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Abstract: Domain swapping is a term used to describe a process when two or more protein chains exchange identical 
structural elements. Some cases of amyloid formation can be explained through a domain swapping mechanism therefore 
this deserves theoretical consideration and studying. It has been demonstrated that diverse proteins in sequence and 
structure are able to oligomerize via domain swapping. This allows us to suggest that the exchangeable regions are 
important in folding and misfolding processes of proteins, i.e. the residues from the swapping regions are typically 
incorporated into the native structure early during its formation. The modeling of folding of the proteins with swapped 
domains demonstrates that the regions exchanged in the oligomeric form in most cases are also responsible for folding 
and misfolding. For 11 out of 17 proteins, swapping regions intersect with the predicted amyloidogenic regions. 
Moreover, for 10 out of 17 proteins, high -values (>0.5) belong to residues from the swapping regions. Our data confirm 
that the exchangeable regions are important in folding, misfolding, and domain swapping processes of the proteins, 
therefore the suggestion that domain swapping can serve as a mechanism for functional interconversion between 
monomers and oligomers is likely to be correct.  

Keywords: Folding, misfolding, swapping mechanism, amyloid formation, oligomerization, folding nucleus. 

INTRODUCTION 

 Eisenberg and his colleagues [1, 2] have proposed a 
mechanism for protein oligomerization, 3D domain 
swapping. In a domain swapping oligomer, one segment of a 
monomeric protein is replaced by the same segment from 
another chain. Some cases of amyloid formation can be 
explained through a domain swapping mechanism where the 
swapped segment is either a beta-hairpin or another 
conformation. From the time of definition of domain 
swapping in diphtheria toxin [1], three-dimensional domain 
swapping has been observed in more than 40 different 
proteins, among them in such amyloidogenic proteins as 
prions [3, 4], beta2-microglobulin [5, 6], cystatins [7-11], 
and in such important proteins as p13suc1 [12-15], interferon 
[16, 17] and others. The understanding of oligomerization 
via domain swapping is important for theoretical and 
practical tasks because a swapping mechanism is critical for 
some protein functions [12-15]. 

 For p13suc1 it has been demonstrated that domain 
swapping and aggregation correlate, which suggests that they 
share a common mechanism [14]. It has been established that 
p13suc1 from fission yeast belongs to the Cks protein family 
[18] and is required for the function of cyclin-dependent 
kinase (Cdk) proteins during cell cycle progression [19]. 
p13suc1 has two native states, a monomer and a domain-
swapped dimmer, and the monomer-dimer equilibrium is 
controlled by two conserved prolines in the hinge loop. The 
X-ray crystal structure of p13suc1 at 1.95 Å resolution was  
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reported [12] (see Fig.1g and Table 2, row 17). The domain-
swapped part of suc1 is a single -strand that cannot 
constitute an independently folded subdomain [12, 13]. To 
confirm this, the protein engineering analysis of the folding 
pathway of the monomer has been performed [13]. The 
experimental data on the transition state structure is 
expressed in f values [20]. f is close to 1 when a residue 
has its native conformation and environment in the transition 
state and to 0 when the residue is unfolded in this state. The 
exchanging strand in suc1, 4, forms critical contacts with 
the rest of the protein in the folding nucleus and the -values 
for the hinge residues are between 0.5 and 0.8 [13]. Thus, 
folding and association should be tightly coupled, with 
pairing of 2 and 4 occurring early in the folding pathway 
of the dimer. So, it has been demonstrated for one protein 
that the exchangeable region is responsible for folding and 
misfolding. 

 Since polypeptide chains can fold into native structures 
or misfold into amyloid fibrils, there is a competition 
between the processes of folding and misfolding. A crucial 
event of protein folding is the formation of a folding nucleus, 
which is a structured part of the protein chain in the 
transition state. It has been demonstrated that there is a 
correlation between locations of residues involved in the 
folding nuclei and locations of predicted amyloidogenic 
regions [21, 22]. It has been demonstrated also that the 
average -values are significantly greater inside 
amyloidogenic regions than outside them [21-23]. We have 
found that fibril formation and normal folding involve many 
of the same key residues, giving an opportunity to outline the 
folding initiation site in protein chains [21]. 
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 The goal of this work is to compare amino acid residues 
which are crucial for folding, misfolding, and swapping 
processes of the same proteins.  

 One can hypothesize that regions which are responsible 
for aggregation and protein folding will often appear as 
swapping regions in the proteins with swapped domains. For 
this purpose we collected 17 pairs with known 3D structures 
of swapped domains in the oligomeric form and 3D 
structures of the monomeric form. For these proteins, we 
calculated the amyloidogenic/aggregation regions using our 
program (FoldAmyloid/FoldUnfold) [24, 25] and for the 
monomeric form of proteins we calculated -values for each 
residue also using our approach [26]. 

 The modeling of folding of the protein with swapped 
domains demonstrates that in most cases the regions 
exchangeable in the oligomeric form are also responsible for 
folding and misfolding. After considering examples of 3D 
domain swapping it has been suggested that domain 
swapping can serve as one of the mechanisms for functional 

interconversion between monomers and oligomers and as 
one of the mechanisms for evolution of some oligomeric 
proteins [2]. 

