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Abstract：Glucagon-like peptide-1 (GLP-1), which has been extensively applied for treating type 2 diabetes mellitus 

(T2DM), is an incretin hormone that regulates glucose homeostasis. GLP-1(28-36)amide, a C-terminal nonapeptide 

(FIAWLVKGRamide) of GLP-1, is a major product derived from the cleavage of GLP-1 by the neutral endopeptidase 

(NEP). GLP-1(28-36)amide has long been regarded as a metabolically inactive byproduct, however, recent findings reveal 

that GLP-1(28-36)amide plays multiple novel roles in ameliorating hepatic metabolism, protecting β cells, improving 

glucose disposal and inhibiting weight gain. Here, we summarize the latest progress on the effects of GLP-1(28-36)amide 

with a focus on its roles in regulating the Wnt and mitochondrial-mediated signaling pathways.  
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INTRODUCTION 

 Diabetes mellitus (DM) is a progressive disease that is 
characterized by hyperglycemia, reduction in sensitivity to 
insulin and impaired β-cell function [1, 2]. There has been a 
continuous rise in the prevalence of diabetes mellitus 
worldwide and the number of diabetic patients may reach 
300 million by 2030 [3]. The chronic hyperglycemia may 
cause multiple complications such as vascular diseases, 
obesity, hypertension and dyslipidemia [2]. Therefore, an 
ideal anti-diabetic agent would not only offer the benefit of 
achieving optimal glycemic control, but also preventing or 
alleviating associated complications. 

 Glucagon-like peptide 1 (GLP-1) is an incretin hormone 
that is secreted by the intestinal L-cells in response to food, 
which increases insulin secretion in a glucose-dependent 
manner [4]. GLP-1 exerts its biological actions through 
binding and activating its receptor (GLP-1R), which is 
widely distributed in pancreatic islets, heart, brain, kidney, 
and the gastrointestinal tract [1, 5, 6]. It is reported that 
native GLP-1 is rapidly released postprandially, peaking at 
10-15 min followed by a sustained peak at 30-60 min [7]. 
GLP-1(7-36)amide, the N-terminally truncated products of 
native GLP-1, is the main active form in our body [8]. In 
vivo, GLP-1(7-36)amide is rapidly inactivated due to 
proteolytic degradation by dipeptidyl peptidase-IV (DPP-
IV), a serine protease that efficiently cleaves the GLP-1(7-
36)amide to generate GLP-1(9-36)amide and a dipeptide [9]. 
This degradation restricts the clinical application of GLP-1 
and two approaches have been developed to  
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overcome this limitation. The first class of drug exploits 
GLP-1R agonists such as exenatide, liraglutide and 
lixisenatide, on the basis of GLP-1 sequence, exenatide is a 
synthetic peptide that shares approximately 50% of sequence 
identity to GLP-1 and liraglutide has two sequence 
modifications and an attached fatty acid side chain [10, 11]. 
Lixisenatide is a synthetic version of exenatide with its C-
terminus modified with six lysine residues and deletion of 
one proline compared with exenatide [12]. The second class 
includes DPP-IV inhibitors that raise the plasma levels of 
endogenous GLP-1 [13, 14]. These two GLP-1-based 
therapeutic strategies have been widely applied in clinic for 
treating diabetes because of their excellent capacity of 
controlling post-prandial blood glucose, promoting 
pancreatic β cell survival, suppressing weight gain and 
reducing risk of hypoglycemia [6, 15, 16]. 

 Different from DPP-IV, NEP, which cleaves GLP-1(7-
36)amide or GLP-1(9-36)amide to generate GLP-1(28-
36)amide, is widely distributed in endothelial cells, vascular 
smooth muscle cells, cardiac cells and renal epithelial cells 
[17]. As a neuropeptide degrading enzyme, NEP also 
possesses a number of organ-specific functions in both 
central nervous system and related peripheral tissues [18]. A 
major product of NEP digestion, GLP-1(28-36)amide, can be 
further metabolized in hepatocytes to generate two N-
terminus cleavage products, GLP-1(29-36)amide and GLP-
1(31-36)amide. Moreover，a recent in vitro study has 
demonstrated that the plasma half-life of GLP-1(28-36)amide 
is longer in human hepatocytes (t1/2 = 24 min) than that in 
mouse hepatocytes (t1/2 = 13 min) [19]. The physiological 
function of GLP-1(28-36)amide was previously unknown, 
however, recent studies have indicated GLP-1(28-36)amide 
with anti-diabetic effects involving Wnt and mitochondrial-
mediated signaling pathways [20]. In this review, the novel 
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beneficial effects of GLP-1(28-36)amide and its underlying 
mechanisms are summarized. Additionally, GLP-1-related 
peptides and molecules such as GLP-1(7-36)amide, GLP-
1(9-36)amide, GLP-1R agonists and DPP-IV inhibitors 
which possess anti-diabetic effects similar to GLP-1(28-
36)amide are also discussed.  

