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Abstract: Background: Accurate recognition of important gene sets from genome-wide gene expression profiles pro-

vides great insights into the underlying biological mechanisms that govern the gene expression dynamics. However, most 

gene set recognition algorithms rely solely on supervised sample phenotypic information, overlooking the unsupervised 

gene-gene expression correlations that are inherently informative in the gene expression profiles.  

Results: We developed a computational framework named PAGER (Pattern Acquisition and GEne-set Recognition) for 

identifying gene sets showing significant supervised and unsupervised patterns. We showcased the use of PAGER in sev-

eral recent expression profiling studies including cadmium treated rat primary hepatocyte toxicogenomics study and adre-

nal gland periodical gene expression profiling. Our results indicate that PAGER achieved better performance in discover-

ing truly important pathways from expression profiles which were undetected using current other existing tools. These re-

sults were further corroborated by literature and cytotoxicity experiments. 

Conclusions: PAGER integrated both supervised and unsupervised pattern metrics for gene set summarization. For each 

given gene set, PAGER provides a two-dimensional view showing its external activity and internal coherence pattern. 

PAGER employed statistical methods such as Relaxed Intersection-Union Tests, Stouffer’s method and Fisher’s method 

for integration of pattern significance. In addition, PAGER can be used for recognizing user-defined arbitrary gene set as 

demonstrated in one of our previous publications. PAGER is freely available for academic user at 

http://dengx.bol.ucla.edu/PAGER/PAGER.htm. 

BACKGROUND  

 Gene set recognition, a major apparatus for interpreting 
gene expression profiles, has been employed in a wide range 
of microarray-based studies ranging from Drosophila heart 
formation to human cancer mechanisms [1-9]. Gene set rec-
ognition refers to the computational task of identifying pre-
viously curated gene sets such as regulatory pathways and 
gene ontology. The appealing feature of gene set recognition 
comes from its capability to identify signal genes as func-
tional modules that give rise to more biologically interpret-
able results rather than sporadic significant genes. The basic 
and standard approach to gene set recognition is to use 
Fisher’s Exact Test (FET) to compare the microarray-derived 
gene list against each of the pathways, gene ontology groups 
in standard database such as GenMAPP [10;11] and Gene 
Ontology [12]. This simple FET approach has been imple-
mented in many data analysis tools [13-17]. In fact, virtually 
all gene set recognition algorithms involves in three basic 
steps: (1) each gene is assigned a score according to certain 
hypothesis; (2) for a specific gene set, a summarization sta-
tistic, called the enrichment score is computed from individ-
ual gene scores; and (3) a significance value is computed for 
each gene set enrichment score. For instance, the FET ap-
proach requires the users to retrieve the candidate gene  
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lists from the gene expression profiles, which is essentially 
equivalent to assigning a binary score for each gene indicat-
ing whether the gene is of interest or not. Then for each pre-
defined gene set the enrichment score is defined as the pro-
portion interesting genes. Finally, this enrichment score is 
tested against background of all genes using FET. An obvi-
ous drawback of FET is that the dependence on gene lists 
requires an arbitrary cutoff value for binary scoring, which 
often leads to inconsistent biological interpretations [18-20]. 
Subramanian, Tamayo, and Mootha [18] proposed an algo-
rithm named Gene Set Enrichment Analysis (GSEA) which 
used continuous scoring used for individual gene and gene 
sets. GSEA uses Kolmogorov–Smirnov statistic as an en-
richment score for each pathway, and then significance ac-
quisition and multiplicity adjustment procedures are per-
formed based on the enrichment scores. Subsequently, an 
array of modifications, primarily targeting on different sum-
marizing statistic and significance acquisition techniques, 
have been proposed [21-27]. 

 One common feature of the above mentioned methods is 
their heavy dependence on sample phenotypic information 
such as disease status, drug treatment, age, gender, which 
makes them a group of supervised gene set recognition 
methods. This feature, however, limited their usage in gene 
expression profiling studies for the following three reasons: 
(1) the manually curated gene sets in knowledgebase repre-
sent established functional modules, and their inherent or-
chestrated expression patterns are a major signature of the 
gene sets but were overlooked by the supervised methods; 
(2) as the gene expression profiling studies become increas-
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ingly complex, often involved with multiple phenotypes and 
unknown subgroups, the supervised scoring metric based on 
gene-phenotype correlations are becoming more difficult to 
define; and (3) some gene expression profiling studies em-
ploy unsupervised design by focusing on discovering co-
regulated gene expression pattern [28-30]. Because of these 
drawbacks, the supervised gene set recognition methods are 
only effective in simple studies such as a comparison be-
tween a treatment group and control group.  

