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Abstract:

Background:

During the last years, cyclostationarity has emerged as a new approach for the analysis of a certain type of non-stationary signals.
This theoretical tool allows us to identify periodicity in signals which cannot be identified easily but also to separate useful signals
for other interfering contributions that overlap in the spectral support.

Objective:

The aim of this work is the exploitation of cyclostationary theory to enhance standard methodologies for the study of heart rate
variability. In this framework, a preliminary analysis on healthy patients is proposed to be extended further on pathological patients
with the perspective to improve (hopefully) the diagnostic power of some cardiac dysfunctions due to the more complete set of
information provided by this analysis.

Methods:

The proposed approach involves an initial band-pass filtering step in the range 0.5 - 40 Hz of the recorded ECG signal, followed by a
first-order derivative filter  to reduce the effects  of  P and T waves and to emphasise the QRS contribution.  After  that,  the auto-
correlation function is evaluated and the Cyclic Power Spectrum (CPS) is computed. From this two-dimensional information, a one-
dimensional plot is derived via the evaluation of a folded-projected CPS to be compared with standard Lomb-Scargle spectrum.

Results:

The proposed analysis has been tested on both numerical simulations as well as for the processing of real data which are available
online in the Physionet database.

Conclusion:

The proposed cyclostationary analysis has shown a good agreement with the results provided by the classical Lomb-Scargle spectrum
in the processing of real data, underlining some contributions in the high-frequency bandwidth which are not visible by means of
standard processing.

Keywords: Electrocardiogram (ECG), Heart  Rate Variability (HRV), Cyclostationarity signal  analysis,  Cyclic power spectrum,
Spectral support, Lomb-Scargle spectrum.

1. INTRODUCTION

Heart  Rate  Variability  (HRV)  is  the  variation  in  the  time  interval  between  consecutive  heartbeats.  It  is  a
physiological phenomenon related to the regulation of the cardiac activity produced by the Autonomic Nervous System
(ANS) [1]. More in detail, the accelerations and decelerations of the heard activity are due to the competing activities of
the sympathetic and the parasympathetic nervous system branches [2]. The analysis of the HRV has the advantage of
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being noninvasive, easy to be performed and with good reproducibility, and is useful for the determination of the ANS
status [3] and the cardiac activity [4]. In particular, it has shown to have a beneficial role in the diagnosis and analysis
of  several  pathologies related to blood pressure [5],  myocardial  infarction [6,  7],  brain damage [8],  depression [9],
cardiac arrhythmia [10], diabetes [11] and renal failure [12]. HRV analysis has also shown correlations with sleep [13],
drugs [14] or alcohol [15] assumption and smoking [16].

A  first  important  step  in  order  to  provide  HRV  measures  consists  of  the  R  peak  detection  in  the  QRS  wave.
Regarding this aim, many robust algorithms are known in the literature, among which the well-known Pan-Tompkins
algorithm [17] represents a gold standard for the scientific literature.

Variation  in  heart  rate  can  be  evaluated  by  using  four  main  classes  of  methods.  The  first  one  is  based  on  the
evaluation of some synthetic parameters in the time domain. In a continuous electrocardiographic (ECG) record, each
QRS  complex  is  detected,  and  the  so-called  normal-to-normal  (NN)  or  RR  intervals  (that  is  all  intervals  between
adjacent  QRS complexes  resulting  from sinus  node  depolarizations),  or  the  instantaneous  heart  rate  is  determined.
Simple time-domain variables that can be calculated include the mean RR interval, the mean heart rate, the difference
between the longest and shortest RR interval, and many others [18, 19]. Other time-domain measurements analyse the
variations in instantaneous heart rate secondary to respiration, tilt, Valsalva maneuver, or secondary to phenylephrine
infusion. These differences can be described as either differences in heart rate or cycle length.