EFFECTS OF GLP-1(28-36)AMIDE IN VITRO AND IN 
VIVO 

 Recent studies have indicated GLP-1(28-36)amide might 
be a bioactive and insulinomimetic peptide similar to GLP-
1(7-36)amide and GLP-1(9-36)amide [21]. GLP-1(28-
36)amide has been reported to play multiple beneficial roles 
in ameliorating hepatic metabolism, protecting β cells, 
improving glucose disposal and inhibiting weight gain or 
even exerting direct cardioprotective effects [21-27]. We 
summarize the current progress on the beneficial effects of 
GLP-1(28-36)amide in pancreas and extra-pancreatic tissues 
or cell lineages. 

Ameliorating Hepatic Metabolism 

 The effects of GLP-1(28-36)amide on ameliorating 
hepatic metabolism are first demonstrated in the suppression 
of oxidative stress in isolated mouse hepatocytes. GLP-1(28-
36)amide (100 nM) treatment on hepatocytes for 24 hours 
directly modulates mitochondrial oxidative metabolism, such 
as gluconeogenesis in mitochondria of hepatocytes [22]. 
Another study indicates the administration of GLP-1(28-
36)amide at a rate of 18.5 nmol/kg BW/day for 9 weeks to 
diet-induced obese mice diminishes the development of 
hepatic steatosis [21]. 

Protecting Pancreatic β cells 

 GLP-1(28-36)amide plays an important role in 
modulating cell growth and function not only in the rat 
pancreatic INS-1 cell line, but also in dispersed human islet 
cells. This nonapeptide is demonstrated to promote β-cell 
survival and improve β-cell functions in a study of 10 μM 
treatment for 18 hours against cytotoxicity induced by 
glucolipotoxicity media [23]. A recent study also suggests 
that the intraperitoneal injection of 18 nmol/kg GLP-1(28-
36)amide once daily for 9 weeks show cytoprotective effect 
on pancreatic β cells by increasing mass and promoting 
proliferation in a β-cell injury diabetic mouse model [24]. 

Improving Glucose Disposal  

 GLP-1(28-36)amide administration effectively improves 
glycemic control. An in vivo study in high-fat diet-fed mice 
indicates that a six-week administration of 18.5 nmol/kg 
GLP-1(28-36)amide improved hepatic glucose disposal, 
which is associated with increased cAMP levels and 
phosphorylation of PKA target. Furthermore, the glucose 
disposal is drastically attenuated after GLP-1(28-36)amide 
injection during pyruvate tolerance test [25]. GLP-1(28-
36)amide also regulates glucose levels in a streptozotocin-
induced diabetes mouse model. Once-daily intraperitoneal 
injection of GLP-1(28-36)amide (18 nmol/kg) for nine 
weeks significantly reduced fasting glucose levels from 
nearly 17 mM to 12 mM compared with their PBS control 

group [24]. Another recent study showed that injection of 
GLP-1(28-36)amide to high fat-fed mice prevents the 
development of both fasting hyperglycemia and 
hyperinsulinemia [21]. 

Inhibiting Weight Gain  

 GLP-1(28-36)amide treatment provides a significant 
reduction in body weight gain approximately four-fold 
higher than that of the control vehicle in response to high-fat 
diet-fed mice [25]. A study that infuses GLP-1(28-36)amide 
for 9 weeks in diet-induced obese mice effectively inhibits 
the rate of weight gain [21]. In addition, the average change 
in body weight gain per week of mice receiving GLP-1(28-
36)amide was 50% less than that of the mice receiving 
control vehicle [21].  

Cardioprotective Effects  

 GLP-1(28-36)amide has been found to exert important 
biological effects on the cardiovascular system. In a study 
that administered GLP-1(28-36)amide for 20 min to male 
C57BL6/J mice (10-12 week old), then isolated hearts 
underwent 30 min of global ischemia and 40 min of 
reperfusion, the recovery of left ventricular developed 
pressure (LVDP) was significantly greater in GLP-1(28-
36)amide group compared to vehicle-treated hearts [26]. The 
cardioprotection effect of GLP-1(28-36)amide is also 
suggested in the reduction of infarct size in a myocardial 
infarction (MI) model [26]. 

