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Abstract:

Background:

Investigation in bioinformatics has developed promptly in latest years owing to improvements in sequence excavating techniques.
Gene sequences in DNA are supplemented with great extent of information, but the intricacy and complexity of this information
causes difficulty in analyzing it by using standard classical methods of classification. In this work, a Radial Basis Function Network
(RBFN) methodology with self-network arrangement is presented for identification of mosquito species based on the genetic design
content of ITS2 ribosomal DNA sequences.

Methods:

A number of data sequences in varying sizes of different vectors corresponding to Anopheline, Aedes and Culex genera are used to
develop genera specific as well as comprehensive RBFN species identifiers. The recall and generalization ability of the proposed
species identifiers are analyzed and further validated through bootstrap validation method. The genera specific RBFN identifiers are
found to provide accurate identification of mosquito species of individual genera. However, the comprehensive RBFN model is
found to exhibit better species identification ability and can be advantageously used for species identification of more mosquito
genera.

Results & Conclusion:

The results demonstrate the usefulness of the RBFN methodology for accurate identification of mosquito species depending on the
nucleotide data of ITS2 ribosomal DNA sequences.

Keywords: Mosquitoes, ITS2 Sequences, Modeling, Radial Basis Function Networks, Species Classification, Gene sequence.

1. INTRODUCTION

Exploration  of  bioinformatics  has  developed  hastily  in  recent  years  due  to  the  advances  in  molecular  biology
techniques. One of the most vital research interests in computational biology is sequence mining. It is more difficult to
extract knowledge hidden in the sequences than to generate biological sequences. Models and data analysis has become
a crucial aspect of biological sequence mining. Several tasks related to sequence mining such as pattern discovery,
classification, prediction and clustering can be carried out by statistical, neural network or data mining models [1 - 5].
Such techniques can be used to capture the knowledge or patterns in order to predict, classify or analyze the sequence
data. However, the phenomenal growth of sequence data has made the database search computationally intensive and
even more forbidding. Gene sequences in DNA are augmented with huge amount of information, but the intricacy and
complexity of this information makes difficult in analyzing it by using standard classical methods a challenging task.
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Genetic level analysis for identification of the species in mosquito is very crucial as the species act as a vector for
several diseases such as malaria, filarial, Japanese encephalitis and dengue. Among these diseases, burden of malaria is
fairly high and results in heavy toll of life. Anopheles  mosquito species act as a vector for malaria which is widely
spread throughout the globe [6 - 8]. Among 3,500 species of mosquitoes, nearly 430 are Anopheles in which around
30-40 species act as a vector for malaria. Aedes is a genus of mosquito originated in tropical and subtropical zones, but
it has spread through human activity to all continents with the exception of Antarctica [9]. The genus of Aedes contains
over 700 species. Many of the Aedes species transmit potentially serious human diseases. Culex is a genus of mosquito
in which several species serve as vectors of diseases. The genus of Culex has widespread geographical distribution [10]
and consists of about 767 species. Classical methods of distinguishing species through genetic analyses have reduced
dependence on error-prone morphological and anatomical bases of classification [11]. In the taxonomic classification it
is quite difficult to distinguish the sibling species that bear similar morphological and anatomical features but differ at
the genetic level. Therefore, for quick identification of a mosquito vector, it is always possible to target a conserved
sequence at the genetic level, which is pretty species specific and shows substantial difference even among the sibling
species. Internal Transcribed Spacer (ITS) region is widely used in taxonomy and molecular phylogenetics [12, 13]. The
ITS2 region located between the 5.8S and 28S gene is highly conserved and species specific. This region is commonly
used for DNA sequencing in mosquito genera of Anopheles, Culex, and Aedes [14]. The ITS2 region has been proven
useful for differentiating between closely related species of mosquitoes [15 - 17]. This region has also been extensively
targeted for species classification, phylogenetic and RNA structure-related analysis [18, 19].