A second important class is represented by frequency domain methods, which are mainly based on the estimation of
the Power Spectral  Density (PSD) [20].  The analysis  of  this  function provides the basic information of  how signal
power distributes as a function of frequency. Both parametric and non-parametric methods are available for the PSD
estimation, each one with its advantages and limitations. Non-parametric methods are simple and fast, since they are
mostly based on the use of the fast Fourier transform, while parametric methods provide smoother spectral components
and a more accurate estimation of the PSD even on a small  number of samples on which the signal is  supposed to
maintain the stationarity hypothesis. Among these techniques, the Lomb-Scargle (LS) periodogram is perhaps one of
the most well-known techniques employed to compute the periodicity of unequally-spaced data, and it provides a good
estimate of the PSD of an ECG signal [21 - 25]. LS method avoids the major problem of classical approaches related to
the  low-pass  effect  due  to  re-sampling  operation.  Therefore,  the  Lomb  method  is  more  suitable  than  fast  Fourier
transform or autoregressive estimate with linear or cubic interpolation for PSD estimation of unevenly sampled signals
[26]. However, in extreme situations (low heart rate or high-frequency components), the Lomb estimate still introduces
high-frequency contamination that suggests further studies on superior performance interpolators.

Both time-domain and spectral methods share some limitations imposed by the irregularity of the RR series, since
they assume the same trends of increasing or decreasing in the cycle length, which is not always realistic [27, 28]. In
practise, this reflects on the amplitude of the peaks at fundamental frequencies in the spectral analysis and enlarge their
basis. In order to overcome these limitations, some alternative techniques aiming at analysing the rhythm pattern via
considering blocks of RR intervals without considering the internal variability have been proposed. The well-known
interval spectrum and spectrum of counts methods are well suited to investigate the relationship between HRV and the
variability of other physiological measures, like blood pressure, respiration and arrhythmia events [29].

Last class of approaches for HRV analysis is based on non-linear methods [30 - 34]. The motivation for using this
kind of methodologies is based on the non-linear phenomena involved in the genesis of the HRV signal, which is the
result of complex interactions among haemodynamic, electrophysiological and humoral variables. However, although in
principle, these techniques have been shown to be powerful tools for characterization of various complex systems, their
application to HRV (and biomedical data more in general) still needs to be validated. An exhaustive overview of the
main publications for non-linear HRV analysis for the past 25 years has been proposed in reference [35]. In their work,
Sassi  et  al.  present  a  critical  review  of  the  state  of  the  art  and  new  methodologies  tested  in  sufficiently  sized
populations, with particular attention paid to the long-range correlation and fractal analysis, entropy and regularity, non-
linear dynamical systems and chaotic behaviour.

Conversely  from the  approaches  described previously  in  the  text,  this  short  communication  aims at  testing  and
analysing the performance of cyclostationary (CS) analysis for HRV signals. In most cases, the stationarity hypothesis
is often an assumption of convenience rather than a realistic one, and for many biomedical signals (e.g., ECG, EMG,
etc.)  the  use  of  cyclostationarity,  i.e.  the  cyclic  variation  of  the  statistical  properties,  is  more  suitable  rather  than
conventional stationary assumption [36 - 38]. Compared to standard analysis, it provides some extra information due to
the hidden periodicities in the signal. Taking advantage of these properties obviously leads to more powerful processing
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than possible with the stationary approach. Moreover, this extra information often counter-balances the complication
that it may involve as compared to other standard approaches.

Methodologies exploiting CS theory for heart monitoring have been proposed by several authors. In reference [39],
a CS approach for heart and respiration rates monitoring exploiting a 2.4 GHz Doppler radar is presented. CS theory has
also been applied to ECG signals for several applications, such as foetal ECG extraction [40] or for the study of non-
linearity in the HRV signal [41]. In this framework, we propose to apply the CS methodology to the ECG signal in
order  to  analyse  the  HRV.  The  main  advantage  of  the  CS  analysis  for  HRV  signals  consists  in  the  possibility  of
studying simultaneously the standard spectral coverage of the ECG signal in the classical frequency domain, but also
the cyclic spectral components related to the physiological behaviour of the HRV. Another important advantage is that
the analysis is performed directly in the time domain after the ECG recording and does not require any RR interval
extraction, which makes this tool more robust.

The remainder of  the paper is  organised as follows:  Section 2 provides a mathematical  overview of CS theory,
Section 3 proposes the methodology involved in this paper and Section 4 presents some numerical results and real data
processing. Finally, Section 5 closes the paper and draws some conclusions.

2. FUNDAMENTALS OF CYCLOSTATIONARY THEORY

CS extends the class of stationary signals to those signals whose statistical properties change periodically with time.
In this theoretical framework, the minimum “period” of a CS signal is called cycle [38].