MATHERIALS AND METHODOLOGY 

Prediction of Amyloidogenic Regions in Proteins 

 For prediction of amyloidogenic regions, we used the 
previously described [24, 25, 27, 28] method of prediction of 
regions with a large number of contacts per residue in 
protein sequences. For each amino acid residue in the protein 
sequence, an expected number of contacts per residue are 
attributed according to the type of the residue (which is the 
average number of contacts at a distance below 8 Å for the 
given type of residues in 3D structures of proteins [27, 28]). 
Then, the values are averaged with a sliding window of 
seven (or five) residues [25]. In the obtained profile, the 
regions within which all residues have values above the 
threshold (21.4 expected contacts per residue) are predicted 
as amyloidogenic if the size of such a region is not smaller 

Table 1. Comparison of Predictions of Amyloidogenic Regions by Different Methods 

Regions predicted Name of 

the protein 

PDB 

entry 

Experimentally investigated 

amyloidogenic regions by our method by Tango by Zyggregator 

Acylphosphatase 1aps  

16-31 [29]; 

87-98 [29] 

 

19 – 25a; 

91 - 98 

- 

 

19 - 20; 

36 - 37 

2-microglobulin 1im9 20-41 [30]; 

59-71 [31]; 

83-89 [6] 

24 - 30; 

60 - 70 

61 - 69 24 - 26; 

63 - 66 

Gelsolin 1kcq 52-62 [32] 1 - 7 - 30; 

32 -33; 

40 - 41 

Transthyretin 1bm7 10-19 [33];  

105-115 [34] 

10 - 17; 

28 - 34; 

105 - 113 

107 - 111 28; 

93 - 94; 

117 - 118 

Lysozyme 193l 49-64 [35]  25 - 31; 

54 - 65; 

106 - 113; 

121 - 129 

- 25 - 26; 

28 - 29; 

31; 

55 - 56 

Myoglobin 1wla 7-18 [36]; 

101-118 [37]  

8 - 14; 

27 - 33; 

100 - 116; 

134 - 140 

66 - 72 10 - 12; 

14; 

67 - 70; 

104; 

109 

Human prion 1qm0 169-213 [38]  136 - 142; 

159 - 166; 

176 - 183 

- 126 - 128; 

177 - 179; 

190; 

212 - 213; 

215 

aBold type is used for the predicted regions which intersect with the experimentally obtained data. 
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than the sliding window [25, 27, 28]. Thus, the predicted 
amyloidogenic regions are those which have a large number 
of expected contacts per residue. 

 We tried to predict amyloidogenic regions not only by 
our method but by other methods allowing (as stated by their 
authors) to predict amyloidogenic regions. But at first, we 
decided to test the quality of the predictions of these methods 
(as well as of our method) on the seven proteins for which 
amyloidogenic fragments are experimentally known. We 
used TANGO (dis.embl.de) and ZYGGREGATOR 
(http://www-vendruscolo.ch.cam.ac.uk/zyggregator.php). 
The predictions we made using all the three methods are 
shown in Table 1. 

 One can see that TANGO does not find the largest part of 
experimentally revealed amyloidogenic fragments (only two 
of 12 experimental amyloidogenic regions are correctly 
predicted, and one (for myoglobin) is in the wrong place). 
ZYGGREGATOR works better for this set of proteins 
(seven of 12 amyloidogenic regions are correctly predicted, 
that is, intersect with real amyloidogenic fragments) but 
ZYGGREGATOR predictions are still worse compared to 
our method (we predict correctly 10 of 12 experimentally 
revealed amyloidogenic fragments). 

 As both methods do not give good predictions of 
amyloidogenic regions for proteins for which the quality of 
predictions can be evaluated, we could not add predictions 
made by these methods to our manuscript. 

Theoretical Search for Folding Nuclei 

 We model the process of reversible unfolding of the 
protein "normal" (native) globular structure into the unfolded 
state at the point of thermodynamic equilibrium (where the 
free energies of the folded and unfolded states are equal). 
Under these conditions, only the completely folded and 
completely unfolded states are observed while all other states 
(misfolded, partially folded etc.) are destabilized. The 
pathways of folding and unfolding coincide and all dead-
ends are destabilized, so the protein chain behavior can be 
approximated as a reversible folding/unfolding process. 

 We start from a known tertiary structure of the 
investigated protein in the native state and stepwise unfold 
its amino acid residues. A link of five residues is unfolded in 
a single step (this link size was shown to be optimal for 
predictions of folding nuclei in globular proteins) [39]. 
Finally, we obtain a completely unfolded state. The unfolded 
residues lose all contacts that existing in the tertiary structure 
but gain the entropy of the coil (except for the entropy which 
is expended on fixation of unfolded loops that protrude from 
the folded part of the structure). Thus, any amino acid 
residue in our model can exist in one of the two states: 
folded, where it has all of its native contacts with the other 
folded residues, and unfolded, where it has no contacts but 
has higher entropy. 