More precise and efficient computational tools are needed to extract genetic level information in the gene sequences
and to distinguish mosquito species with minimum or no misclassification. Artificial Neural Networks (ANNs), as one
of the Artificial Intelligence (AI) methods, play important role in scientific investigations. ANNs have been used as
prediction  and classification  tools  for  several  applications  in  the  field  of  bioinformatics  including protein  structure
prediction [20, 21], DNA sequence analysis and biological pattern recognition [22 - 24], RNA structure related analysis
[13,  16,  19]  and  prediction  of  bacterial  promoter  sequences  [25  -  27].  Recently,  ANNs  are  also  used  for  species
identification in mosquitoes [28 - 30]. The wide use of ANNs for prediction and identification is due to their ease of
training and flexibility to process high amounts of information with good generalization ability. Although, ANN are
widely  used  for  classification  and  identification  problems,  most  of  the  ANN  models  aim  at  finding  the  network
parameters using a fixed network configuration. It may not be possible to train the ANN to reach a desired level of
performance if the network does not have enough computational units,  or if  the learning algorithm fails to find the
optimal network parameters.  Therefore, automatic configuration of the network while establishing optimal network
parameters is extremely useful in classification and identification of problems. In this work, a Radial Basis Function
Network (RBFN) methodology with automatic network configuration is presented for the identification of mosquito
species  based  on  the  genetic  pattern  information  content  of  ITS2  ribosomal  DNA  sequences.  A  number  of  data
sequences  in  varying  sizes  of  different  vectors  corresponding  to  Anopheline,  Aedes  and  Culex  are  used  to  develop
genera  specific  RBFN  species  identifiers.  Further,  a  comprehensive  RBFN  species  identifier  is  also  presented  for
mosquito species identification of more genera. The recall and generalization ability of the RBFN species identifiers are
analyzed and further validated through bootstrap validation method.

2. DATA SELECTION AND ITS SIGNIFICANCE

Precise identification of the target species of mosquito has direct medical and practical implications, particularly in
developing vector control strategies. Among the vector species of mosquito born diseases, the species belonging to the
genera  of  Anopheles,  Aedes  and Culex  are  reported to  be  involved in  the  transmission of  a  variety  of  vector-borne
diseases.  Prioritizing the need for  detecting the species  that  act  as  vectors  for  several  diseases,  the present  work is
targeted on the identification of species of mosquitoes of these three genera.

2.1. Data Collection

The ribosomal DNA sequence (ITS2) data of 15 species of Anopheles genera, 10 species each of Culex and Aedes
genera collected in fasta format from National Center for Biotechnological Information (NCBI) nucleotide data base
(www.ncbi.nlm.nih.gov/), is used for the computational experiment. Each sequence collected from NCBI nucleotide
data base has a specific accession number. For example, the ITS2 part of representative sample sequence of Anopheles
saporoi  belonging  to  the  Anopheles  genera  has  the  NCBI  accession  number  AY425338.1.  Similarly,  the  sample
sequence of  Aedes albiradius  belonging to the Aedes  genera has the NCBI accession number FM211137.1 and the
Culex pipens belonging to the Culex genera has the NCBI accession number AM084683.1. The length of the sequences
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varies in the range of 200 to 500.

2.2. Data Significance

Correct  vector  identification is  imperative  to  design strategies  for  managing vector-borne diseases.  Since many
closely related species of mosquitoes are nearly indistinguishable morphologically, it is difficult to identify mosquitoes
especially sibling species correctly. As a consequence, DNA-based approaches have gained increasing importance in
mosquitoes identification. The ITS2 ribosomal DNA sequences have proven to be useful for differentiating the closely
related species of mosquitoes. The ITS2 region, located between the 5.8S and 28S gene is found to be highly conserved
and  species  specific,  and  the  gene  sequence  data  of  this  region  deposited  in  NCBI  data  bank  is  considered  for
classification and analysis of the mosquito species. Though the identification of the species listed in NCBI data is based
on different criteria, the NCBI assigns a unique identifier to each species and the ITS2 region of the rDNA sequences
corresponding to the unique identifier is used to define the species.