 As described above, current investigations of GLP-1(28-
36)amide have mainly focused on its hepatic, pancreatic and 
cardiac effects, however, compared with GLP-1R agonists 
and DPP-IV inhibitors which have been thoroughly 
investigated or even commercially available, our knowledge 
on GLP-1(28-36)amide remains limited. On the other hand, 
accumulating evidence strongly support that GLP-1-based 
therapies cause undesired gastrointestinal tract reactions, 
such as nausea, vomiting, and diarrhea [28, 29]. Moreover, 
there has been ongoing debate about the association between 
GLP-1-based agents and pancreatic injury such as 
pancreatitis and pancreatic cancers, while the potential risk 
of GLP-1(28-36)amide remains unknown and awaits further 
exploitation [30, 31]. 

MECHANISMS OF GLP-1(28-36)AMIDE’S 
BENEFICIAL EFFECTS 

 Previous studies showed that the cellular mechanisms 
underlying the effects of GLP-1 is mainly mediated by 
cAMP-PKA signaling pathway [32]. The activated GLP-1R 
is involved in this signaling pathway and then triggers 
relevant physiological effects. However, GLP-1(28-36)amide 
has been shown to exert its effects in insulin-sensitive tissues 
such as liver where there is no detectable expression of GLP-
1R [22]. The mechanism of GLP-1(28-36)amide on 
regulating hepatic metabolism is associated with a GLP-1R 
independent mitochondrial-mediated pathway. Studies 
suggest that this nonapeptide is uptaken by hepatocytes and 
targeting mitochondria, modulates oxidative phosphorylation 
through lowering reactive oxygen species levels, inhibiting 
the accumulation of liver triglycerides, and suppressing 
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excessive gluconeogenesis [21, 22, 25]. Further-more, in a 
high-fat diet (HFD) induced obese mouse model, GLP-1(28-
36)amide treatment suppressed excessive gluconeogenesis of 
primary hepatocytes mainly through decreasing the 
gluconeogenic genes expression of Pck1, G6pc and Ppargc1a 
[25].  

 GLP-1(28-36)amide is proposed to modulate the growth 
and function of pancreatic β cells, with a mechanism 
involves mitochondrial-mediated signaling pathways [23]. 
Increasing experimental evidence implicate that oxidative 
stress plays a key role in opening of the mitochondrial 
permeability transition (MPT) pore and the loss of 
mitochondrial membrane potential [23]. GLP-1(28-
36)amide, a cell-permeable nonapeptide, appears to act as an 
antioxidant and targets to mitochondrion, inhibits MPT, 
preserves membrane potential, and thus effectively 
suppresses β cell apoptosis and promotes β cell survival [24, 
27]. Another presently known mechanism of GLP-1(28-36) 
amide effects on β cells is related to the PKA/β-catenin  
(β-cat) signaling pathway [24, 27]. The bipartite 
transcription factor β-cat/TCF, a key effecter of Wnt 
signaling pathway, is formed by free β-cat and a member of 
the TCF protein family [33, 34]. The Wnt signaling pathway 
was previously known for its role in tumor and subsequently 
extensive investigations have found that several key 
components of the Wnt signaling pathway are involved in 
pancreas development, islet function, and insulin production 
and secretion [35]. Furthermore, it has been shown that 
GLP-1 and its agonist, exendin-4, induce Wnt signaling in 
both isolated islets and INS-1 cells [36]. GLP-1 and exendin-
4 are known to promote β cells survival via GLP-1R, while 
GLP-1(28–36)amide exerts cytoprotective actions on β cells 
in a GLP-1R independent manner [23]. In a recent in vitro 
investigation on β cells, GLP-1(28-36)amide has been 
demonstrated to stimulate β-cat Ser

675
 phosphorylation, 

leading to Wnt signaling pathway activation, which is 
associated with the activation of cAMP/PKA signaling 
cascade [24].  

 It has been suggested that GLP-1(28-36)amide 
significantly reduced fasting glucose levels due to increased 
basal insulin levels and the alleviated insulin resistance [24]. 
This nonapeptide also effectively suppresses hepatic glucose 
production both in vivo and in vitro settings, mainly through 
inhibiting the expression of two gluconeogenic enzymes and 
the gluconeogenic transcriptional coactivator PGC-1α [25].  

 In diet-induced obese mice model, the underlying 
mechanisms of GLP-1(28-36)amide effect on body weight 
gain remain controversial. One possible mechanism of this 
nonapeptide on suppressing weight gain is closely related 
with increased energy expenditure [21], whereas another 
study indicates that the GLP-1(28-36)amide treatment 
inhibits the rate of weight gain which is associated with 
improved tolerance to pyruvate challenge in vivo [25]. Since 
the mechanisms underlying the weight-loss effects of GLP-1 
is associated with inhibiting gastric emptying, and reducing 
appetite and food intake [4], which suggests a possibility that 
GLP-1(28-36)amide may promote weight loss in obese and 
diabetic individuals through the same mechanisms as that of 
GLP-1. 