Conversely from standard non-stationary signals, CS is a well-defined property and can exploit a powerful spectral
analysis in a wide sense, employing the same tools that have been developed historically for stationary signals [42]. The
instantaneous  auto-correlation  function  of  a  random  signal   with  Δ  denoting  the
sampling period, can be defined as:

(1)

where n and τ are two time variables,  is the statistical mean operator and β  The β  The parameter in
Eq. (1) allows a general formulation of various equivalent definitions found in the literature (for example typical values
are β = 1/2 for the symmetric instantaneous autocorrelation function, and β = 1 or β = 0 for the asymmetric case) [38].

By definition, the instantaneous auto-correlation function of a (quasi-) CS signal is (quasi-) periodic, and therefore it
can be decomposed in a Fourier series:

(2)

over the spectrum A = {αi} of the cyclic frequencies associated to non-zero Fourier coefficients:

(3)

Coefficients in Eq. (3), which are function of the time τ and of the cyclic frequency ai, are called the cyclic auto-
correlation function of the random signal X[n]. Finally, by exploiting Eq. (3), the Cyclic Power Spectrum (CPS) can be
defined as:

(4)

As well known in the spectral analysis, there is no consistent estimator of the CPS, i.e. an estimator whose variance
tends  to  zero  as  the  length  of  observation  time  increases  [42,  43]  Although  not  consistent,  the  averaged  cyclic
periodogram  is one of the most adopted spectral estimators. Given a sequence x{n} of the random CS
signal and a positive and smooth Nw-long window W[n], and Wk [n] = W[n - KR] its shifted version of multiple of R
samples, the averaged cyclic periodogram can be computed via:

(5)

ℛ𝑋𝑋[𝑛, 𝜏] 𝑋[𝑛Δ] = 𝑋[𝑛], 
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where,

(6)

is  the  short  Discrete-Time  Fourier  Transform  (DTFT)  of  the  K-th  weighted  sequence

 (where  the  operator.  rounds  the  argument  to  rounds  the argument to 
 the next smaller integer).

In this manuscript, we want to evaluate the CPS of an ECG signal, therefore, we apply Eq. (5) for the estimation of
CPS in order to perform a more complete spectral analysis.

3. METHODS

Let us consider a recorded ECG signal:

(7)

where z (t) is the noise free signal and n (t) is the additive noise term which can be modelled as uncorrelated and
Gaussian distributed.

As first step after the acquisition, a bandpass filter is applied in order to remove the frequency components below
0.5  Hz,  which  are  mainly  related  to  breathing,  and  the  components  above  40  Hz,  which  are  due  to  external
interferences. Next, a derivative filter is exploited to isolate and strengthen the QRS information. The motivation behind
this choice lies in the attempt to reduce the effects of the P and T waves compared to the QRS complex since the main
information regarding HRV is related to the QRS peaks.

Subsequently, the CS spectrum is computed. As described in Section 2, the procedure requires the computation of
the auto-correlation function  followed by the estimation of the cyclic power spectrum . In
other words, Eqs. (1, 5 and 6) are computed.

Conversely  from  classical  HRV  spectra,  the  information  arising  from  the  cyclostationary  analysis  has  two
dimensions,  i.e.  the  spectral  frequencies  and  the  cyclic  frequencies  f,  and  spread  on  both  positive  and  negative
frequency a values. Therefore, in order to isolate the HRV information and improve its readability, a further spectrum,
namely folded-projected cyclic power spectrum (FPCPS), is computed. The first step consists in integrating the CPS
over the spectral frequencies:

(8)

The signal , with respect to the CPS, has lost the information about the frequency components of the ECG
signal y (t), keeping only the dependency on the cyclic frequencies α which contains information about the HRV.

Another transformation is required in order to refer to the shift of the cyclic frequency values α from the central
cyclic frequency αav, i.e. the mean heart rhythm, instead of considering the absolute values. Moreover, since we are
interested in the amplitude of the cyclic frequency shifts from the average value, both positive and negative shifts are
worth for this evaluation. Thus, a “folding-and-sum” operation around the zero cyclic frequency is performed, obtaining
the FPCPS:

(9)

in which u(.) represents the Heaviside step function.