3. RBFN SPECIES IDENTIFICATION METHODOLOGY

In  mosquitoes,  because  of  the  interspecific  variability  and  intraspecific  homogeneity  in  spacer  sequences,  the
species cannot be easily distinguished by just looking at the sequence information. The development of an efficient
species classifier is required to identify the closely related species of mosquitoes. Thus, an RBFN classifier with its
automatic configuration is developed for the identification of mosquito species based on the gene sequence information
contained in the conserved structure of the transcribed spacer, ITS2 region. The RBFN classifier presented in this work
is used to distinguish and identify the species of Anopheles, Aedes and Culex genera. Radial Basis Function Network
(RBFN) has been considered as viable tool for applications in systems modeling and state estimation [31 - 35]. The
RBFN architecture is simple and consists of one input layer, one hidden layer and one output layer, the structure of
which is shown in Fig. (1). The RBFN algorithm along with its automatic configuration is given in Appendix A.

Fig. (1). Radial basis function network.

3.1. Configuring RBFN for Species Identification

In  this  work,  RBFN  is  configured  for  mosquito  species  identification  using  the  data  of  ITS2  ribosomal  DNA
sequences corresponding to different mosquito vectors. The automatic configuration of the network is carried out by
using a Hierarchically Self-Organizing Learning (HSOL) algorithm. The RBFN used for mosquito species identification
has a three layered architecture with input, hidden and output layers, each layer comprising its own nodes, as shown in
Fig. (2). All nodes in the input layer are connected to the hidden layer nodes, and connections exist between the hidden
and  output  layer  nodes.  The  input  layer  represents  the  sequence  data,  the  hidden  layer  processes  the  nonlinear
information, and the output layer depicts sequence classes. The nodes in the input layer do not perform any numerical
processing; all numerical processing is done by the hidden and output layer nodes. The number of nodes in the input
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layer is dictated by the chosen sequence encoding schema and the number of the output layer nodes is determined by
the species classes representing the network. The nodes in the hidden layer are automatically configured by the HSOL
algorithm.  The  other  network  parameters  that  are  involved  in  configuring  the  RBFN are:  the  learning  rate  η,  error
margin εm,  initial  nominal variance σo,  initial  effective radius ro,  lower bound on radius rl,  radius decrement rate rd,
decay factor for error gradient α, and increment rate for saturation criterion β.

Fig. (2). RBFN structure for genera specific species identification.

3.2. Encoding of Species Data to RBFN

Data encoding plays a crucial role in configuring the RBFN model for species identification. The encoding method
can have a significant effect on the learning ability and accuracy of the gene classification system. The data encoding
should be in an acceptable format such that the trained network can make clear distinction between the different classes
of species data. ITS2 ribosomal DNA sequences of mosquito species are made up of four bases, Adenine-A, Thyamine-
T, Guanine-G and Cytosine-C. These bases are denoted by a numerical vector which forms the input to the network.
The numerical values to encode the input data sequences and to denote the output species are selected so as to yield
effective training and classification performance of the network. The bases of ribosomal DNA sequences A, T, G and C
representing the inputs to the network are coded with binary values by assigning with A = {0 0}, T = {0 1}, G = {1 0},
C = {1 1}. This input assignment requires the number of nodes in the input layer of the network to be twice the length
of the sequence. The output coding that represents the species names is expressed in real coding. The input and output
coding assigned for each of the species net is shown in Table 1. This coding is chosen after testing the network using
various input and output coding combinations.

