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Abstract: Development of accurate -turn (beta-turn) type prediction methods would contribute towards the prediction 

of the tertiary protein structure and would provide useful insights/inputs for the fold recognition and drug design. Only 

one existing sequence-only method is available for the prediction of beta-turn types (for type I and II) for the entire pro-

tein chains, while the proposed method allows for prediction of type I, II, IV, VII, and non-specific (NS) beta-turns, filling 

in the gap. The proposed predictor, which is based solely on protein sequence, is shown to provide similar performance to 

other sequence-only methods for prediction of beta-turns and beta-turn types. The main advantage of the proposed method 

is simplicity and interpretability of the underlying model. We developed novel sequence-based features that allow identi-

fying beta-turns types and differentiating them from non-beta-turns. The features, which are based on tetrapeptides (entire 

beta-turns) rather than a window centered over the predicted residues as in the case of recent competing methods, provide 

a more biologically sound model. They include 12 features based on collocation of amino acid pairs, focusing on amino 

acids (Gly, Asp, and Asn) that are known to be predisposed to form beta-turns. At the same time, our model also includes 

features that are geared towards exclusion of non-beta-turns, which are based on amino acids known to be strongly detri-

mental to formation of beta-turns (Met, Ile, Leu, and Val). 

Keywords: Secondary protein structure, Beta-turns, Beta-turn types, Prediction, Collocation of amino acid pairs, Support vec-
tor machine. 

INTRODUCTION 

 The secondary structure of a protein consists of helices, 

beta-strands and coils, where the coil region comprises tight 

turns, bulges and random coil structures [1]. Tight turns are 

believed to be important structural elements in regards to 

protein folding and molecular recognition processes between 

proteins, which has lead to interest in mimicking beta-turns 

for medicine synthesis [2, 3]. Tight turns are classified as -

turns, -turns, -turns, -turns and -turns, where a -

turn (beta-turn) is a four-residue reversal in the protein chain 

that is not in an -helix. While characterization and predic-

tion of -turns attracted some research attention [4-7], our 

research focuses on beta-turns. We observe that beta-turns 

are the most common turn type, and make up, on average 

one quarter of all residues in proteins [8]. Formation of beta-

turns is also a vital stage during the process of protein fold-

ing [3]. Therefore, development of accurate beta-turn predic-

tion methods would be a valuable step towards the overall 

prediction of the three-dimensional structure of a protein 

from its amino acid sequence and could provide insights and 

inputs for the fold recognition and drug design. 

 The beta-turns can be classified into nine different types 
based on the  and  angles of the two central residues [9]. 
As a result, prediction of the location of beta-turn types, in 
contrast to a binary prediction that would identify location of 
beta-turns, would provide additional, structural, information 
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that concerns the  and  angles. A commonly used 

benchmark dataset of 426 non-homologous protein chains 

[10], which have been used to rank and test several methods 

for prediction of beta-turn types [11, 12], reveals that some 

of these types are infrequent and thus they are commonly 

combined together [11]. To this end, we focus on prediction 

of beta-turn types I, II, IV and VIII, while the remaining 

types I’, II’, VIa1, VIa2 and VIb, which only make up 304, 

165, 44, 17 and 70 respectively out of the total 7153 beta-

turns in the aforementioned dataset have been combined into 

one set referred to as non-specific (NS), which is consistent 

with [11]. The challenging aspect of the beta-turn type pre-

diction is that these turns are not isolated in a chain. Quite 

the opposite, in fact, Hutchinson and Thornton (1994) report 

that 58% of beta-turns overlap with another beta-turn, i.e., 

they share one or more residues with another beta-turn [9]. 

 There exist a number of recent works that address predic-

tion of beta-turn types, which can be divided into two cate-

gories, statistical methods and machine learning based meth-

ods. Statistical methods utilize probabilities computed using 

information regarding the preference of individual amino 

acid types at each position of the beta-turn to form a turn. 

The most promising of which is COUDES [13], which is 

based on propensities of individual residues augmented with 

the information coming from multiple sequence alignment. 

The position-specific score matrix (PSSM), which is calcu-

lated with PSI-BLAST [14], was used to weigh propensities 

for a given residue, so that all the residues present in the 

multiple alignment at this position are taken into account. 