 Considering all the ways of  protein structure unfolding, 
we obtain a network of protein folding/unfolding pathways. 
The free energy of any state is calculated as follows: 

F(I ) = nI T [ I + Sloop
loops I

] ,        (1) 

where nI  is the number of native atom-atom contacts in the 

native-like part of I ( nI  does not include contacts of 

neighbor residues, which also exist in the coil; in this work, 
we consider two atoms to form a contact if their centers are 
separated by less than 6Å, which is the optimal value of this 
parameter for folding nuclei predictions [39]);  is the energy 
of one contact (all contacts are assumed to be equal in 

energy); I is the number of residues in the unfolded part of 

I; T is the temperature;  is the entropy difference between 

the coil and the native state of a residue (we take  =2.3R 
[40], where R is the gas constant). The sum  is taken for all 
closed unfolded loops that protrude from the native-like part 
of I. For the loop between fixed residues k and l, Sloop  is 

calculated as follows [41]: 

Sloop = 5/2R ln|k  l|  3/2R (r2
kl  a2) / (2Aa|k  l|),        (2) 

where rkl is the distance between the C  atoms of residues k 
and l, a = 3.8Å is the distance between the neighbor C  
atoms in the chain, and A is the persistence length for a 
polypeptide (according to Flory [41], we take A = 20Å). The 
term 5/2 R ln|k  l| is the most significant in this equation; 
the coefficient 5/2 (rather than Flory's value 3/2) follows 
from the condition that the loop cannot penetrate inside the 
globule [42]. 

Calculation of -Values 

 Since in our model all native contacts have equal energy 
and non-native contacts are absent, the -value is a fraction 
of native contacts formed in the transition state compared to 
the native state [39]: 

 = < r(nI)>I# / r(n0),           (3) 

where r(n0) is the number of contacts deleted by the 
mutation in the given amino acid residue r in the native state 
of the protein while < r(nI)>I# is the number of contacts 
deleted by the mutation averaged over all transition states 
found with our method. We consider all mutations on Gly; if 
a residue in the wild-type protein is already Gly, we take its 
probability to be structured in the transition state ensemble 
[26]. 

Creation of a Database of Swapped Proteins 

 First, all entries where a word "swap" was met were 
selected from the PDB database. Then all these entries were 
manually processed and those where the word "swap" was 
not related to real swapping were excluded according to the 
SCOP [43]. Multi-domain proteins and proteins with split 
domains (consisting with non-continuous chains) according 
to the SCOP were excluded. Large proteins (larger than 200 
amino acid residues) were also excluded. For each protein, a 
non-swapped 100% homolog has been found using BLAST 
[44]. If a swapped protein had no non-swapped 100% 
homolog, the protein was excluded. There are 16 pairs where 
we have PDB entries for swapped and non-swapped 
structures (see Table 2). Visual inspection of the spatial 
structures has been done to explain which region of non-
swapped structure was swapped in the swapped structure. 
One additional pair for suc1 protein has been added because 
the X-ray structure for the monomeric form was provided by 



30    The Open Biochemistry Journal, 2011, Volume 5 Oxana V. Galzitskaya 

J. Schymkowitz in 2001 and later this protein was studied by 
us [36]. 

RESULTS AND DISCUSSION 

Modeling of Folding of Proteins with Swapped Domains. 

Intersection of Experimentally Determined Swapping 
Regions with the Predicted Folding Nuclei 

 One can hypothesize that regions which are responsible 
for aggregation and protein folding will often appear as 

swapping regions in the proteins with swapped domains. For 
this purpose we collected 17 pairs with known 3D structures 
of swapped domains in the oligomeric form and 3D 
structures of the monomeric form. 

 Using a theoretical method, we searched for the position 
of the folding nuclei in the 3D structures of the monomeric 
form during their "normal" folding process from the 
unfolded state into their folded native structure. Using the 
method which (as we have previously shown earlier [26, 39, 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1). Predicted -value profiles for weight investigated proteins. For each protein, the average -value inside swapping and over non-
swapping region is presented.  
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45]) allows predicting the position of folding nuclei 
reasonably well (the correlation coefficient between 
predicted and experimentally known -values reaches 65% 
if the native 3D structure used in the modeling is of high 
quality, see [39]), we modeled the behavior of each protein 
molecule at the point of thermodynamic equilibrium (i.e. 
under the conditions when unfolded and native states are 
equally stable and all the other states are unstable). The 
behavior of the protein molecule is modeled as a simplified 
sequential reversible unfolding of its known native 3D 
structure (see MATERIALS AND METHODOLOGY). The 
obtained network of folding/unfolding pathways is further 
analyzed by the dynamic programming method [46] to find 
transition states and (correspondingly) folding nuclei. The 
involvement of a residue in the folding nucleus (or rather, in 
the ensemble of the folding nuclei) is reflected in its -
value, which is unity when this residue has all of its native 
contacts in the transition state and zero when this residue has 
no contacts in the transition state.  