3.3. Genera Specific RBFN Species Identifiers

The RBFN species identifiers are configured for each of the Anopheles, Aedes and Culex genera. The data of total
15 species of Anopheles genera, 10 species each Aedes and Culex genera is used for configuring the network. Each
species is considered with 4 sequences in which three sequences are used for training and one sequence is used for
testing.  Thus,  Anopheles  network involves 45 sequences for training and 15 sequences for testing.  Each Aedes  and
Culex network involves 30 sequences for training and 10 sequences for testing. The bases A, C, T, and G of ribosomal
DNA sequences representing the network inputs are coded with binary values and the species names specifying the
network output are coded with real numbers. The network structure shown in Fig. (2) is employed to treat the data given
in Table 1. The normalized data of outputs is used to train the networks along with the corresponding input data. The
network interconnection weights are initialized by assigning random numbers in the range of - 0.2 to 0.2. Each genera
net training involves the sequential treatment of the data sets of the input sequences to map with the output coding
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specified for the species. The species corresponding to each of the genera are randomly selected for training, and the
species that are not involved in training are randomly employed for testing.

The network should accommodate the rDNA data sequences of varying lengths in its training and prediction. For
this, the network input nodes are to be chosen so as to suit the sequence of any species irrespective of its size. After
studying  different  options,  a  simple  format  is  employed  to  manage  the  network  with  the  input  data  sequences  of
different sizes. According to this format, the number of input nodes to the network is specified in terms of binary coding
for the sequence that is larger in size. This format facilitates the network to accommodate the sequences of varying sizes
by appropriately filling the empty nodes with the binary codes of the last four bases of the respective sequence. This
approach of training and prediction to treat the data of rDNA sequences of different sizes has been proven useful in
earlier studies [29, 30].

Table 1. Input and Output data coding for species specific RBFN models.

S. No Genera Name Species Name Input Coding Output Coding

1
2
3
5
6
7
8
9
10
11
12
13
14
15

Anopheles

aconitus
annulipes
bancroftii

farauti
fluviatilis

lesteri
maculipennis

messeae
nuneztovari

oswaldoi
pullus

saperoi
sinensis

stephensi
subpictus

A = {0 0}, T = {0 1}, G = {1 0},
C = {1 1}.

10
20
30
40
50
60
70
80
90
100
110
120
130
140
150

1
2
3
4
5
6
7
8
9
10

Aedes

albiradius
ashworthi
australis

circumluteolus
cretinus

fontenillei
nigropterum

palpalae
punctor
simpsoni

A = {0 0}, T = {0 1}, G = {1 0},
C = {1, 1}.

10
20
30
40
50
60
70
80
90
100

1
2
3
4
5
6
7
8
9
10

Culex

erraticus nigripalpus
pilosus
pipiens
pallens
pipiens

salinarius
territans
tigripes

torrentium
tritaeniorhynchus

A = {0 0}, T = {0 1}, G = {1 0},
C = {1 1}.

10
20
30
40
50
60
70
80
90
100

In  RBFN  model  building,  the  HSOL  algorithm  enables  to  provide  comprehensive  learning  with  automatic
recruitment of RBFs while optimizing the network parameters. Input and output mapping comparison of target and
actual values continue until all the data sequences of the training species are learned within an acceptable over all error.
During the classification and generalization phase, the trained RBFN itself operates in a feed forward manner.

3.4. Comprehensive RBFN Species Identifier

The comprehensive species  identifier  is  a  multi-input  and single-output  RBFN, in  which all  the data  sequences
corresponding to the species of the three genera are treated as inputs to the network along with their corresponding
species names as the network outputs. As in individual RBFN, the bases A, T, G, C of ribosomal DNA sequences in
binary  coding  form  the  network  inputs,  and  their  corresponding  species  names  in  real  coding  denote  the  network
outputs. The structure of combined RBFN is similar to that in Fig. (2), where the data sequences corresponding species
of  all  the  three  genera,  along  with  the  corresponding  output  representation  given  in  Table  2,  are  sequentially  and
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iteratively used to train the network. The data of 105 random sequences from the 35 species of the three genera are used
for training and the untrained data sets of 35 sequences corresponding the species of all the three genera, are used to
evaluate  the  network  predictive  performance.  The  number  of  input  nodes  used  to  accommodate  the  sequences  of
varying lengths in comprehensive RBFN is the same as in individual RBFN. The network training is performed using
HSOL algorithm. The initialization of the network parameters in combined model is the same as in individual model.
All the data sets corresponding to input sequences with their binary coding, and the output species with their numerical
coding  are  sequentially  used  to  train  the  network  model.  The  network  parameters  are  optimized  to  establish  the
relationships between input  and output  data.  A quadratic  error  function,  based on the actual  and predicted outputs,
forms the objective function, which is minimized through iterative convergence.