Secondary structure information predicted by PSIPRED 
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[15], SSPRO2 [16], and PROF [17] and the flanking residues 

around the beta-turn tetrapeptide were utilized to improve 

the prediction accuracy. The COUDES method uses a win-

dow of size 12 with prediction being made on the four cen-

tral (with respect to the window) residues. 

 The machine learning methods include BETATURNS 

[11] and BTPRED [12], which are based on artificial neural 

networks (ANN), and a hybrid multinomial logistic regres-

sion and ANN model [18]. BTPRED encodes the sequence 

using a large window of 11 residues centered over the pre-

dicted residue together with secondary structure predicted 

with PHDsec [19] to perform predictions. The window is 

used to incorporate the effects of neighboring residues on the 

formation of beta-turns. BETATURNS is an improved neu-

ral network design, in which two networks are used. The first 

network uses the sequence together with the PSSM as the 

input, and its output is fed along with the PSIPRED pre-

dicted secondary structure of the central residue into the sec-

ond network that produces the predictions. BETATURNS 

employs a window of 9 residues where prediction is made on 

the central residue. Finally, the multinomial logistic regres-

sion model uses a two-stage hybrid approach and considers 

only beta-turns. The latter method is not used for the predic-

tion of the location of beta-turns, but it allows differentiating 

different types of beta-turns based on the underlying 

tetrapeptides while it does not consider non-beta-turn se-

quence segments, i.e., it predicts a beta-turn type for a given 

tetrapeptide that corresponds to a beta-turn. 

 In comparison with the methods that predict beta-turn 

types for entire protein sequences outlined above, which 

include [11-13] and which use significant amount of auxil-

iary information such as PSSM and predicted secondary 

structure, it is clear that a method based solely on the protein 

sequence would be simpler to design and execute. However, 

this may lead to reduced quality as only limited information 

(sequence) relative to the competition would be used. The 

motivation for our sequence-based design comes from work 

of Chou and colleagues who found that support vector ma-

chine (SVM) classifier can be used to express the relation 

between different beta-turns types or non-beta-turns and the 

underlying tetrapeptides [20]. They observed that the accura-

cies of self-consistency (prediction on the training set) test 

for beta-turn types I, I’, II, II’, VI and VIII and non-beta-

turns are over 97%. This was a follow up on their previous 

study in which they verified that the relation between the 

tetrapeptides and the beta-turns types can be expressed using 

a probabilistic approach [21]. The authors applied their se-

quence-coupled model [5, 21, 22] to perform prediction for a 

selected set of tetrapeptides, and applied this model to pre-

dict beta-turn types for the rubredoxin protein [1]. This is 

similar to work done in [18], except that in this case the non-

beta-turns were considered in building the predictive model. 

We also note that only two sequence-only based method 

(method that uses as the input only the protein sequence and 

no sequence derived information such as PSSM or predicted 

secondary structure) are available for prediction of beta-turn 

types [1, 23]. The method in [23] addresses prediction of 

only type I and type II beta-turns, while the method in [1] 

predicts beta-turn types I, I’, II, II’, VI, and VIII, which are 

different than targets addressed by newer prediction methods 

[11]. This provides additional motivation for the develop-

ment of the proposed method. The consideration and em-

ployment of the window is a fundamental difference in our 

approach relative to those listed above. BTPRED, 

BETATURNS, and COUDES methods predict the beta-turn 

type of individual residues (using a sliding window centered 

over the predicted residue), whereas our method predicts 

entire tetrapeptides as either a given beta-turn type or a non-

beta-turn. Unlike the other methods, this results in features 

that are more biologically relevant and that are better for 

describing full beta-turns vs. non- beta-turns as opposed to 

simply identifying residues that are apt to be in beta-turns.  

 Our intention is to develop a method that gives similar 

performance to the aforementioned methods but with a main 

goal of creating a simple predictive model that allows deri-

vation of sequence based factors which facilitate differentia-

tion between different beta-turn types and non-beta-turns. 