EFFECTS OF OTHER GLP-1-RELATED PEPTIDES 
AND MOLECULES 

 GLP-1-related peptides and molecules, such as GLP-1(7-
36)amide, GLP-1(9-36)amide, GLP-1R agonists and DPP-IV 
inhibitors, also possess anti-diabetic effects similar to GLP-
1(28-36)amide. 

GLP-1(7-36)amide  

 GLP-1(7-36)amide exerts multiple glucoregulation 
effects such as glucose-dependent stimulating insulin 
secretion, suppressing glucagon secretion, inhibiting gastric 
emptying, and reducing appetite and food intake [14-16, 37]. 
Furthermore, GLP-1(7-36)amide induces an increase in 
pancreatic β-cell mass by stimulating pancreatic β-cell 
proliferation, enhancing β-cell neogenesis, and suppressing 
β-cell apoptosis [1, 38, 39].  

GLP-1(9-36)amide  

 GLP-1(7-36)amide can be degenerated by enzyme action 
of DPP-IV into GLP-1(9-36)amide, which is used to be 
regarded as an inactive metabolite [40]. However, there have 
been several studies which demonstrate that GLP-1(9-
36)amide retain biological activity in insulin-sensitive target 
tissues such as the heart and liver [41, 42]. Administration of 
GLP-1(9-36)amide is also shown to inhibit weight gain in 
diet-induced obese mice, as well as to reduce postprandial 
glycemia independent of plasma insulin levels in humans 
[43, 44].  

GLP-1R Agonists  

 GLP-1R agonists, such as exenatide, liraglutide and 
lixisenatide, improve glycaemic control and β-cell function 
with much longer half time, are currently available in the 
market [10]. GLP-1R agonists also exert effects beyond 
glycaemic actions owing to the wide expressing of GLP-1R 
in extra-pancreatic tissues [45, 46]. For example, GLP-1R 
agonists have been shown to have cardioprotective effects 
[47]. It is reported that exenatide reduces myocardial infarct 
size and protected against deterioration of cardiac function in 
a porcine model of ischemia and reperfusion injury [48]. In a 
mouse model of myocardial infarction (MI), liraglutide 
improves cardiac output and reduces infarct size and 
mortality from cardiac rupture [49]. Moreover, GLP-1R 
agonists are reported to optimize the selection of therapeutic 
agents for the treatment of diabetic patients with 
cardiovascular disease [50, 51]. Additionally, GLP-1R 
agonists have also been shown to play neuroprotective roles 
in rodent models of stroke, Alzheimer’s disease and 
Parkinson’s disease [27]. 

DPP-IV Inhibitors  

 Since native GLP-1 can easily be digested by DPP-IV, 
DPP-IV inhibitors have also been developed against diabetes 
via increasing the half life of endogenous incretin hormone 
[14, 40]. Compared with control group, DPP-IV inhibitors 
have been shown to reduce the level of glycated hemoglobin 
and plasma glucose without causing obvious adverse effects 
[52]. 
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ABBREVIATIONS 

GLP-1 = Glucagon-like peptide-1 

T2DM = Type 2 diabetes mellitus 

GLP-1R = GLP-1 receptor 

NEP = Neutral endopeptidase 

DPP-IV = Dipeptidyl peptidase-IV 

DM = Diabetes mellitus 

LVDP = Left Ventricular Developed Pressure 

MI = Myocardial infarction 

CNS = Central nervous system 

HFD = High-fat diet 

β-cat = β-catenin 

MPT = Mitochondrial permeability transition 

SUMMARY AND DISCCSSION 

 The novel physiological effects of GLP-1(28-
36)amide, such as inhibiting weight gain and attenuating 
glucose levels, and showing effects on β cells and 
hepatocytes, suggest that GLP-1(28-36)amide could be 
highly attractive as an add-on treatment in therapy of T2DM. 
On the other hand, the unique mitochondrial targeting 
property of GLP-1(28-36)amide is rather different form its 
precursor GLP-1 or GLP-1R agonists [53], such 
phenomenon will be of great interest to be further 
understood. Further studies to define whether GLP-1(28-
36)amide activates a new receptor or possesses other action 
modes are also necessary. Moreover, the downstream 
metabolites such as GLP-1(29-36)amide or GLP-1(31-
36)amide, may also worth being studied further.  
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