Table 2. Input and output data coding for comprehensive RBFN model.

S.No. Genera name Species name Input coding Output coding
1
2
3
4
5
6
7
8
9
10

11
12
13
14
15
16
17
18
19
20
21
22
23
24

25
26
27
28
29
30
31
32
33
34

Aedes

Anopheles

Culex

albiradius
albopictus
ashworthi
australis
belleci

cinereus
circumluteolus

cretinus
fontenillei
geminus

albitarsis
Annuples
arabiensis
atroparves
culifacies

maculipennis
melanoon
nuneztvan

puulus
sachrov
saporoi
sinensis

sundacius
superpictus

erraticus
erythrothorax
nigripalpus

pilosus
pipiens

pipienspallens
pipiensquinquefasciatus

restuans
salinarius
tarsalis

        A = {0 0}
        T = {0 1}
        G = {1 0}
        C = {1 1}

        A = {0 0}
        T = {0 1}
        G = {1 0}
        C = {1 1}

        A = {0 0}
        T = {0 1}
        G = {1 0}
        C = {1 1}

10
20
30
40
50
60
70
80
90
100

110
120
130
140
150
160
170
180
190
200
210
220
230
240

250
260
270
280
290
300
310
320
330
340

4. RESULTS AND DISCUSSION

Individual  RBFN models  are  developed for  anopheles,  aedes  and culex  genera  using  the  input  and output  data
corresponding to the species of these genera. The presentation of data to RBFN is briefed in the earlier section. The
RBFN parameters are set  as:  learning rate (η)  = 0.00025, error margin (εm)  = 0.001,  initial  nominal variance (σo)  =
0.0021, initial effective radius (ro) = 5.0, lower bound on radius (rl )= 0, radius decrement rate (rd) = 0.995, decay factor
for error gradient (α) = 1.0 x 10-09, and increment rate for saturation criterion (β) = 1.0 x 10-05. For network training, all
the data sets representing the species inputs and outputs are sequentially employed in each iteration and iterations are
performed  until  the  network  is  optimally  configured  via  HSOL  algorithm.  The  number  of  iterations  required  for
convergence, number of RBFs generated, training error evaluated and training time required for each of the networks
are  given  in  Table  3.  The  trained  and  learned  RBFNs  are  then  subjected  to  assess  their  recall  and  generalization
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abilities.  In  the  recall  phase,  the  prediction  ability  of  the  trained  networks  is  evaluated  by  using  the  same  input
sequences  as  used  for  training.  Each  of  these  RBFNs  has  shown  almost  100%  recall  ability.  The  generalization
performance  of  the  networks  is  evaluated  by  using  the  species  sequences  that  are  not  involved  in  training.  This  is
referred  here  as  conventional  cross  validation.  Thus,  15  data  sequences  corresponding  to  the  species  of  anopheles
genera,  10  data  sequences  corresponding  to  the  species  of  each  aedes  and  culex  genera,  are  used  to  test  the
generalization ability of the individual RBFN models. The comparison of the model predictions with the actual output
species representations in Figs. (3-5) shows the effective generalization performance of the individual RBFN species
identifiers. The generalization ability of the RBFN models is further assessed in terms of Mean Squared Error (MSE)
and correlation coefficient (R2) defined in Appendix B. These results in Table 4 further demonstrate the efficiency of the
RBFN methodology for accurate identification of mosquito species based on the nucleotide data of ITS2 ribosomal
DNA sequences.

Fig. (3). Comparison of genera specific RBFN model predictions with actual species output codes of Anopheles genera.

Table 3. Converged parameters of RBFN species identifiers.