MATERIALS AND METHODOLOGY  

Datasets 

 Three nonredundant datasets were used through the 

course of this study. The first, which was used for feature 

selection, was prepared in [18] to design method that differ-

entiates different types of beta-turns (excluding non-beta-

turns) and was based on 565 non-homologous protein chains 

(and will be hereby referred to as 565). The chains were se-

lected using the PAPIA system [24], contain no chain 

breaks, have structure determined by X-ray crystallography 

at 2.0A resolution or better, and no two chains have more 

than 25% sequence identity. The PROMOTIF program was 

used to assign the beta-turns in protein chains [25]. The 

original dataset includes only the tetrapeptides that corre-

spond to all beta-turns in the 565 non-homologous proteins, 

i.e. it does not include the entire protein chains. We aug-

mented the original beta-turn tetrapeptides with randomly 

chosen set of tetrapeptides that correspond to non-beta-turns 

assuming that the number of the selected non-beta-turns 

should approximately equal the number of the most frequent 

beta-turn type. More specifically, the 565 dataset includes 

4115, 1442, 4128, 1100, and 1028 beta-turns of type I, II, IV, 

VIII, and NS and 4448 non-beta-turns. 

 The second dataset, used for testing and comparing the 

prediction method, was comprised of 426 protein chains and 

95,289 residues and was prepared in [26]. This dataset 

(hereby referred to as 426) has been widely used to validate 

and compare beta-turn prediction methods [10, 11, 13, 26-

28] and includes chains that are non-redundant at 25% and 

that have been resolved with X-ray crystallography at 2.0A 

resolution or better. Again, the PROMOTIF program [25] 

was used to assign the beta-turns in protein chains using the 

classification scheme proposed by Hutichinson and Thornton 

(1994) [9]. Every chain in this dataset includes at least one 

beta-turn. In order to assess the accuracy of the proposed 

model and to remain consistent with recent beta-turn predic-

tion literature [10, 11, 13, 26-28], sevenfold cross-validation 

was employed on dataset 426. The dataset was divided into 6 

folds of 61 sequences and 1 fold of 60 sequences. Six of the 
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folds were then used to train the model, while the seventh 

was used to test it, and the process was repeated seven times. 

 The third dataset, which is used for model parameteriza-

tion, involves 183 sequences from the 426 dataset. These 

sequences constitute three of the seven folds of the 426 

dataset. Additionally, these 183 sequences were randomly 

down sampled to 20% of the original residues. This dataset 

will be referred to as 183. 

Quality Indices 

 To assess the accuracy of the prediction method, as well 

as for comparison purposes, the standard quality indices of 

beta-turn prediction literature were employed [10-13, 27, 

28].  

 The percentage of correct predictions for each beta-turn 

type is defined as follows: 

FNFPTNTP

TNTP
Qtotal

+++

+
=  

where TP (true positive) is the number of residues observed 

and predicted as a given beta-turn type, TN (true negative) is 

the number of residues observed and predicted as not the 

given beta-turn type, FP (false positive) is the number of 

residues not observed but predicted as a given beta-turn type, 

and FN (false negative) is the number of residues observed 

but not predicted as a given beta-turn type. 

 When describing accuracy, Qtotal tends to overestimate 

predictive performance due to the high number of true nega-

tives, which underemphasises the false negatives and false 

positives [12, 13, 28]. Therefore, it is better to use the Mat-

thews Correlation Coefficient (MCC) [29] which takes un-

derprediction and overprediction into account: 

)()()()( FNTNFPTNFNTPFPTP

FNFPTNTP
MCC

++++

=
 

 Underprediction can be evaluated using Qobs, which is the 

fraction of observed given beta-turn types predicted cor-

rectly: 

FNTP

TP
Qobs

+
=  

 Finally, overprediction is evaluated using Qpred, which is 

the fraction of correctly predicted given beta-turn types: 

FPTP

TP
Qpred

+
=  

 While these quality indices are used consistently, they 

will be applied in two different ways, first comparing pre-

dicted beta-turn type to actual beta-turn type on a residue by 

residue basis denoted as follows, res

totalobspredQ
//

 and second 

comparing predicted beta-turn type to actual beta-turn type 

on a turn by turn basis, denoted as turn

totalobspredQ
//

. In the latter 

case, the unit of the prediction is a tetrapeptide.  

Model Overview 

 Fig. (1) compares the proposed prediction system and the 

existing methods [11-13]. The competing methods use a 

window centered on the predicted residue as the input infor-

mation that is processed with PSI-BLAST and a secondary 

structure prediction method. These inputs are converted into 

features and next fed into a classifier that predicts a given 

beta-turn type / non-beta-turn for a single residue. In our 

design, the processing unit is the tetrapeptide, i.e. four adja-

cent amino acids, that forms a given beta-turn type or a non-

beta-turn. Thus, the sequences in each dataset were broken 

down into four residue fragments via a sliding window. 