 The challenge hence is to define and capture the true pat-
tern of the gene sets given the expression profiles. We dis-
tinguish the two aspects of the gene set pattern: the super-
vised gene set activity defined by the gene-phenotype corre-
lation structure and the unsupervised gene set coherence 
defined by the gene-gene correlation structure. The coher-
ence of each gene set not only served as a complement to the 
gene set activity, in some cases, it must be incorporated into 
gene set activity to avoid reduced recognition sensitivity and 
specificity [31]. For instance, a highly coherent pathway 
with low activity may not be important at all if the pathway 
genes that are constantly expressed across all samples. On 
the other hand, a highly active pathway with low coherence 
profiles may indicate its genes were activated through other 
pathways.  

 In this paper, we developed a computational framework 
named PAGER (Pattern Acquisition and GEne-set Recogni-
tion) which provides a two-dimensional view on gene sets 
defined by supervised activity and unsupervised coherence. 
PAGER allows one to choose activity or coherence or both 
for gene set recognition. For activity and coherence metrics, 
PAGER offers a set of expandable options based on specific 
study design. The major feature of PAGER hinges on its 
emphasis on its integration of both gene set coherence and 

activity for gene set recognition. Currently, the options on 
gene set coherence are generally not available in other soft-
ware, but nevertheless important for studies employing com-
plex design. Additionally, PAGER emphasizes a statistically 
justified integration method we developed before [32], in 
which the error is rigorously controlled and statistical power 
is improved over classical methods. As demonstrated in one 
of our published studies, PAGER was proved to be a power-
ful tool in identifying a set of known stem cell regulation 
genes in responding to the liver injury, providing evidence 
supporting our hypothesis that some factors released from 
the injured rat liver can promote bone marrow hepatic stem 
cells priming [33]. 

METHODS 

 The computational framework of PAGER consists of five 
steps: scoring, summarization, significance acquisition, inte-
gration, and adjustment. As described, although the first 
three steps were similar to many existing algorithms, 
PAGER computes both gene set activity and coherence with 
new summarization options. Then for each gene set, its sig-
nificance on coherence and activity were combined based on 
statistically principled methods to identify the gene sets that 
are active and/or coherent. In the scoring step, the pair-wise 
gene-gene coherence (GGC) and gene-phenotype activity 
(GPA) for each gene were computed according to user se-
lected metrics. The gene level scoring was subsequently 
summarized into gene set level enrichment score which con-
sists of coherence C(P) and activity A(P) for each gene set P. 
The summarization is followed by the significance acquisi-
tion in which the p-values of C(P) and A(P) were obtained 
based on the comparison with randomized gene sets which 
are used as the background null distribution. For each gene 
set P, its p-values of coherence and activity were then com-

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1). Illustration of PAGER framework for gene set recognition. 

1. Each gene set is superimposed onto the gene expression data 2. The GPA is computed for each gene in the gene set 3. The GGC is com-

puted for each pair of genes 4. GPA vector is summarized into the gene set activity 5. GGC matrix is summarized into gene set coherence 6. 

The permuted version of the gene set is generated for significance acquisition 7. The significance of gene set activity and coherence are inte-

grated 8. FDR is computed after all gene sets were processed for multiplicity adjustment. 