 We tested whether the theoretically found folding nuclei 
( -values larger than 0.5) intersect with the experimentally 
found swapping regions. It appears that for 10 out of 17 
proteins, high -values (> 0.5) belong to residues from the 
swapping regions (such pdb files are given in the bold type, 
the last column in Table 2). The profiles of -values for 
eight proteins are shown in Fig. (1). For cystatin A, the 
average predicted -value inside swapping regions is higher 
(0.63) (see Fig. (1a)) than in the non-swapping one (0.33). 
The average predicted -value for prion molecule inside 
swapping regions is higher (0.75) than in the non-swapping 
one (0.53). In Fig. (1b) one can see that the C-terminus of 
the prion molecule has higher -values than the N-terminus. 
Moreover, the average predicted -value inside 
amyloidogenic regions is higher (0.79) than in the non-
amyloidogenic one (0.43) [23]. At the same time the average 
predicted -value for a barnase molecule inside swapping 
regions (1-37) is lower (0.35) than in the non-swapping one 
(0.49), and in addition it is less than 0.5. 

 Thus, we demonstrate that theoretically found folding 
nuclei ( -values larger than 0.5) intersect with 
experimentally found swapping regions. This means that 
swapping regions are likely to be present in the folding 
nucleus of a protein when the protein folds into its native 
structure. 

Intersection of Predicted Amyloidogenic Regions with 
Experimentally Determined Swapping Regions 

 Previously we have demonstrated that amyloidogenic 
regions are often predicted to be part of the folding nuclei in 
amyloidogenic proteins [21-23]. Therefore, we can 
hypothesize that amyloidogenic regions often play a crucial 
role not only in the amyloid fibril formation but also in the 
process of "normal" folding of amyloidogenic proteins into 
their native structure, since amyloidogenic regions compose 
part of the folding nucleus in these proteins. Inasmuch as 
some cases of amyloid formation can be explained through a 
domain swapping mechanism one can suggest that regions 
responsible for the amyloid formation will intersect with 
swapping regions. 

 Further, we have compared the predicted amyloidogenic 
regions for the 17 proteins where swapping regions have 

already been outlined experimentally. The prediction of 
amyloidogenic regions was made by the previously 
described [25, 27, 28] method (see also MATERIALS AND 
METHODOLOGY) which predicts amyloidogenic regions 
using only the amino acid sequence. For each amino acid 
residue, the method predicts the number of expected contacts 
and the regions within which all residues with a large 
number of expected contacts are predicted as amyloidogenic 
regions. As demonstrated previously [25], this method is 
able to predict amyloidogenic regions. 

 In Table 2, the predicted amyloidogenic regions for each 
of the 17 investigated proteins are shown. One can see that 
for 11 out of 17 proteins, swapping regions intersect with the 
predicted amyloidogenic regions (such pdb files are given in 
bold, third column). It should be noted that practically in all 
cases the swapping region is at the termini of the protein 
chain. 

 Thus, both comparisons (predicted folding nuclei vs. 
experimentally known swapping fragments and predicted 
amyloidogenic fragments vs. experimentally known folding 
nuclei) indicate that the location of swapping regions 
intersects with both the folding nuclei and the location of 
amyloidogenic regions. In other words, nucleation centers 
for folding and for misfolding and swapping regions often 
intersect.  

Description of Globular Proteins Involved in 

Amyloidogenesis 

 Several important cases deserve a special consideration. 
It has been shown that such proteins as the cystatins and the 
prions can form dimers via a three-dimensional domain 
swapping mechanism which may be involved in 
amyloidogenesis as has been hypothesized [3, 4, 7-11].  

 Cystatins were the first amyloidogenic proteins which 
oligomerize through a 3D domain swapping mechanism [7]. 
It has been shown that oligomerization of human cystatin C 
leading to amyloid deposits in blood vessels is greatly 
accelerated with a naturally occurring Leu68Gln variant 
resulting in fatal amyloidosis in early adult life (Patients 
suffer such disease as Hereditary Cystatin C Amyloid 
Angiopathy which is a rare fatal amyloid disease) [10, 47]. It 
has been demonstrated that higher aggregates for cystatin C 
may arise through a domain-swapping mechanism when 
partially unfolded molecules are linked into multitude chains 
[9]. For cystatin A the N-terminal part of the molecule 
consisting of two beta-strands and one helix is exchanging 

under formation of domain swapping. It has been shown that 
the large conformational perturbation is needed for domain 
swapping [8]. It should be underlined here that the N-
terminal part of the cystatin A has high predicted -values. 
This confirms the hypothesis that regions which are 
important for folding are also important for swapping. 