Next, these segments are represented using a feature set that 

consists of three vectors, which is tagged by turn type if the 

start of the window was also the start of a turn. The resulting 

vector is passed to the classifier and the prediction is applied 

to all four residues in the window. As each residue is pre-

dicted four times as part of four separate possible turns, in 

the case of overlap between turn and non-turn, a turn predic-

tion overrides a non-turn prediction. We believe that this 

design results in features that are more biologically relevant 

as they describe full beta-turns (and non-beta-turns) as op-

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. (1). Comparison of existing and the proposed beta-turn prediction methods. The upper portion of the figure represents design of the clas-
sical methods, while the bottom portion shows the proposed design.  
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posed to describing information concerning a window cen-

tered over the predicted residue. 

Feature Generation 

Composition Vector 

 The composition vector is a simple sequence representa-

tion which is widely used in prediction of various aspects of 

protein structure [30-37]. The vector is composed of the 

twenty amino acids, alphabetically ordered, and stores the 

number of occurrences of the amino acid in the sequence 

window (in our case the tetrapeptide). With 20 amino acids, 

this results in 20 corresponding features. 

Positional Vectors 

 The positional vectors are similar to the compositional 

vector in that they are a simple sequence representation 

composed of the twenty amino acids, alphabetically ordered, 

and identify the presence/absence of a given amino acid in a 

given position in the tetrapeptide. As the window size con-

sidered includes 4 amino acids, this results in 80 correspond-

ing features. 

Collocation Vector 

 Finally, a relatively new representation based on the fre-

quency of collocation amino acid pairs [38-41] in the se-

quence window was applied. Our motivation is that the com-

position and positional vectors are insufficient to represent 

the sequence and the interactions between local amino acid 

pairs. As interactions between short-range amino acid pairs, 

not just dipeptides have the potential to impact beta-turn 

formation [9, 10], the representation considers collocated 

pairs of amino acids, which are separated by p amino acids. 

Collocated pairs for p = 0, 1 and 2 are considered, where p = 

0 pairs reduce to dipeptides and p = 1 and 2 can be under-

stood as dipeptides with gaps. For each value of p, there are 

400 corresponding features that store the number of occur-

rences of the collocated pairs. We emphasize that this feature 

set was not yet utilized for prediction of beta-turns types. 

 As a result, we consider a feature set which includes a 

total of 400 * 3 + 80 + 20 = 1300 features. 

SVM Classifier 

 We employed a support vector machine (SVM) classifier 

[42] which was previously applied to beta-turn prediction 

[43, 44] and was shown to provide promising results in iden-

tifying beta-turn types [20]. Given a training set of data point 

pairs (xi, ci), i = 1, 2, … n, where xi denotes the feature vec-

tor, ci ={-1, 1} denotes binary class label, n is the number of 

training data points, finding the optimal SVM is achieved by 

solving: 

2

min
i

i

w C+
 

such that ( ) 1
i i i
c wz b  and 1 i n  

where w is a vector perpendicular to wx–b=0 hyperplane that 

separates the two classes, C is a user defined complexity 

constant, 
i
are slack variables that measure the degree of 

misclassification of xi for a given hyperplane, b is an offset 

that defines the size of a margin that separates the two 

classes, and z= (x) where k(x,x’)= (x) (x’) is a user 

defined kernel function. 

 The SVM classifier was trained using Platt's sequential 

minimal optimization algorithm [45] that was further opti-

mized by Keerthi and colleagues [46]. The prediction that 

includes multiple types of beta-turns and non-beta-turns is 

solved using pairwise binary classification, namely, a sepa-

rate classifier is build for each pair of classes (beta-turns 

types and non-beta-turns). We used RBF kernel and per-

formed parameterization (selection of the value of the com-

plexity constant C and RBF kernel width ) based on 3-fold 

cross validation on the dataset 183. The final classifier uses 

C = 3 and the RBF kernel 

( )
2
'

, '
x x

i i
k x x e= where  = 0.3 

 The classification algorithm and feature selection algo-

rithms used to develop and compare the proposed method 

were implemented in Weka [47]. 