Coherence

0.0 0.2 0.4 0.6 0.8 1.0

A
c
ti
v
it
y

C
O

L
4

A
3

C
O

L
4
A

3

C
O

L
4

A
3

C
O

L
4
A

3

C
O

L
4
A

3

C
O

L
4

A
3

C
O

L
4

A
3

C
O

L
4

A
1

C
O

L
4
A

1

C
O

L
4

A
5

C
O

L
4

A
6

C
O

L
4

A
6

C
O

L
4
A

6

A
G

T

A
G

T
R

1

A
G

T
R

1

C
O

L
4
A

2

C
O

L
4

A
2

R
E

N

C
O

L
4
A

4

C
M

A
1

A
C

E
2

A
C

E
2

A
G

T
R

2

A
G

T
R

2

A
G

T
R

2

75%

50%

25%

samples

g
e
n

e

s

samples

g
e
n

e

s

g
e

n
e
s

genes

GGC matrix

Gene set databases

Gene Ontology

Kegg

BioCarta

…

p
e
rm

u
ta

ti
o

n

Expression profile

g
e
n

e
s

gpa

g
e
n

e
s

gpa

GPA vector

1

2

3

4

5

6 7

8



Pattern-Based Gene-Set Recognition The Open Bioinformatics Journal, 2008, Volume 2    3 

bined into a single integration p-value. The p-value integra-
tion is a necessary step to determine if a gene set is signifi-
cantly active and/or coherent. Then the false discovery rate 
(FDR) q-value was computed to adjust errors for testing 
multiple gene sets based on the p-value distributions of a 
given data base with multiple gene sets. The computational 
framework of PAGER is graphically illustrated in Fig. (1). 

1. Scoring 

 PAGER can handle samples belonging to either discrete 
phenotypes (such as gender) or continuous phenotypes (such 
as age). For each gene set P, the GGC scoring matrix M and 
GPA scoring vector z were established from its individual 
gene expression profile represented as gi and phenotype pro-
file phe: 

( , ),     ,ij i j i jGGC g g g g P=M , and 

( , ),     i i iGPA g phe g P=z           (1) 

 The scoring of M and z is based on the choice of coher-
ence function GGC(·) and the activity function GPA(·). For 
example, the Pearson’s correlation, Spearman’s rank correla-
tion, Hamming distance (after discretization), and the inverse 
of Euclidean distance are among the choices of the coher-
ence function. The choice of GPA(·) depends highly on spe-
cific experimental design and research hypothesis. For in-
stance, t-statistic or mean fold changes were suitable func-
tion for two-group comparison. The ANOVA f-statistic or 
coefficient of variance (CV) can be used for multi-group 
comparison. For continuous phenotypes, the GPA can be 
measured by Pearson’s correlation or other statistic that rep-
resents the research hypotheses. For measuring gene level 
activity, PAGER provides the options of parametric t-
statistic (without assumption of equal variance) or fold 
change for two-group comparison and ANOVA f-statistic or 
coefficient of variance for multi-group comparison. For con-
tinuous phenotypes, PAGER currently provides Pearson’s 
correlation or Spearman’s correlation. 

2. Summarization 

 In this step, gene set level statistic for measuring coher-
ence C(P) and Activity A(P) for each gene set P was com-
puted based on M and z respectively: 

( ) ( )C P = M , and ( ) ( )A P = z            (2) 

where ( )i  and ( )i are summarization functions on gene 
level scores M and z respectively. In PAGER, the maximum 
spanning tree was proposed as a better metric for gene set 
coherence C(P). This was done by modeling each gene set P 
as a graph with each of its genes a graph vertex and each 
entry Mij as the weight of the edge between gene pair gi and 
gj. Therefore the GGC matrix M was transformed into a 
graph adjacency matrix. The 

  (M)  was defined as the total 
weights of the maximum spanning tree edges which can be 
computed using the well-known Prim's algorithm or 
Kruskal's algorithm [34]. The maximum spanning tree sum-
marization could better capture the overall GGP structure 
than median or median of the elements in M as demonstrated 
in our results. It was shown that the majority of the activated 
gene sets has more than one conserved patterns in the ex-
pression profiles (see Results for detail). To summarize the 
gene set activity A(P), PAGER adopted the GSA max_mean 

statistic [23], GSEA Kolmogorov–Smirnov statistic [18], or 
mean(z) as options for the summarizing function 

  (i) .  

3. Significance 

 The significance of gene set activity and coherence were 
obtained by gene randomization. In GSEA, the significance 
was obtained using label permutation [18]. However label 
permutation incurs a big cost as it requires simple study de-
sign, but large sample size to obtain a sufficient number of 
permutations that can lead to any significant gene sets. 
PAGER circumvented the sample size problem by adopting 
gene randomization. For each gene set P of size m, we ran-
domly select m genes from the set of all genes without re-
placement to construct a random gene set. We draw B such 
random gene sets notated as P

1
, P

2
,…, P

B
 and compute 

( )iC P and ( )iA P for i=1,…,B. It is easy to obtain p-
values using the random gene sets as the background null 
distribution: 

#{ ( ) ( )}i

C

C P C P
p

B
= , and 

#{ ( ) ( )}i

A

A P A P
p

B
= .           (3) 

 The p-values of gene set coherence and activity were 
notated as pC and pA respectively.  