Modeling Configuration No. of Iterations No. of RBFNs Generated Minimum Training Error Training Time (Seconds)
Anapheles Net

Aedes Net
Culex Net

Combined Net

50
50
50
100

28
26
19
29

0.0013
0.0001
0.0041
0.0015

10
10
10
30

Fig. (4). Comparison of genera specific RBFN model predictions with actual species output codes of Aedes genera.
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Fig. (5). Comparison of genera specific RBFN model predictions with actual species output codes of Culex genera.

Table 4. Predictive performance of RBFN species identifiers.

Species Identifier
Conventional Cross

Validation
Bootstrapping Cross

Validation
MSE R2 MSE R2

Anapheles net 0.000196 0.98991 0.00323 0.9723
Aedes net 0.000187 0.99437 0.00043 0.9834
Culex net 0.000183 0.99745 0.00421 0.9856

Comprehensive net 0.000283 0.98330 0.00134 0.9753

A comprehensive RBFN model is also developed for species identification of anopheles, aedes and culex genera
using the input sequence data in binary coding and output species representation in real coding as given in Table 2. The
combined RBFN structure is similar to that of genera specific RBFN structure in Fig. (2) with multiple input nodes and
single output node. The parameters specified for this RBFN structure are same as in genera specific model structure.
The data representation as well as training of this comprehensive network is briefed in the earlier section. In contrast to
the  genera  specific  RBFN,  this  comprehensive  RBFN  model  involves  sequential  treatment  of  all  the  input  data
sequences representing the species of the three genera along with their respective species output coding. Thus, the data
sets in Table 2 are sequentially employed and iterated until the network is optimally configured by HSOL algorithm.
The number of iterations required for convergence, number of RBFs generated, training error obtained and training time
required  for  this  comprehensive  network  are  given  in  Table  3.  The  entire  code  was  written  and  executed  using  C
language. The computer configuration used is Intel(R) Core ™ i7-4702MQ CPU @ 2.20GHz 2.20 GHz and the system
type is 64-bit Operating System, x64-based processor.

The trained and learned comprehensive RBFN is further studied through conventional cross validation to assess its
recall and generalization ability. The comparison of this combined network model predictions with the actual species
representations for the recall and generalization phases are shown in Figs. (6 and 7). The generalization performance of
the combined network is further evaluated in terms of MSE and R2 as given in last line of Table 4. These results exhibit
better performance of the comprehensive model for species identification of mosquito genera.

Model validation is an important step in ascertaining the reliability of models before they can be used in decision
making.  The  predictive  performances  of  trained  and  learned  RBFNs  are  further  assessed  by  using  bootstrapping
procedure.  This  procedure  enables  to  validate  the  full  n-subject  model.  The  RBFN  parameters  of  individual  and
combined models for this approach are kept same as in earlier model configurations. According to this bootstrap, the
Anopheles genera net is validated by performing 9 rounds of bootstrapping with the use of all 45 gene sequences. In
each round, 40 data sequences corresponding to the species of Anopheles genera are randomly assigned for training
while the remaining 5 data sequences are assigned for validation. Thus, the model in each round is assessed through
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training and validation.  The same boot  strapping procedure  is  employed to  assess  the  performance of  other  genera
specific  RBFN  models  and  the  comprehensive  RBFN  model.  The  number  of  iterations  required  for  convergence,
number of RBFs generated,  training error obtained and training time required for the genera specific networks and
comprehensive network of this bootstrap procedure are found to be nearly same to that of trained and learned RBFN
models used in recall and generalization phases. The model validation results of MSE and R2 evaluated through the
bootstrap approach to assess the predictive accuracy of the fitted models are shown in Table 4. These results confirm
the predictive accuracy of the RBFN models developed in this study.

Fig. (6). Comparison of comprehensive RBFN model predictions with actual species output codes in recall phase.