Feature Selection 

 As the proposed representation includes a relatively large 

number of features, three feature selection methods were 

employed in tandem to reduce the dimensionality and poten-

tially improve the prediction: an Information Gain based 

method (IG) [48]; a Chi-Squared method (CHI) [49]; and the 

Relief algorithm (REL) [50]. We used three different meth-

ods in order to reduce the bias introduced by each of the 

methods. In these algorithms, each feature was ranked based 

on its merit (etc., information gain in IG, the value of the 

chi-squared statistic in CHI and the weights in REL), and 

next they were sorted by their average rank across the three 

algorithms. The measurement of the merit for the three algo-

rithms is defined below. 

 Information gain (IG) measures the decrease in entropy 

when a given feature is used to group values of another 

(class) feature. The entropy of a feature X is defined as 

2( ) ( ) log ( ( ))
i i

i

H X P x P x=  

where {xi} is a set of values of X and P(xi) is the prior prob-

ability of xi. The conditional entropy of X, given another fea-

ture Y (in our case the beta-turn type or non-beta-turn) is 

defined as 

2( | ) ( ) ( | ) log ( ( | ))j i j i j

j i

H X Y P y P x y P x y=
 

where P(xi|yj) is the posterior probability of X given the value 

yj of Y. The amount by which the entropy of X decreases 

reflects additional information about X provided by Y and is 

called information gain 

( | ) ( ) ( | )IG X Y H X H X Y=  

 According to this measure, Y has stronger correlation 

with X than with Z if IG(X|Y)>IG(Z|Y). 

 Chi-Squared statistic (CHI) is a statistical test that meas-

ures divergence from the expected distribution assuming that 

the occurrence of a given feature is independent of the class 
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value. Given that X is a feature with m = 6 possible outcomes 

x1, x2, …, xm, which correspond to the type I, II, IV, VIII, and 

NS beta-turn as well as non-beta-turn, with probability of 

each outcome P(X=xi) = pi. The Pearson-chi-squared statistic 

is defined as: 

2
2

1

( )m

i i

i i

n np

np=

=  

where ni is the number of instances which will result the out-

come xi. A feature that gives higher value of  receives lower 

rank. 

 Relief algorithm (REL) is based on the feature weighting 

approach, which estimates the features according their per-

formance in distinguishing similar instances. REL searches 

the two nearest neighbors for each instance: one from the 

same class (nearest hit) and another from any other class 

(nearest miss). The algorithm to calculate the weights as fol-

lows 

(1) Initialization: given D = {(Xn, yn)} (n = 1,2,…,N) 

where Xn is the feature set, yn is class label, and N is 

the number of instances, set wi = 0, 1  i  I where I is 

the number of features and T is the number of itera-

tions. 

(2) For { t = 1:T 

 Randomly select an instance x from D;  

 Find the nearest hit NH(x) and miss NM(x) of x; 

 For { i = 1:I 

 calculate wi=wi+|x
(i)

-NM
(i)

(x)|-|x
(i)

-NH
(i)

(x)| }} 

 Using the average rank generated by the three methods 

outlined above, an SVM model using an RBF with default 

parameters C = 1.0 and  = 0.1 was used with 9-fold cross-

validation on dataset 565 in order to select a subset of the 

ranked features. We note that the same cross validation was 

used in [18]. We selected the top ranked features in incre-

ments of 10 and computed  

total

TP

Accuracy
turnnonNSVIIIIvIIItypei

i

turn
=

},,,,,{  

where i denotes a given prediction outcome (a given beta-

turn type and non-beta-turns), TPi denotes the number of true 

positive predictions for i
th

 outcome, and total denotes the 

total number of the tetrapeptides in the dataset. The Accura-

cy
turn

, which quantifies aggregated (over all prediction out-

comes) quality of prediction, was computed over the 9 cross-

validated folds, see Fig. (2). 

 We observe that the 50 highest average ranked features 

give high Accuracy
turn

 values relative to the number of used 

features. In considering the trade off between Accuracy
turn

 

and the number of features selected, we attempted to mini-

mize the feature count in an endeavor to be able to better 

explain them and to obtain less complex classification 

model. The selection of 50 features allows for a large im-

provement in Accuracy
turn

, i.e., 1.4%, when compared with 

using 40 features, while the subsequent improvements (when 

using more features) are relatively small when compared 

with the additional number of employed features. Although 

the highest Accuracy
turn

 = 46.2% was obtained with 250 fea-

tures, this is only 1.3% higher than Accuracy
turn

 = 44.9% 

obtained with 50 features that corresponds to a reduction of 

200 features. 