4. Integration 

 Based on the p-values pA and pC for each considered gene 

set, the integration is essentially a multiplicity error adjust-

ment procedure. In PAGER, the integration of statistical sig-

nificance can be performed in two ways: the meta-analysis 

approach and the Intersection-Union Test (IUT) approach. 

There is a subtle but important difference between two inte-

gration approaches. The integrated significant p-value using 

the meta-analysis approach provides the overall significance 

of activity and coherence of a given gene set; whereas the 

integrated significant p-value using the IUT approach indi-

cates the gene set’s activity and coherence are both signifi-

cant. The meta-analysis methods include the well known 

Fisher’s method [35;36] and Stouffer’s method [37]. Fisher’s 

method for computing combined p-value pFisher is computed 

as:
  
X

4
2
= 2(log

e
p

C
+ log

e
p

A
)  

and
  
p

Fisher
= p

C
p

A
( p

C
p

A
ln p

C
p

A
) . Stouffer’s method can 

be expressed as
  
Z

Stouffer
= (Z

C
+ Z

A
) 2 , where 

   
Z

i
= SD _ Normal _ Inv( p

i
) , the Z-score corresponding to the 

tail probability of standard normal distribution. 

 The selection of integration method is dependent on spe-
cific research hypothesis and study design. The meta-
analysis is more sensitive thus can give rise to more signifi-
cant gene sets, but it is more susceptible to make false posi-
tives than the IUT approach. Alternatively, the IUT approach 
provides a more rigorous and conservative way against ex-
cessive false positives than meta-analysis. IUT combines 
activity and coherence tests into a single test which rejects 
the combined null hypothesis if both of the individual tests 
reject. In PAGER, we adopted our previously developed 



4    The Open Bioinformatics Journal, 2008, Volume 2 Deng and Wang 

method for performing rigorous and powerful IUT [32], 
which has an adjusted IUT p-value p’ expressed as 

2(1 ) (1 ) (1 )(1 )
'

1

A C A C C A

C A

p p p
p

+ +
= ,        (4) 

where p = max(pC, pA) is the unadjusted IUT p-value [38] 
and C and A are the true probabilities of alternative hy-
potheses. The nuisance parameters ( C, A) can be estimated 
from all gene sets. Since there are usually hundreds of genes 
available for each statistical test, we can obtain crude and 
conservative estimates of the parameters according to the 
following equations [39;40]:  

#{ ( ) }
ˆ ( )

(1 )

C
C

p j

n

<
= , #{ ( ) }

ˆ ( )
(1 )

A
A

p j

n

<
= ,  

i =1, 2, j =1,…, n            (5) 

where n is the total number of curated gene sets,  is a cho-
sen fixed value and pC(j) and pA(j) represent the p-values for 
the coherence and activity on the jth gene set. It was shown 
that this approach is more powerful than or as powerful as 
the unadjusted IUT approach with feature of rigorously con-
trol type 1 error at the nominal significance level [32]. Steps 
1-4 were repeated to obtain the pC and pA for each gene set in 
the database. 

5. Adjustment 

 Because hundreds of gene sets are being tested, it is cru-
cial to perform multiplicity adjustment to avoid excessive 
type 1 error. In our case studies, the p-value computation 
was followed by false discovery rate (FDR) q-value adjust-
ment using the direct FDR approach [39;40]. The FDR pro-
cedure was performed on the distributions of pA, pC, and pI 
respectively. 

RESULTS  

Gene Set Database and Software 

 In our case studies, we use the MSigDB Version 2 Col-
lection 2 [18]—a collection of curated gene sets from multi-
ple sources—as the main gene set database for testing. To 
ensure a high quality collection of gene sets, the source data-
base were limited to KEGG [41;42], GenMAPP [11], and 
Broad Institute, resulting in 394 candidate gene sets in our 
test database.  