4. RESULTS

In order to show the potentiality of cyclostationary analysis for the study of Heart Rate Variability (HRV), results
related to both simulated and real case study are presented.

4.1. Simulated Data: Gaussian Template

A synthetic signal z (t) was generated by replicating M times a template function over time. The template function
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simulated the signal related to one heart beat, while the delays of the replicas take into account the heart rhythm and the
HRV. Analytically, the simulated signal can be expressed as:

(10)

where,

(11)

and RR [i] is the time distance between the i-th and the (i + 1)- th heartbeat. For this simulation, we considered as
template p(t) a Gaussian function and the following model for the RR intervals:

(12)

in which RRav  is the average RR interval (constant), and α1  represents the amplitude of the deviations from  the
average RR  value. In  other words,  we considered  a sinusoidal  behaviour of  the HRV. In  this example,  we assumed
RRav = 1 s and a1 = 0.07 , corresponding to a variation of approximately compared to the RRav f1 refers to the frequency
involved in the numerical model and the parameter m identifies the m-th RR interval. This choice seems to be realistic,
as proved by averaged oscillations in healthy patients. We assumed the sampling frequency fs = 200 Hz, a number of
heartbeats M = 100 and an HRV frequency f1 = 0.1 Hz. Fig. (1). reports the Gaussian template function employed for
the synthetic signal generation and the RR-interval amplitudes described by the model in Eq. (12).

Fig. (1). Gaussian template function (a) and RR-interval amplitudes (b) of model in Eq. (14).

𝑧(𝑡) = 𝑝(𝑡) + ∑𝑀−1
𝑚=1 𝑝(𝑡 − 𝑇𝑚) 

𝑇𝑚 = ∑𝑚
𝑖=1 𝑅𝑅[𝑖] 

𝑅𝑅[𝑚] = 𝑅𝑅𝑎𝑣 + 𝑎1 ⋅ 𝑐𝑜𝑠(2𝜋𝑓1𝑚) , with

  

m = 1,2, . . . , M − 1 , 

(a)

(b)
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The computed CPS is reported as surface and as an image in Fig. (2a and b), respectively. On the spectral frequency
axis (f), information about the components of the signal template can be appreciated, while on the cyclic frequency axis
(α), the HRV can be evaluated. For the sake of clarity, the figures show the cyclic frequency axis (α) centred at αav =
1/RRav, which corresponds to the zero cyclic frequency. In can be noticed that the peaks at are in correspondence with
the considered HRV frequency f1 Hz. Of course, harmonics at 0.2 Hz and 0.3 Hz are present.

Fig. 2 contd.....

(a)

(b)
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Fig. (2). Numerical simulation considering a Gaussian template function and one cosine RR model (at 0.1 Hz): 3D (a) and 2D (b)
representation of the CPS, (c) FPCPS and (d) LS spectrum.

In Fig. (2c), the FPCPS computed according to Eq. (9) is reported. It can be observed that both the contributions at f
= 0  (corresponding to RRav) and f1  = 0.1 Hz are present in the spectrum, even though also some other harmonics at
multiple of f1 can be detected in the spectrum. In order to provide a reference, the LS spectrum is reported in Fig. (2d).
Such a result confirms the presence of the HRV frequency at 0.1 Hz. It should be noted that the DC component does not
appear  in  the  LS spectrum due  to  the  fact  that  the  Matlab  function  used  for  this  comparison  does  not  evaluate  the
component centred at f = 0 Hz.

A Monte Carlo (MC) simulation has been implemented in order to evaluate the robustness with respect to noise.
First, a white Gaussian noise has been added to the ECG signal Z (t) of Eq. (10), i.e.

(c)

(d)
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(13)

where  with  the  noise standard deviation σ fixed. One hundred signal realizations have been
considered, and for each, the CS spectrum has been computed and the position of the contribution close to f = 0.1 Hz
has been measured. The analysis has been repeated for σecg varying between 1 (SNR of about 50 dB) and 50 (SNR of
about 18 dB), and the results are reported in Table 1. It can be appreciated that the mean value of the peak position
slightly changes (in case of σecg = 50 it increases of about 11%). Of course, in case of high noise level, the stability of
the peak position greatly decreases, with a standard deviation of 0.04 in case of σecg = 30 and higher. Nevertheless, it can
be noted that, in case of noise σecg = 10 (SNR of about 30dB) or below, the standard deviation of the estimation is in the
order of magnitude of 1.10-3 or lower.