 The crystal structure of human prion protein in a dimer 
form at 2 Å resolution has been described [3]. The dimer 
results from the three-dimensional swapping of C-terminal 
helix 3 and the rearrangement of the disulfide bond. An 
interchain two-stranded antiparallel beta-sheet is formed at 
the dimer interface by residues that are located in helix 2 in 
the monomeric NMR structures [3].  
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Table 2. Prediction of Amyloidogenic Regions for Proteins with Swapping Domain 

 

SCOP class, name, 

and number of 

residues 

PDB file with swapped structure 

Predicted 

amyloidogenic 

regions 

Location 

of 

swapped 

region 

PDB file with non-swapped structure 

1 

a, PECTIN 

METHYLESTERA

SE INHIBITOR, 

153 

 
1x8z

a
 

20-27 

70-74 

140-148 

1-31 

 
1x91 

2 
a, CALBINDIN 

D9K, 76 

 
1ht9 

30-35 

68-72 
45-76 

 
1ksm

b
 

3 

b, T-CELL 

SURFACE 

ANTIGEN CD2, 94 

1a6p 

16-20 

72-26 

89-94 

1-41 

 
1hng 

4 

b, NERVE 

GROWTH 

FACTOR 

RECEPTOR 

TRKA, 109 
 

1wwa 

14-22, 32-36 

45-51, 62-67 

93-98 

1-19 

 
1www 

5 
b, CYANOVIRIN-

N, 101 

 
1l5b 

53-57 1-51 

 
2ezm 

(CASP3) 

6 

c, SPORULATION 

RESPONSE 

REGULATOR 

SPO0A, 130 

 
1dz3 

1-7, 

51-59 

65-69, 80-85 

101-106 

114-120 

108-130 

 
1qmp 
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(Table 2). Contd….. 

 

SCOP class, name, 

and number of 

residues 

PDB file with swapped structure 

Predicted 

amyloidogenic 

regions 

Location 

of 

swapped 

region 

PDB file with non-swapped structure 

7 d, BARNASE, 110 

 
1yvs 

1-6, 

12-16 

33-37, 92-98 

1-37 

 
1a2p 

8 

d, 

IMMUNOGLOBU

LIN G BINDING 

PROTEIN G, 56 

 
1q10 

1-7 

31-35 
38-56 

 
1pgb 

9 

d, CYSTATIN A 

(stefin A), HOMO 

SAPIENS, 98 

 
1n9j 

52-57 

64-69 

80-84 

1-48 

 
1gd4 

10 
d, PROTEGRIN-3 

PRECURSOR, 101 

1lxe 

3-12 

24-30 
1-38 

 
1n5h 

11 

d, PROTEIN-

TYROSINE 

PHOSPHATASE 

YOPH, 136 

 
1k46 

40-44 

64-68 

115-119 

1-29 

 
1m0v 

12 

d, 

RIBONUCLEASE 

A, 124 

1f0v 

105-109 

116-120 
114-124 

 
1kf3 
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(Table 2). Contd….. 

 

SCOP class, name, 

and number of 

residues 

PDB file with swapped structure 

Predicted 

amyloidogenic 

regions 

Location 

of 

swapped 

region 

PDB file with non-swapped structure 

13 

d, 

RIBONUCLEASE 

A, 124 

 
1a2w 

105-109 

116-120 

1-20 

 

 
1kf3 

14 

d, MAJOR PRION 

PROTEIN (human), 

fragment 119-226, 

108 

 
1i4m 

18-23, 29-34 

56-60, 62-66 

93-99 

75-108 

 
1qm2 

15 
d, SH2 DOMAIN, 

114 

 
1fyr 

12-16 

59-63 

70-77 

98-102 

76-114 

 
1bmb 

16 

d, CATABOLITE 

REPRESSION 

HPR, 87 
 

1mo1 

20-24 

48-53 
1-12 

 
1k1c 

17 

d, 

P13SUC1, 

105 

 

1puc 

22-26 

36-42 

81-86 

92-97 

94-102 

(89-102 

for 1suc) 

 

1suc
c
 

apdb files are given in bold if one of the predicted amyloidogenic regions intersect with the swapping regions. Such regions are also given in bold in the fourth column and highlighted 
by yellow color in the monomer structures (last colomn).  
bpdb files are given in bold if the average predicted -values belonging to the swapping regions are larger than 0.5. 
cX-ray structure for the monomeric form has been provided by J. Schymkowitz in 2001 year. In this structure 5 N-terminal and 11 C-terminal residues have no coordinates.  
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 In the partially unstructured human prion protein, we 
predict an amyloidogenic region detected by experimentally 
(169-213 [38]). The first -helix near the N-terminus 
appeared to have lower protection to solvent exchange 
compared to the other helices [48]. The N-terminus of the 
molecule appears to be predisposed to adopt multiple 
conformations that may feature in the transition from PrPC to 
the toxic PrPSc form [48]. It has been shown that this fast-
folding protein has a transition state that is not compact (the 
m value analysis gives a t value of only 0.3) but contains a 
developing nucleus between helices 2 and 3 [49]. This is in 
agreement with our prediction (see Fig. 1b) where residues 
corresponding to the second and third helices have high -
values. There are two residues with large -values (V180 
and M206), both of which are squarely on the interface 
between helix 2 and helix 3. These residues form the major 
part of the contact area in the central region of this 
interaction. The authors of the paper underline that if a 
mutation in the nucleus had a negligible effect on stability 
but still led to the formation of irregular conformations 
during folding then one should suggest an easily perturbed 
folding mechanism for such a protein [49]. It is notable that 
in inherited forms of human prion disease, where point 
mutations produce a lethal dominant condition, 20 of the 33 
amino acid replacements occur in helices 2 and 3 (i.e. 
mutations map to the regions directly involved in helix 
swapping [49]). This crystal structure suggests that 
oligomerization through 3D domain-swapping may 
constitute an important step on the pathway of the PrP(C) --> 
PrP(Sc) conversion [3]. 