 Due to the intensity of computation required, PAGER 
was released as a stand alone desktop application. PAGER 
was implemented in C++ and has an optional graphic user 
interface implemented in C#. PAGER is compatible with any 
public or user-edited gene sets in MSigDB gene set format 

Table 1. Significant Gene Sets Identified by PAGER in the Time-Course Gene Expression Profile of Rhesus Macaque Adrenal 

Gland  

Gene Set pC pA pI qC qA qI 

GPCRDB_CLASS_A_RHODOPSIN_LIKE 0.001 0.001 0.001 0.026 0.041 0.006 

GAMMA_HEXACHLOROCYCLOHEXANE 

_DEGRADATION 
0.001 0.001 0.001 0.026 0.041 0.006 

ACETAMINOPHENPATHWAY 0.014 0.001 0.001 0.135 0.041 0.006 

ASBCELLPATHWAY 0.006 0.001 0.001 0.100 0.041 0.006 

TRYPTOPHAN_METABOLISM 0.002 0.001 0.001 0.042 0.041 0.006 

PEPTIDE_GPCRS 0.105 0.001 0.001 0.383 0.041 0.034 

STATIN_PATHWAY_PHARMGKB 0.093 0.002 0.001 0.373 0.075 0.039 

FIBRINOLYSISPATHWAY 0.035 0.007 0.001 0.222 0.188 0.037 

TCAPOPTOSISPATHWAY 0.002 0.047 0.001 0.042 0.503 0.034 

LYMPHOCYTEPATHWAY 0.046 0.003 0.001 0.270 0.106 0.034 

GPCRDB_OTHER 0.015 0.010 0.001 0.141 0.238 0.034 

EXTRINSICPATHWAY 0.098 0.001 0.001 0.377 0.041 0.034 

TH1TH2PATHWAY 0.083 0.001 0.001 0.356 0.041 0.034 

INFLAMPATHWAY 0.032 0.017 0.002 0.216 0.297 0.057 

BIOGENIC_AMINE_SYNTHESIS 0.163 0.001 0.002 0.438 0.041 0.048 

NOS1PATHWAY 0.006 0.096 0.003 0.100 0.710 0.074 

BLOOD_CLOTTING_CASCADE 0.145 0.009 0.008 0.416 0.226 0.154 

ERBB4PATHWAY 0.001 0.393 0.009 0.026 1.000 0.154 

IL17PATHWAY 0.207 0.006 0.009 0.480 0.174 0.154 

ARGININECPATHWAY 0.009 0.170 0.009 0.118 0.907 0.154 

CHOLESTEROL_BIOSYNTHESIS 0.001 0.391 0.009 0.026 1.000 0.154 

TYROSINE_METABOLISM 0.235 0.005 0.010 0.500 0.157 0.154 
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[18] and it is capable of handling gene expression samples 
belonging to either discrete phenotypes or continuous pheno-
types. PAGER also supports standard gene-by-sample 
spreadsheet format or the structured SOFT format. Along 
with a graphic view for each gene set, the outputs of PAGER 
include a sortable table of p-values and q-values on gene set 
activity, coherence and integration. The released resources 
include the PAGER software and source code, the initial 
gene set data base, and the accompanying documentation. 

Case Study 1: Time Course Gene Expression Profiling in 
the Rhesus Macaque Adrenal Gland 

 The data set involves expression profiles of whole adre-
nal glands collected at 4-hour intervals across a 24-hour pe-
riod at 7 am, 11 am, 3 pm, 7 pm, 11 pm, and 3 am of 22,283 
transcripts from adult female Rhesus macaques. The normal-
ized data can be downloaded from the Gene Expression Om-

nibus (GEO) using record number GDS2110 [43]. We use 
Coefficient of Variance across six time points as a measure 
of GPA for each transcript. Pearson’s correlation coefficients 
were used to measure GGC. The gene set summarizing sta-
tistic for gene set activity is GSA max-mean statistic, and for 
coherence is MST. Stouffer’s method was used for integrat-
ing gene set activity and coherence. With the number of ran-
domization set at 1000, we identified 22 significant gene sets 
with integrated p-value less than 0.01 and q-value less than 
0.2 (Table 1). Extremely small (< 5) or large (> 200) gene 
sets were eliminated, resulting in 382 candidate gene sets 
with size 5-200. 