Fig. (7). Comparison of comprehensive RBFN model predictions with actual species output codes in generalization phase.
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Recent studies have shown the effectiveness of intelligent computational tools such as Artificial Neural Networks
(ANN) for rapid and reliable identification of mosquito species. The genetic data base of mosquitoes has been exploited
by such methods to differentiate even closely related species of mosquitoes. Banerjee et al  (2008) [29] presented a
multilayered  feed-forward  neural  network  model  structure  for  classification  and  identification  of  mosquito  species
based on the Internal  Transcribed Spacer  2 (ITS2) data  of  ribosomal DNA string.  Two network models,  namely,  a
Multi-Input  Single-Output  Neural  Network (MISONN) and Multi-Input  Multi-Output  Neural  Network (MIMONN)
have  been  configured  in  which  the  MISONN  was  found  to  provide  effective  performance  in  distinguishing  and
identification of mosquito species. However, the above reported work was confined to the analysis of species of single
mosquito  genera  only  based  on  the  data  of  18  species  of  Anopheles  mosquito  vectors.  The  above  neural  network
modeling approach has been further extended by Venkateswarlu et al. (2012) [30] for classification and identification of
species of more mosquito genera by presenting a Hierarchical Artificial Neural System (HANS) in two levels, in which
the first level has a single network that serves as a genera classifier and the second level has multiple networks that
perform as species identifiers. Ribosomal DNA sequence data of 34 species of Anopheles, Aedes, and Culex genera,
each  species  with  6  sequences  were  used  for  training  and  validation.  The  method  of  HANS was  found  to  provide
accurate genera classification and rapid species identification. However, the genera net and species nets involved in
HANS  were  found  to  require  more  training  efforts.  Very  recently,  Lorenz  et  al.  (2015)  [36]  employed  ANN  for
identification and classification of mosquitoes based on the wing shape characters of the species. A data base of 32
principal components representing the wing shape characteristics of 17 mosquito species of Anopheles, Aedes and Culex
genera were analyzed by using a multi layer perception ANN classifier. Species identification by this method was found
to  be  accurate  enough.  Although  the  ANN  technique  of  Lorenzo  et  al.  can  handle  large  amount  of  data,  unique
variations  in  wing  shape  data  is  required  for  correct  analysis  of  mosquitoes.  Though  the  above  reported  ANN
configurations are found effective for classification and identification of mosquito species, their major limitation is the
heuristic configuration of the network parameters and computational units which may restrict them in achieving the
desired performance. The RBFN methodology of this work overcomes such a limitation by automatically configuring
the network with optimal selection of computational units.

This work differs from the earlier reported works with respect species involved for analysis as well as the method of
species identification. The analysis of the results exhibits accurate identification of mosquito species by genera specific
RBFN models, but their application is limited to the identification of species of individual genera. Even though, the
genera specific RBFN species identifiers of this work provides marginally improved performance over the Multi-Input
Single-Output  Neural  Networks  (MISONN)  of  earlier  reported  works,  the  major  advantage  comes  from  the
comprehensive RBFN of this work. The training effort as well as the training time required for this comprehensive
RBFN with automatic learning, is found to be much lower to the above reported neural network configurations. This
method is found to exhibit better species identification ability and it can be advantageously extended for identification
of species of more mosquito genera.

This  is  the  first  study  for  proposing  and  using  such  an  automatically  configured  RBFN  for  classification  and
identification of mosquito species based on ITS2 ribosomal DNA sequence data. Though the comprehensive RBFN
model of this study is quite useful for accurate identification of mosquito species of different genera, the computational
effort required for automatic configuration of RBFs and interconnection weights increases with the increase of number
of genera and species. The methodology can be applied with similar success to identify the other species of Anopheles,
Aedes  and Culex  genera as well as the species of other geographical varieties, if the network is trained properly by
involving analogous species of such genera.