 It should be mentioned here that the two proteins 
considered in this section are involved in the disease. For 
these proteins we observe intersection between regions 
important for folding and misfolding. This confirms our 
hypothesis that if the regions which are important for folding 
intersect with the regions which are responsible for amyloid 
formation, then such proteins can with higher probability 
misfold in appropriate environmental conditions to amyloid 
fibrils involved in vivo in various “amyloid” diseases. 

 By modeling the folding of 17 proteins with swapped 
domains we observe that regions, that are responsible for 
swapping, are also responsible for folding and misfolding. 

ACKNOWLEDGEMENTS 

 The author is grateful to S. Garbuzinsky for the 
assistance in preparation of the dataset of proteins and to 
A.V. Glyakina for the assistance in preparation of some 
figures. This work was supported by the programs 
"Molecular and Cellular Biology" (01200959110) and 
“Fundamental Sciences to Medicine”, by the Russian 
Foundation for Basic Research (11-04-00763), and by a 
grant from the Federal Agency for Science and Innovations 
(#02.740.11.0295). 

REFERENCES 

[1] Bennett, M.J.; Choe, S.; Eisenberg, D. Domain swapping: 
entangling alliances between proteins. Proc. Natl. Acad. Sci. USA, 
1994, 91(8), 3127-3131. 

[2] Bennett, M.J.; Schlunegger, M. P.; Eisenberg, D. 3D domain 
swapping: a mechanism for oligomer assembly. Protein Sci., 1995, 
4(12), 2455-2468. 

[3] Knaus, K.J.; Morillas, M.; Swietnicki, W.; Malone, M.; Surewicz, 
W.K.; Yee, V.C. Crystal structure of the human prion protein 

reveals a mechanism for oligomerization. Nat. Struct. Biol., 2001, 
8, 770-774. 

[4] Lee, S.; Eisenberg, D. Seeded conversion of recombinant prion 
protein to a disulfide-bonded oligomer by a reduction–oxidation 
process. Nat. Struct. Biol., 2003, 10, 725-730.  

[5] Eakin, C.M.; Attenello, F.J.; Morgan, C.J.; Miranker, A.D. 
Oligomeric assembly of native-like precursors precedes amyloid 
formation by beta-2 microglobulin. Biochemistry, 2004, 43, 7808-
7815. 

[6] Ivanova, M.I.; Sawaya, M.R.; Gingery, M.; Attinger, A.; 
Eisenberg, D. An amyloid-forming segment of beta2-microglobulin 
suggests a molecular model for the fibril. Proc. Natl. Acad. Sci. 
USA, 2004, 101, 10584-10589. 

[7] Staniforth, R.A.; Dean, J.L.E.; Zhong, Q.; Zerovnik, E.; Clarke, 
A.R.; Waltho, J.P. The major transition state in folding need not 
involve the immobilization of side chains. Proc. Natl. Acad. Sci. 
USA, 2000, 97, 5790-5795. 

[8] Staniforth, R.A.; Giannini, S.; Higgins, L.D.; Conroy, M.J.; 
Hounslow, A.M.; Jerala, R.; Craven, C.J.; Waltho, JP. 
Threedimensional domain swapping in the folded and molten-
globule states of cystatins, an amyloid-forming structural 
superfamily. EMBO J., 2001, 20, 4774-4781. 

[9] Janowski, R.; Kozak, M.; Jankowska, E.; Grzonka, Z.; Grubb, A.; 
Abrahamson, M.; Jaskolski, M. Human cystatin, an amyloidogenic 
protein, dimerizes through three-dimensional domain swapping. 
Nat. Struct. Biol., 2001, 8, 316-320. 

[10] Janowski, R.; Abrahamson, M.; Grubb, A.; Jaskolski, M. Domain 
swapping intruncated human cystatin. J. Mol. Biol., 2004, 341, 
151-160. 

[11] Sanders, A.; Jeremy Craven, C.; Higgins, L.D.; Giannini, S.; 
Conroy, M.J.; Hounslow, A. M.; Waltho, J.P.; Staniforth, R.A. 
Cystatin forms a tetramer through structural rearrangement of 
domain-swapped dimers prior to amyloidogenesis. J. Mol. Biol., 
2004, 336, 165-178.  

[12] Khazanovich, N.; Bateman, K.; Chernaia, M.; Michalak, M.; 
James, M. Crystal structure of the yeast cell-cycle control protein, 
p13suc1, in a strand-exchanged dimer. Structure, 1996, 4, 299-309. 