 PAGER allow us to identify G-protein coupled receptors 
(GPCRS) related gene sets (GPCRDB_Class_A_Rhodopsin_ 
Like Peptide,_GPCRS, GPCRDB_Other), blood-clotting 
related gene sets (Blood_Clotting_Cascade, Fibrinoly-
sis_Pathway) and immune system gene sets 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 

Fig. (2). Unsupervised coherence tree structure and supervised activity scores of gene set Cholesterol_Biosynthesis*. 

*Based on the data set GDS2110 from GEO. The Cholesterol_Biosynthesis gene set is not significant in its activity (pA=0.391) but signifi-

cant in its coherence (pC=0.001) with peak expression at 7 PM – 11 PM for the majority of its genes. The height of each gene symbol was 

displayed proportionally to its activity score so that highly activated genes will stand out from the background. The 25%, 50%, and 75% 

quantile lines across all gene activity scores were also displayed. Gene-gene correlations were displayed in a clustered fashion and were used 

for the summarization of gene set coherence. The p-values and adjusted q-values for the gene set coherence, activity and integration were 

also displayed. 
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(Asbcell_Pathway, Th1Th2_Pathway) which were not re-
ported in the original study [44]. However, their highly sig-
nificant integrated p-values plus the recent findings [45;46] 
suggest the significance on their time-specific regulation in 
adrenal gland. 

 Our analysis also confirmed the findings in the original 
report [44] that Cholesterol_ Biosynthesis was periodically 
regulated on a daily basis. This gene set displayed a highly 
significant coherence (pC = 0.001) with peak expression at 7 
pm and 11 pm but its activity was not significant (pA= 
0.391). Fig. (2) shows the graphic output of the two-
dimensional activity-coherence structure of the Choles-
terol_Biosynthesis gene set. In contrast, Bio-
genic_Amine_Synthesis gene set displayed high activity 
(pA=0.001) but nevertheless showed non-coherent 
(pC=0.163) expression pattern (Fig. 3). These cases clearly 
demonstrated the advantage of investigating gene set path-
way pattern by looking into both coherence and activity. 

 For the gene set Fibrinolysis_pathway, there is a large 
difference in significance between MST summarization (pC-

MST = 0.035) and mean summarization (pC-Mean= 0.261) in 
summarizing the gene set coherence. This demonstrated that 
the selection of different summarizing statistic could lead to 
different test conclusions. As shown in Fig. (4), genes dis-
played their expression in different rate in this given gene 
set. The genes formed three clusters with their expressions 
peak at early, middle, or late stage of a 24 hour period. The 
use of MST could better capture the non-random structures 
of gene-gene correlation.  

 These examples demonstrated that using activity or co-
herence measure alone would miss certain patterns that are 
important in adrenal gland gene regulation [44]. To further 
elucidate this, we showed the joint distribution of pC and pA 
among the 464 gene sets. The very weak correlation between 
the two measures indicates that pathways with significant 
activity may not imply its significance in coherence and vice 
versa (Fig. 5). Therefore the joint distributions of gene set 
activity and gene set coherence shown in Fig. (5) further 
justified the need of testing both activity and coherence for 
better gene set recognition. These results clearly demonstrate 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (3). Unsupervised coherence tree structure and the supervised activity scores of the gene set Biogenic_Amine_Synthesis*. 

* Based on the data set GDS2110 from GEO. The gene set is not significant in its coherence (pC=0.163) but significant in its activity 

(pA=0.001) with the majority of its genes showing activity that are far above average (50% quantile) among all genes on the microarray. 
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the capability and advantage of PAGER by distinguish and 
integrate the two aspects of gene set pattern, the supervised 
activity and unsupervised coherence.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (4). Unsupervised coherence tree structure and the super-

vised activity scores of the gene set Fibrinolysis_Pathway*. 

* Based on the data set GDS2110 from GEO. The figure shows 

three distinct gene expression patterns with peak expression at 

7AM, 7PM, and 3AM, respectively, in a 24-hour period. 