Table 1. Mean and STD of the frequency peak position in case of noise corrupting the ECG signal.

Noise Level Peak Position (Mean) Peak Position (STD)
σecg = 1 0.0992 0.0000
σecg = 2 0.0992 0.0001
σecg = 3 0.0993 0.0006
σecg = 5 0.0995 0.0006
σecg = 10 0.0996 0.0013
σecg = 20 0.0994 0.0250
σecg = 30 0.1053 0.0407
σecg = 50 0.1132 0.0466

A second MC simulation has been implemented in order to evaluate the effect of noise corrupting the RR intervals.
Samples from a white Gaussian random variable have been added to the time instants Tm defined in Eq. (11). As in the
previous simulation, 100 MC iterations have been considered and for each, the frequency peak close to f = 0.1 Hz has
been identified. The performances were evaluated in case noise standard deviation σt ranging from 5.10-3 to 2.10-1, and
results are reported in Table 2. Compared to the previous MC simulation, a different behaviour can be appreciated:
When the noise standard deviation is greater than, performances rapidly deteriorate, while remaining good in case of
lower values of σt.

Table 2. Mean and STD of the frequency peak position in case of noise corrupting the RR interval values.

Noise Level Peak Position (Mean) Peak Position (STD)
σt = 0.005 0.0995 0.0012
σt = 0.001 0.0997 0.0022
σt = 0.002 0.1001 0.0048
σt = 0.003 0.0995 0.0810
σt = 0.004 0.1002 0.0105
σt = 0.005 0.0978 0.0180
σt = 0.01 0.0903 0.0419
σt = 0.02 0.1258 0.0591

As a second numerical example, a second cosine component was added to the RR model:

(14)

with α2 = 0.07 and f2 = 0.18 Hz and the other parameters equal to the previous case. As in the previous case, the
FPCPS and the LS periodogram are reported in Fig. (3).

Again, there is a good agreement between the LS spectrum and the FPCPS, as shown in Fig. (3c, d). Conversely
from the previous case study, the presence of more than one frequency is responsible for the intermodulation effects,
which results in more lobes than what was expected from the case of a single frequency. Intermodulation effects which
are visible in the LS case are still visible in the FPCPS case.

𝑦(𝑡) = 𝑧(𝑡) + 𝑛(𝑡) 

𝑛(𝑡)~𝒩(0, 𝜎𝑒𝑐𝑔
2 )

 
𝑅𝑅[𝑚] = 𝑅𝑅𝑎𝑣 + 𝑎1 ⋅ 𝑐𝑜𝑠(2𝜋𝑓1𝑚) + 𝑎2 ⋅ 𝑐𝑜𝑠(2𝜋𝑓2𝑚) ,    with  m = 1,2, . . . , M − 1 , 
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Fig. 3 contd.....

(a)

(b)

(c)
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Fig. (3). Numerical simulation considering a Gaussian template function and two cosines RR model (at 0.1 Hz and 0.18 Hz): 3D (a)
and 2D (b) representation of the CPS, (c) FPCPS and (d) LS spectrum.

4.2. Simulated data: QRS template

A more realistic numerical example in which the signal template p(t) is a real QRS complex is considered. Again,
we considered the RR model containing two sinusoidal components reported in Eq. (14) with α1 = α2 = 0.07, f1 = 0.1 and
f2 = 0.18 Hz.

The results are shown in Fig. (4). The HRV information carried by the cyclic frequencies α was close to the one
reported in the previous examples, but, as expected, in this case, the CPS was richer in the spectral components. More in
detail,  the  adopted  QRS  signal  template  p(t)  was  characterized   by  a   much   wider  and   complex   spectrum  in
 comparison with  the Gaussian-shaped  template  considered in  Section 4.1,  and therefore  the  CPS shows  several
 components  up to f = 30Hz.

Fig. 4 contd.....

(d)

(a)
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Fig. (4). Numerical simulation considering an ECG template function and two cosines RR model (at 0.1 Hz and 0.18 Hz): 3D (a) and
2D (b) representation of the CPS, (c) FPCPS and (d) LS spectrum.