[13] Schymkowitz, J.; Rousseau, F.; Irvine, L.; Itzhaki, L.L. The folding 
pathway of the cell-cycle regulatory protein p13suc1: clues for the 
mechanism of domain swapping. Structure, 2000, 8, 89-100. 

[14] Rousseau, F.; Schymkowitz, J.W.H.; Wilkinson, H.R.; Itzhaki, L.S. 
Three-dimensional domain Protein Oligomerization through 
Domain Swapping 209 swapping in p13suc1 occurs in the unfolded 
state and is controlled by conserved proline residues. Proc. Natl. 
Acad. Sci. USA, 2001, 98, 5596-5601. 

 [15] Rousseau, F.; Schymkowitz, J.W.H.; Wilkinson, H. R.; Itzhaki, L. 
S. Intermediates control domain swapping during folding of 
p13suc1. J. Biol. Chem., 2004, 279, 8368-8377. 

[16] Zdanov, A.; Schalk-Hihi, C.; Gustchina, A.; Tsang, M.; 
Weatherbee, J.; Wlodawer, A. Crystal structure of interleukin-10 
reveals the functional dimer with an unexpected topological 
similarity to interferon g. Structure, 1995, 3, 591-601. 

[17] Marianayagam, N.J.; Sunde, M.; Matthews, J.M. The power of 
two: protein dimerization in biology. Trends Biochem. Sci., 2004, 
29, 618-625. 

[18] Hindley, J.; Phear, G.; Stein, M.; Beach, D. Sucl+ encodes a 
predicted 13-kilodalton protein that is essential for cell viability 
and is directly involved in the division cycle of 
Schizosaccharomyces pombe. Mol. Cell. Biol., 1987, 7, 504-511. 

[19] Ducommun, B.; Brambilla, P.; Draetta, G; Mutations at sites 
involved in Suc1 binding inactivate Cdc2. Mol. Cell. Biol., 1991, 
11, 6177-6184. 

[20] Matouschek, A.; Kellis, J.T. Jr.; Serrano, L.; Bycroft, M.; Fersht, 
A.R. Transient folding intermediates characterized by protein 
engineering. Nature, 1990, 346, 440-445. 

[21] Galzitskaya, O.V. Search for folding initiation sites from amino 
Acid sequence. J. Bioinform. Comput. Biol., 2008, 6(4), 681-691. 

[22] Galzitskaya, O.V. The same or different amino acid residues are 
responsible for protein folding and misfolding? Biochemistry 

(Moscow), 2009, 74(2), 229-237. 
[23] Galzitskaya, O.V.; Garbuzynskiy, S.O. Folding and aggregation 

features of proteins, In: Protein Misfolding, O'Doherty, C.B.; 
Byrne, A.C., Ed.; Nova Science Publishers, Inc., New York, 2008; 
pp. 99-112. 



36    The Open Biochemistry Journal, 2011, Volume 5 Oxana V. Galzitskaya 

[24] Garbuzynskiy, S.O.; Lobanov, M. Yu.; Galzitskaya, O.V. 
FoldAmyloid: a method of prediction of amyloidogenic regions 
from protein sequence. Bioinformatics, 2010, 26(3), 326-332. 

[25] Galzitskaya, O.V.; Garbuzynskiy, S.O.; Lobanov, M. Yu. 
Prediction of amyloidogenic and disordered regions in protein 
chains. PLoS Comput. Biol., 2006, 2, e177. 

[26] Galzitskaya, O.V.; Finkelstein, A.V. A theoretical search for 
folding/unfolding nuclei in three-dimensional protein structures. 
Proc. Natl. Acad. Sci. USA, 1999, 96, 11299-11304. 

[27] Galzitskaya, O.V.; Garbuzynskiy, S.O.; Lobanov, M. Yu. A search 
for amyloidogenic regions in protein chains. Mol. Biol. (Moscow), 
2006, 40, 821-828. 

[28] Galzitskaya, O.V.; Garbuzynskiy, S.O.; Lobanov, M. Yu. Is it 
possible to predict amyloidogenic regions from sequence alone? J. 
Bioinform. Comput. Biol., 2006, 4, 373-388. 

[29] Chiti, F.; Taddei, N.; Baroni, F.; Capanni, C.; Stefani, M.; 
Ramponi, G.; Dobson, C.M. Kinetic partitioning of protein folding 
and aggregation. Nat. Struct. Biol., 2002, 9, 137-143. 

[30] Kozhukh, G.V.; Hagihara, Y.; Kawakami, T.; Hasegawa, K.; Naiki, 
H.; Goto, Y. Investigation of a peptide responsible for amyloid 
fibril formation of beta2-microglobulin by Achromobacter protease 
I. J. Biol. Chem., 2002, 277, 1310-1315. 

[31] Jones, S.; Manning, J.; Kad, N.M.; Radford, S.E. Amyloid-forming 
peptides from beta2-microglobulin—Insights into the mechanism 
of fibril formation in vitro. J. Mol. Biol., 2003, 325, 249-257. 