 

Case Study II: Rat Primary Hepatocyte Time-Course 

Toxicogenomics Study 

 To further demonstrate the flexibility and applicability of 
PAGER, we applied it on the rat toxicogenomics data set 
generated in one of our lab [47]. This study employed a more 
complex study design, in which gene expression profiles 
were monitored in primary rat hepatocytes exposed to cad-
mium in multi-dosage levels and at multi-time points. 
Briefly, primary rat hepatocytes were isolated and were ex-
posed to cadmium acetate (0, 1.25 and 2.0 μM) for 2 h. Cells 
were collected at 0, 3, 6, 12 and 24 h in all three groups (0, 
1.25 and 2.0 μM Cd) for mRNA expression profiling using 
Affymetrix RatTox U34 (RT U34) array which contains 
~972 probe sets representing ~800 important toxicology-
related genes. The microarray experiment was repeated with 
hepatocytes from 3 animals, each with 2 replicates (inde-
pendent cultures) for each dose (3 doses) at each time point 
(5 time points), resulting in a total of 90 chips (3 animals · 2 

replicates · 3 doses · 5 time points). The two replicates were 
averaged in our analysis.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (5). Joint p-value distribution between gene set coherence 

and activity across 464 gene sets*. 

Note: * Analysis based on the data set GDS2110 from GEO. 

 
 We were interested in identifying the gene sets that are 
responsive at both lower dose (1.25 μM) and higher dose 
(2.0 μM) cadmium treatments respectively. To measure the 
treatment effect, expression values were normalized as log-
fold change between a treatment (1.25 and 2.0 μM) and its 
corresponding control (0 μM). The sum of the absolute log-
fold changes across three animals and five time points was 
used as a measure of activity GPA for each transcript. Pear-
son’s correlation coefficients of the log-fold changes were 
used to measure pairwise GGC. GSA max-mean statistic was 
used for summarizing activity and MST was used for sum-
marizing coherence. Extremely small (< 5) or large (> 200) 
gene sets were eliminated in this analysis, resulting in 142 
gene sets with size ranging from 5 to 200. Because the RT 
U34 contains a fairly small number of genes, the 142 gene 
sets cannot be assumed independent, which violates the as-
sumption of the FDR control procedures. Therefore, we in-
tentionally skipped the FDR step and applied the stringent 
integration IUT method as well as a rigorous p-value 
(p<0.005) to determine significance of gene sets.  

 Table 2 and Table 3 listed 16 and seven significant gene 
sets that were identified by PAGER for the higher dose (2.0 
μM Cd) and low-dose (1.25 μM Cd) treatments, respectively. 
Many of the identified gene sets were known to be related to 
toxic chemical responses such as apoptosis, cell death, stress, 
HSP, and NF- B regulated gene sets. In addition, all seven 
gene sets identified at lower dose were also identified at 
higher dose treatment, which indicates there is a dose-
response effect due to cadmium treatment in rat primary he-
patocytes. The higher dose treatment induced more drastic 
cell response than the lower dose treatment did, as demon-
strated by the generally lower p-values in the higher dose 
treatment (2.0 μM Cd) compared with that in lower dose 
treatment (1.25 μM Cd ) for each gene set. Similar to previ- 
ous study, we also observed that using supervised activity 
alone is not sensitive enough to recognize some important
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Table 2. Significant Gene Sets Identified by PAGER in Rat Primary Hepatocytes Treated with Higher-Dose Cadmium 

Gene Set pC pA pI 

P53HYPOXIAPATHWAY 0.001 0.001 0.000 

PPARAPATHWAY 0.002 0.001 0.000 

IL1RPATHWAY 0.006 0.002 0.001 

NTHIPATHWAY 0.001 0.013 0.001 

NFKBPATHWAY 0.007 0.005 0.001 

HSP27PATHWAY 0.001 0.021 0.002 

HIVNEFPATHWAY 0.001 0.020 0.002 

41BBPATHWAY 0.001 0.021 0.002 

APOPTOSIS 0.001 0.017 0.002 

TOLLPATHWAY 0.001 0.026 0.003 

STRESSPATHWAY 0.002 0.028 0.003 

APOPTOSIS_GENMAPP 0.001 0.031 0.004 

ATMPATHWAY 0.025 0.032 0.004 

TIDPATHWAY 0.030 0.001 0.004 

DEATHPATHWAY 0.002 0.038 0.005 

GAMMA_HEXACHLOROCYCLOHEXANE_DEGRADATION 0.041 0.041 0.005 

 

