17]. Generally, an 
anti-adhesive potential of ependymins would be in agree-
ment with their synthesis in the endomeninx, where they 
could be responsible for a diffuse projection of posthatching 
retinal axons [1]. 

 Soluble ependymins are the major protein constituents of 
the cerebrospinal fluid (CSF) of many teleost fish [5, 6, 18, 
19]. Here they bind approximately 66% of the soluble Ca

2+
 

(for example, trout CSF contains about 2.7 mM soluble Ca
2+

) 
[8]. Interestingly, the expression of ependymins is strongly 
cold-induced [20]. A bound form of these glycoproteins is 
associated with the brain ECM, collagen fibrils being the 
predominant targets [4]. Thus far, the precise mode of inter-
action is not known. However, the calcium-binding capacity 
of ependymins [8] may be important for this association be-
cause self-assembly of the extracellular matrix is known to 
be Ca

2+
-dependent [21]. Circular dichroism (CD) measure-

ments have revealed that binding of Ca
2+

 effects the confor-
mation of trout ependymins by changing their tertiary but not 
their secondary structure [8]. The drastic change of the pre-
dominant signal at 288 nm is a strong indication that the sin-
gle tryptophan residue at position 120 [5] is affected by this 
transition [8]. However, the CD measurements covered only 
the range up to 2 mM Ca

2+
 and a clear statement concerning 

the transition point was not possible with this method. 
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 Here, we report on extended studies where the tryptophan 
fluorescence of ependymins from the rainbow trout has been 
monitored at various Ca

2+
 concentrations. Ependymins from 

this quasi-tetraploid species are encoded by two homologous 
genes. Both gene products contain a single tryptophan resi-
due [5] which is strictly conserved in ependymin sequences 
of all species analyzed thus far [6, 7]. 

MATERIALS AND METHODS 

 Ependymins (Mr on SDS polyacrylamide gel electropho-
resis:  37k) were purified from the CSF of rainbow trouts 
(Oncorhynchus mykiss) via a two step FPLC procedure using 
ion exchange and hydrophobic interaction chromatography 
as described previously [8]. Purified ependymins consisted 
of three glycoforms termed A, B, and C [5] where form A 
contributed to more than 95% and form C was detectable 
only in traces (data not shown). 

 Specific monitoring of the tryptophan fluorescence after 
excitation at 295 nm has been established as a method for the 
detection of conformational changes of proteins [22, 23]. 
Thus, 180 μg FPL-purified trout ependymins were dissolved 
per ml of 14 mM NaCl, 10 mM Tris/pH 7.4, 10 mM CaCl2 
and a fluorescence spectrum was recorded with a RF-5000 
spectrofluorometer (Shimadzu Deutschland GmbH, Duis-
burg, Germany) at 20°C using thermostat-controlled quartz 
cells (Hellma, Mühlheim, Germany) of 1-cm path length. 
Additionally, the fluorescence spectrum was recorded after 
complete complexation of Ca

2+
 by EDTA/pH 7.5. A maxi-

mum was observed for both Ca
2+

 concentrations at 335 nm. 
Then, FPLC-purified trout ependymins were dissolved in 14 
mM NaCl, 10 mM Tris/pH 7.4, 10 mM CaCl2. Different Ca

2+
 

concentrations were titrated with various amounts of 
EDTA/pH 7.5. After excitation at 295 nm, the tryptophan 
fluorescence of each concentration point was measured at 
335 nm. The fluorescence at each concentration point was 
measured three times (after equilibration for 7 sec). Each 
relative fluorescence measured was corrected for its actual 
ependymin concentration. Two independent experimental 
series were carried out with trout ependymins. 

RESULTS AND DISCUSSION 

 When ependymins at various Ca
2+

 concentrations were 
excited at 295 nm, the corrected steady-state emission spec-
tra originating from the single tryptophan residue were com-
parable in shape, as well as in the wavelength position of the 
maximum fluorescence intensity ( max = 335-340 nm) (Fig. 
1). In contrast, the relative intensities at max varied at differ-
ent Ca

2+
 concentrations. 