[32] Maury, C.P.; Nurmiaho-Lassila, E.L. Creation of amyloid fibrils 
from mutant Asn187 gelsolin peptides. Biochem. Biophys. Res. 
Commun., 1992, 183, 227-231. 

[33] Chamberlain, A.K.; MacPhee, C.E.; Zurdo, J.; Morozova-Roche, 
L.A.; Hill, H.A.; Dobson, C.M.; Davis J.J. Ultrastructural 
organization of amyloid fibrils by atomic force microscopy. 
Biophys. J., 2000, 79, 3282-3293. 

[34] Jaroniec, C.P.; MacPhee, C.E.; Astrof, N.S.; Dobson, C.M.; 
Griffin, R.G. Molecular conformation of a peptide fragment of 
transthyretin in an amyloid fibril. Proc. Natl. Acad. Sci. USA, 2002, 
99, 16748-16753. 

[35] Krebs, M.R.; Wilkins, D.K.; Chung, E.W.; Pitkeathly, M.C.; 
Chamberlain, A. K.; Zurdo, J.; Robinson, C. V.; Dobson, C. M. 
Formation and seeding of amyloid fibrils from wild-type hen 
lysozyme and a peptide fragment from the beta-domain. J. Mol. 
Biol., 2000, 300, 541-549. 

[36] Picotti, P.; de Franceschi, G.; Frare, E.; Spolaore, B.; Zambonin, 
M.; Chiti, F.; de Laureto, P.P.; Fontana, A. Amyloid fibril 
formation and disaggregation of fragment 1-29 of apomyoglobin: 

insights into the effect of pH on protein fibrillogenesis. J. Mol. 

Biol., 2007, 367, 1237-1245. 
[37] Fandrich, M.; Forge, V.; Buder, K.; Kittler, M.; Dobson, C.M.; 

Diekmann, S. Myoglobin forms amyloid fibrils by association of 
unfolded polypeptide segments. Proc. Natl. Acad. Sci. USA, 2003, 
100, 15463-15468. 

[38] Lu, X.; Wintrode, P.L; Surewicz, W.K. Beta-sheet core of human 
prion protein amyloid fibrils as determined by hydrogen/deuterium 
exchange. Proc. Natl. Acad. Sci. USA, 2007, 104, 1510-1515. 

[39] Garbuzynskiy, S.O.; Finkelstein, A.V.; Galzitskaya, O.V. Outlining 
folding nuclei in globular proteins. J. Mol. Biol., 2004, 336, 509-
525. 

[40] Privalov, P.L. Stability of proteins: small globular proteins. Adv. 

Protein Chem., 1979, 33, 167-241. 
[41] Finkelstein, A.V.; Badretdinov, A. Ya. Rate of protein folding near 

the point of thermodynamic equilibrium between the coil and the 
most stable chain fold. Fold. Des., 1997, 2, 115-121. 

[42] Flory, P.J. Statistical Mechanics of Chain Molecules, Interscience: 
New York, 1969. 

[43] Hubbard, T.J.; Murzin, A.G.; Brenner, S.E.; Chothia, C. SCOP: a 
structural classification of proteins database. Nucleic Acids Res., 
1997, 25, 236-239. 

[44] Ye, J.; McGinnis, S.; Madden, T.L. BLAST: improvements for 
better sequence analysis. Madden TL. Nucleic Acids Res., 2006, 
34(Web Server issue), W6-W9. 

[45] Galzitskaya, O.V.; Garbuzynskiy, S.O.; Finkelstein, A.V. 
Theoretical study of protein folding: outlining folding nuclei and 
estimation of protein folding rates. J. Phys. Condensed Matter, 
2005, 17, S1539-S1551. 

[46] Finkelstein, A.V.; Roytberg, M. A. Computation of biopolymers: a 
general approach to different problems. Biosystems, 1993, 30, 1-19. 

[47] Olafsson, I.; Grubb, A. Hereditary cystatin C amyloid angiopathy. 
Amyloid, 2000, 7, 70-79. 

[48] Liu, H.; Farr-Jones, S.; Ulyanov, N.B.; Llinas, M.; Marqusee, S.; 
Groth, D.; Cohen, F.E.; Prusiner, S.B.; James, T.L. Solution 
structure of Syrian hamster prion protein rPrP(90-231). 
Biochemistry, 1999, 38, 5362-5377. 

[49] Hart, T.; Hosszu, L.L.; Trevitt, C.R.; Jackson, G.S.; Waltho, J.P.; 
Collinge, J.; Clarke, A.R. Folding kinetics of the human prion 
protein probed by temperature jump. Proc. Natl. Acad. Sci. USA, 
2009, 106, 5651-5656. 

 

 
 

Received: April 29, 2011 Revised: May 17, 2011 Accepted: May 28, 2011 
 
© Oxana V. Galzitskaya; Licensee Bentham Open. 
 

This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License 
(http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the 
work is properly cited. 

 