Table 3. Significant Gene Sets Identified by PAGER in Rat Primary Hepatocytes Treated with Lower-Dose Cadmium  

Gene Set pC pA pI 

NTHIPATHWAY 0.001 0.002 0.000 

NFKBPATHWAY 0.003 0.001 0.000 

PPARAPATHWAY 0.003 0.001 0.000 

P53HYPOXIAPATHWAY 0.006 0.001 0.001 

TIDPATHWAY 0.009 0.001 0.001 

HIVNEFPATHWAY 0.009 0.030 0.004 

APOPTOSIS 0.034 0.041 0.005 

 
gene sets. For example in the higher dose treatment, 12 of 16 
significant gene sets such as Apoptosis_GenMapp, 
Toll_Pathway, and Death_Pathway had no significant activ-
ity (pA>0.005). However, PAGER showed (Table 2) that 
their integrated gene set patterns were all significant (pI 

<0.005). In fact, the activation of these gene sets was cor-
roborated by cytotoxicity experiments which showed a sub-

stantial cell death by lactate dehydrogenase (LDH) leakage 
due to cadmium treatment [47-49]. This case study clearly 
demonstrated the advantage that the integration of gene set 
coherence in PAGER greatly contributed to recognizing and 
identifying these coordinated but moderately active gene 
sets.  
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 Time course gene expression profiles were ideally suited 
for gene set analysis because they provide more dynamic 
information than single-time-point experiment. We per-
formed gene set recognition along the time course and com-
puted the p-values at each time point which allows to moni-
toring the gene set activity across the time course. Two gene 
sets showing monotonous p-value dynamics were observed. 
Both were cancer-related gene sets (Brentani_Death, Bren-
tani_Transcription_Factors) that were manually curated us-
ing expressed sequence tags [50]. The cancer-related tran-
scription factors (Brentani_Transcription_Factors) displayed 
high significant p-values at 0h, and the p-values continu-
ously increase along the 24 hour course. The death gene set 
(Brentani_Death) showed the opposite dynamics (Fig. 6). 
This indicates that the transcription factors were turned on 
soon after cadmium exposure, whereas the death genes were 
activated at later stages, which confirms our previous analy-
sis using literature-based text mining [47].  

 

 

 

 

 

 

 

 

 

 

 

Fig. (6). The p-value dynamics of cancer related death gene set 

and transcription factor gene set in response to cadmium treat-

ment*. 

The cumulative effects of cadmium treatment (2.0 μM Cd) on two 

gene sets were illustrated by the gene set p-values computed along 

the time course, i.e., 0h (1 time point), 0..3h (2 time points), 0..6h (3 

time points), 0..12h (4 time points), and 0..24h (5 time points). 

 

CONCLUSIONS  

 As the gene set databases become increasingly compre-
hensive and accurate, treating genes in unity as sets can help 
interpret the pattern of gene expression profiles and reduce 
erroneous discovery. We developed a new gene set recogni-
tion framework, PAGER, which distinguish two distinct as-
pects of gene set pattern—activity and coherence. Therefore 
PAGER provides a two-dimensional view which helps in 
revealing the hidden patterns, especially the internal coher-
ence for a given gene set. Another advantage of PAGER 
comes from its expandable framework with features and op-
tions for addressing complex expression study design. Our 
results showcased PAGER’s flexibility and capability on 
physiological and toxicogenomics data sets which represent 
typical microarray gene expression profiles. In addition to 
the classical gene sets such as pathways and gene ontology, 
experimentally or computationally derived gene sets can be 
used as well. One of the limitations of PAGER and many 

other gene set recognition tools is the mathematical simplifi-
cation of regulatory pathways as gene sets. This simplifica-
tion could greatly reduce the modeling and computational 
complexity but it overlooks the topology and interactions 
between pathway genes. We are currently developing a 
method that can incorporate the gene interaction information 
to look into the detailed gene activation cascades throughout 
the pathways. We predict that the gene-set recognition tools 
will play critical role in integrative genomics and systems 
biology. 

ADDITIONAL FILES 

Additional File 1 – PAGER User’s Manual 

 The source code, compiled program and user’s manual 
can be accessed at http://dengx.bol.ucla.edu/PAGER/ 
PAGER.htm. PAGER and its resources are distributed under 
the terms of the GNU General Public License version 2 or 
later.  
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