SVM Parameterization 

 The most relevant 50 features, as determined by average 

ranking of three different feature selection methods and re-

duced with a SVM model on dataset 565, were then used 

with dataset 183 to parameterize the SVM classifier. This 

reduced dataset was used since parameterization is computa-

tionally expensive. We apply 3-fold cross-validation as the 

183 dataset corresponds to three out of seven folds of the 

dataset 426. Classifier parameterization was done in greedy 

fashion using three phases: 

1. The extent of down sampling of the non-beta-turns 

was estimated to force the model to predict beta-turn 

types. This step is necessary due to highly skewed na-

ture of the dataset. More specifically, the dataset 426 

includes 72064 non-beta-turn residues which corre-

sponds to 75.6% of all residues. In contrast, the frac-

tion of residues that constitute type I, II, IV, VIII, and 

NS beta-turns equals 9.5%, 3.8%, 10%, 2.8%, and 

2%, respectively. Note that the beta-turns of different 

 

 

 

 

 

 

 

 

 

 

 

Fig. (2). The values of Accuracy
turn

 (y-axis) against the number of the selected top features (x-axis) for 9-fold cross validation on dataset 565.  
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types may overlap and thus the total number does not 

equal 100%. The down sampling was performed at 

random and was applied to the training set, while the 

original (no sampling) test set was used for the pre-

diction. 

2. Parameter C was optimized using the down sampled 

training sets. In this case, the default value of  = 0.1 

was assumed and we varied values of C to optimize 

the prediction performance. 

3. Finally, Parameter  was optimized using the down 

sampled training sets and the optimized value of C.  

 Fig. (3) shows results associated with different degrees of 

downsampling performed on dataset 183. Varying down-

sampling rates results in a trade-off between turn

obsQ and turn

predQ . 

Although there is no truly optimal configuration (there is no 

common optimum for both quality indices), two different 

downsamplings of non-beta-turns were selected. First, 3% of 

the non-beta-turns were kept (3%NT) as it resulted in the 

number of non-beta-turns being approximately the same size 

as the largest beta-turn type, type IV. Additionally, 8% of the 

non-beta-turn were randomly selected (8%NT), as this re-

sulted in the closest number of predicted beta-turns when 

compared with the actual count of beta-turns in the 183 

dataset. Fig. (3A) shows the values of turn

obsQ and 

turn

predQ weighted by the beta-turn type counts when considering 

all beta-turn types and non-beta-turns, while Fig. (3B) shows 

the same but when non-beta-turns are excluded. The Figure 

shows that 3%NT results in low turn

predQ / high turn

obsQ for the 

beta-turns and high turn

predQ / low turn

obsQ when considering both 

beta-turns and non-beta-turns. This means that the method 

overpredicts beta-turns at the expense of underpredicting 

non-beta-turns. At the same time, 8%NT is associated with 

the best trade-off between the prediction of beta-turns and 

non-beta-turns, i.e., the corresponding turn

predQ and turn

obsQ lines 

cross at this point. Therefore, in the case of our application, 

the 8%NT downsampling is considered optimal. 

 In the second and thirst parameterization steps, the C was 

optimized for both 3%NT and 8%NT and found to be 3.0 for 

both cases. Then,  was optimized and found to be 0.15 for 

3%NT and 0.3 for 8%NT. 

RESULTS 

Analysis of the Proposed Prediction Model 

 Of the 50 features selected, 32 were collocated pair fea-

tures, 15 were positional vector features, and 3 were compo-

sition vector features. Of the 32 collocated pair features, 30 

included Gly (G) at one of the two positions, see Fig. (4). 

 According to Hutchinson and Thornton [9], Gly (G) has 

the highest potential of any residue to form a beta-turn. Gly 

is also characterized by the highest potential to form beta-

turn when it occupies positions 3 (position i+2 in the 

tetrapeptide with starting position i) and 4 (i+3). Addition-

ally, Gly at position 3 of a beta-turn type II is experimentally 

observed to occur at least four times as often as any other 

amino acid [51]. Hence, Gly is present more often as the 

second residue in the collocated pairs when compared with 

its occurrence as the first residue in the pair. This is particu-

larly transparent when considering that Gly is the first resi-

due in the collocated pair with p = 0 (dipeptide), while larger 

gaps sizes are observed when it constitutes the second resi-

due in the pair. Among the residues that are involved in 3 or 

more collocated pairs, Asp (D) and Asn (N) are character-

ized by the highest potential to form beta-turns for positions 

1 and 3, Pro (P) by the highest potential for position 2, and 

Gly (G) by the highest potential for positions 3 and 4, as 

presented in [9, 26]. 