4.3. Real data

To validate the proposed numerical analysis, some real datasets from the Physionet repository have been considered
[44]. Three different patients with physiological ECG were analysed (ID: 16272, 16483 and 16539) from the MIT-BIH

(b)

(c)

(d)
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normal sinus rhythm database [45]. It includes 18 long-term ECG recordings of subjects which were found to have had
no significant arrhythmias. The people involved in this study include people aged from 20 to 50. Signals have been
acquired with a sampling frequency equal to 128 Hz for a duration of 300 seconds.

As previously pointed out in Section 3, the ECG signals have been pre-processed by means of a band-pass filter and
a derivative filter in order to emphasize the effect of QRS complex compared to the other waves. Then, the CPS of these
signals was evaluated via Eq. (5) and reported in Fig, (5).

Fig. 5 contd.....

(a)

(b)
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Fig. (5). CPS of the ECG signals filtered as shown in Section 3 for three different healthy patients. (a) ID: 16272, (b) ID: 16483 and
(c) ID: 16539.

These kind of images provide both spectral information as well as cyclic spectral representation, but it is not easy to
be interpreted as it is. A  way to  ease the  analysis of  this  information  lies in  the use  of Eq. (9), which is reported in
Fig. (6) and compared with standard LS spectrum.

Fig. 6 contd.....
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Fig. (6). Comparison between FPCPS and LS spectrum for three different clinical datasets (downloaded from the physionet database
[47]). Patients ID: 16272 (a-b), 16483 (c-d), and 16539 (e-f). The dotted-dash line refers to the envelope of the signals which can
help the understanding of the figure.

In the resting physiological subject, three main spectral components for the HRV analysis can be distinguished in
short-term  ECG  recordings:  Very  Low  Frequency  (VLF),  Low  Frequency  (LF)  and  High  Frequency  (HF).  The
distribution of the power and the central frequency of LF and HF are not fixed and may vary due to changes in the
modulation by the  autonomic nervous system [46],  whereas  the  HF components,  synchronous with  the  respiration,
occurs  at  0.25  Hz  approximately.  The  study  of  VLF  (  Hz)  phenomena,  which  might  contain  clinically  relevant
information, requires long-period uninterrupted data; thus, the DC component and the whole range of the VLF have not
been addressed in this manuscript, and therefore the frequency axis will be limited in the useful range (0.02-0-32) Hz.
Both  total  power  of  HRV  spectrum  as  well  as  the  LF-to-HF  ratio  has  proved  to  be  selective  indices  of  cardiac
parasympathetic activity [44], and this motivates the interest in the study of these components.

In  order  to  ease  the  analysis  of  the  two-dimensional  spectra  proposed  in  Fig.  (5),  an  easier  and  more  straight
comparison  has  been  carried  out  via  the  evaluation  of  Eq.  (9)  and  comparing  these  results  with  the  standard  LS
spectrum. The proposed comparison has been reported in Fig. (6), in which the FPCPS per each patient is compared
with the corresponding LS spectrum. From a first analysis, it can be observed that for all the considered cases, most of
the signal power is located in the VLF and LF bandwidths. All the cases reported in Fig. (6) are characterised by a main
lobe in the VLF range and by another strong contribution of around 0.1 Hz, both in the FPCPS as well as LS spectra.
Conversely from the standard LS analysis,  the FPCPS also underlines some non-negligible contributions in the HF
bandwidth, but still fits with the clinical considerations arising from standard analysis of HRV LS spectrum. Hopefully,
this  apparent  higher  sensitivity  to  HF  bandwidth  could  be  beneficial  in  the  early  diagnosis  of  some  pathological
dysfunctions. However, further investigation is required to test the proposed formulation for pathological patients prior
to clinical use.

CONCLUSION

In this paper, the performance of CS for HRV signal analysis has been evaluated. More in detail, the performance of
a CPS estimator has been analysed and tested for synthetic numerical experiments with Gaussian function replica and
ECG-like waveforms, proving a good agreement with the LS spectrum. Moreover, CS is also able to evaluate signal
frequency components and does not require the RR interval extraction from the ECG signal.

Finally,  CS  analysis  has  also  been  conducted  on  real  data,  confirming  the  interesting  performance  observed
numerically.
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