 Fig. (2) outlines the result of a typical experiment meas-
uring the fluorescence at 335 nm as a function of the Ca

2+
 

concentration. Generally, two states of ependymins are  
observed. There is a relatively sharp transition from the 
apo(Ca

2+
-free)-proteins to the holo(Ca

2+
-loaded)-proteins at 

about 1.0 mM Ca
2+

. Interestingly, this is very close to the 
free Ca

2+
 concentration in the trout CSF (which is about 0.9 

mM) and below the total Ca
2+

 concentration of trout CSF 
(which is about 2.7 mM) [8].  

 Thus, the holo-state can be considered as the native state 
of ependymins. Here, similarly to osteonectin/SPARC/BM-
40 [24-26], osteopontin, bone sialoprotein and BAG-75 [27], 

Ca
2+

 may trigger maintenance of a native structure which is 
essential for interaction with the ECM. Also aggregation of 
ependymins to naturally occurring multimers with Mr of 
about 200k [28] may require Ca

2+
. This processes is particu-

larly reminiscent of the aggregation of fibrinogen at physio-
logical millimolar Ca

2+
 concentrations, where sialic acid 

residues represent the low affinity calcium-binding sites [9].  

 Whether the apo-state of ependymins is of any biological 
importance is not known thus far. As far as it is known it is 
always the Ca

2+
-bound state of a Ca

2+
-binding protein which 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1). Fluorescence spectrum of FPLC-purified ependymins 

from the rainbow trout. Shown is the relative emission fluores-

cence of trout ependymins (180 μg/ml) between 300 and 420 nm 

(Frel, in arbitrary units; excitation at 295 nm) at 10 mM Ca
2+

 and 

after complexation with EDTA. 

 
 

 

 

 

 

 

 

 

 

 

 

Fig. (2). Tryptophan fluorescence of FPLC-purified epen-

dymins from the rainbow trout. Shown is the relative emission 

fluorescence of trout ependymins (191 μg/ml) at 335 nm (Frel, in 

arbitrary units; excitation at 295 nm) as a function of the Ca
2+

 con-

centration. Each point represents the mean of three measurements. 
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is active [29]. Interestingly, there are multiple reports on 
severe fluctuations in the extracellular Ca

2+
 concentration of 

the brain [30-34]. They could locally be sufficient in order to 
affect ependymins. The precise nature of the apo-state has 
not been clarified currently. However, in contrast to a previ-
ous report [35], we have not succeeded in the precipitation of 
ependymins into insoluble aggregates solely by depletion of 
Ca

2+
. Consequently, we exclude that the apo-state represents 

an insoluble form of ependymins.  

 Taken together, the Ca
2+

-binding capacity of cold-
induced ependymins would be in line with their postulated 
function for Ca

2+
 homeostasis in fish brain [20]. Further-

more, the results presented here extend our previous CD 
measurements which showed a Ca

2+
 dependent gradual 

change in the tertiary structure of trout ependymins with 
only a slight discontinuity at about 1 mM Ca

2+
 [8]. Interest-

ingly, both this discontinuity and the sharp conformational 
transition observed by monitoring the tryptophan fluores-
cence occur at the same Ca

2+
 concentration. Thus, both stud-

ies indicate a Ca
2+

 dependent conformational change of 
ependymins. However, the tryptophan measurements re-
ported here defined the transition point more clearly. These 
results also support our hypothesis that this conformational 
transition is essential for association of ependymins with 
ECM proteins presumably of collagen fibrils [8]. Thus, de-
fining precisely the molecular mode of this interaction might 
be a crucial step for understanding the molecular function of 
piscine ependymins in the future. 

 Furthermore, the Ca
2+

-triggered conformational changes 
observed for piscine ependymins could also have some rele-
vance for invertebrate and mammalian ependymin-related 
proteins. Generally, Ca

2+
-dependent interactions of epen-

dymins/ependymin-related proteins and ECM proteins such 
as collagens would be perfectly designed to regulate cell 
adhesion and cell migration particularly on various basal 
laminae. This would explain why these enigmatic proteins 
play important roles for a variety of physiological and patho-
logical processes such as neuronal regeneration and plasticity 
in fish (for review, see [1]), intestinal regeneration in sea 
cucumbers [12], tumorigenesis of the human colon [10], and 
remodeling of the respiratory mucosa in a murine asthma 
model [36]. 
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