CONCLUSION

Rapid and accurate identification of mosquito species are of paramount importance for taking control measures
against deadly diseases like malaria, filariasis, encephalitis, dengue and so on. Genetic identification is the conformation
for  any  kind  of  biological  classification.  The  data  sequences  of  ITS2  region  considered  for  mosquito  species
identification in this work are widely used to extract the phylogenetic relation due to their well-conserved nature in a
particular  species.  In  this  work,  a  Radial  Basis  Function  Network  (RBFN)  methodology  with  automatic  network
configuration is presented for identification of mosquito species based on the genetic pattern information content of
ITS2 ribosomal DNA sequences. A number of data sequences in varying sizes of different vectors corresponding to
Anopheline, Aedes and Culex are used to develop genera specific RBFN species identifiers and a comprehensive RBFN
species  identifier.  The  recall  and  generalization  ability  of  the  RBFN  species  identifiers  are  analyzed  and  further
validated  through  bootstrap  validation  method.  The  genera  specific  RBFN  models  are  found  to  provide  accurate
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identification of mosquito species of individual genera. The comprehensive RBFN species identifier is found to exhibit
better species identification ability and it has the added advantage of identifying species of more mosquito genera. Since
the RBFN computational  method designed for  species  classification involving reported NCBI data base has shown
effective classification efficiency, the method is expected to perform well for other data sequences if their analogues are
involved in training.
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APPENDIX A

RBFN Algorithm
In  RBFN,  the  nodes  in  hidden  layer  represent  radial  basis  functions  (RBFs),  which  are  characterized  by  the

following:

(i) A center vector mi in the input space, made up of cluster centers with elements mi
j (j = 1 to n).

(ii) A distance measure to determine how far an input vector I, with elements Ij (j = 1 to n), is from the center vector
mi as defined by

(A.1)

where ki
j is the (i,j) th element of the shape matrix K defined as the inverse of the covariance matrix:

(A.2)

where hi
j is the correlation coefficient, and σi

j represents marginal standard deviation.

(iii)  A Gaussian type of transfer  function which transforms the Euclidian summation di  (i  = 1 to m),  to give an
output for each node as defined by

(A.3)

where γ is a real constant.

The hidden layer processes the output from the input layer using the distance measure of Eq (A.1) and the transfer
function of the form given in Eq (A.3). The output of the network is a weighted sum of the outputs of ϕ (di) from the
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hidden layer, i.e.

(A.4)

Automatic Configuration of RBFN
An efficient algorithm, namely, hierarchically self-organizing learning (HSOL) algorithm is used to automatically

configure the RBFN. The HSOL algorithm automatically creates RBFs and adjusts parameter vectors of the RBFN.
Further details concerning the HSOL algorithm can be referred elsewhere [34], [37], [38].

A simple way of measuring the progress of learning for a single output network is by defining the root mean square
error, Erms for N teaching patterns

(A.5)

with

(A.6)

where tp represents the desired output value defined by the pth teaching pattern, Op represents the actual output value
of the pth teaching pattern, and n represents a column vector which is a collection of all parameters associated with the
output. The parameter saturation vector s is defined as

(A.7)

where α is a positive constant between 0 and 1, and p represents the p th teaching pattern presented to the network.
The vector s provides the weighted average of (∂Ep / ∂n) over the horizon of learning iterations. The saturation criterion
ρ is defined by the integration of the inverse of  as

(A.8)

where ds is dimension of s, b is small positive constant representing the increment rate of ρ, and p is the delay factor
defined as 1/α.

The network parameter update rules are derived from the negative gradient of the error function, Eq. (A.5).

The weights between the output and the i th RBF, wi:

(A.9)

The j th element of the mean vector, mi

(A.10)

The marginal standard deviation,σ i
j:
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(A.11)

The correlation coefficient, hi
jk:

(A.12)

The parameter vector of the output unit,

 is updated by

(A.13)

where η is the positive constant called the learning rate, and 

APPENDIX B
The mean squared error (MSE) is defined as

(B.1)

where yi and ŷ andare the target and predicted species output values and n is the number of data sequences used for
prediction.

The correlation coefficient (R2) is defined as

(B.2)

where  is the mean value of target measurements used for prediction.
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