 The novel features considered in this work include 12 

collocated pairs with p > 1, with ten pairs that have p = 1 and 

two with p = 2. The two pairs with p = 2 include DxxG and 

NxxG, and we note that both of them are based on amino 

acids that are known to be predisposed to form beta-turns [9, 

26]. The only collocated pair that does not include Gly is 

DxN, which incorporates the same amino acids as the above 

two pairs for p = 2. We emphasize that Gly (G), Asp (D), 

and Asn (N) are the three amino acids that have the highest 

    A       B 

 

 

 

 

 

 

 

 

 

 

Fig. (3). The turn

obsQ and turn

predQ values (y-axis) for different downsampling amounts (x-axis) obtained based on 3-fold cross validation on 

dataset 183 using SVM with default parameters C = 1.0 and  = 0.1. Panel A shows results when considering all beta-turn types and non-

beta-turns. Panel B shows results when considering only all beta-turn types.  
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potential to form a beta-turn and that Asp, Asn, and Gly also 

have the highest positional potentials, as discussed above 

[9,26]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (4). Selected collocation vector features. The rows show the 

first amino acid and columns show the second amino acid in the 

pair. Values in cells show the corresponding p value of the selected 

collocated pair, while empty cells show features that were not se-
lected. 

 

 We also observe that many of the selected pairs formed 

with Gly involve hydrophilic residues. More specifically, 

total of 13 pairs involve Asn (N), Asp (D), Glu (E), Lys (K), 

and Gln (Q). In contrast, only 6 pairs are formed with hydro-

phobic residues that include Ile (I), Leu (L), Phe (F), and Val 

(V). This is again consistent with [12], where authors show 

that beta-turns tend to be found at the solvent-exposed sur-

face, which explains the prevalence of hydrophilic residues. 

 In Fig. (5), the features selected from the composition 

and position vectors are summarized. Most notably, Asp (D), 

Gly (G), Pro (P), and Asn (N) make up 14 of the 18 features. 

These four amino acids also have the highest overall poten-

tial to form beta-turns according to Hutchinson and Thornton 

[9] and Guruprasad and Rajkumar [26]. This selection is also 

motivated by the fact that amino acids with short and polar 

side chains, e.g. Ser (S), Asp (D), and Asn (N), are preferred 

at the position 3 of a type I beta-turn [51]. 

 According to [23], type I beta-turns favor Asp (D), Asn 

(N), Ser (S) and Cys (c) at position 1, Asp (D), Ser (S), Thr 

(T) and Pro (P) at position 2, Asp (D), Ser (S), Asn (N) and 

Arg (R) at position 3, and Gly (G), Trp (W) and Met (M) at 

position 4. At the same time, type II beta-turns prefer Pro (P) 

at position 2, Gly (G) and Asn (N) at position 3, and Gln (G) 

and Arg (R) at position 4. These preferences have been ex-

plored statistically and explained by specific side-chain in-

teractions observed within the X-ray structures [23]. They 

also motivate selection of 9 out of the 15 positional vector 

features:  

- selection of Asp (D) and Asn (N) at position 1 is ex-

plained by their abundance in type I beta-turns, 

- selection of Pro (P) at position 2 is motivated by its 

abundance in type I and II beta-turns, 

- selection of Asp (D) and Asn (N) at position 3 is as-

sociated with their abundance in type I beta-turns, and 

selection of Gly (G) and Asn (N) by their abundance 

in type II beta-turns, 

- selection of Gly (G) at position 4 is explained by its 

abundance in type I and II beta-turns. 

 According to [9, 26], the residues with the lowest poten-

tial to form beta-turns include Met (M), Ile (I), Leu (L), and 

Val (V). These residues are shown to be strongly detrimental 

to formation of beta-turns when in position 3 (i+4), which is 

consistent with their selection shown in Fig. (5). This shows 

that our method uses not only features that allows identify 

particular beta-turn types but also those that can identify 

non-beta-turns. 

 Table 1 estimates contribution of each of the three feature 

sets, i.e., composition vector, positional vectors, and colloca-

tion vector, on the prediction of beta-turn types and com-

pares these predictions against results when using the com-

plete set of 50 features. The best results are obtained with the 

use of the positional features. The second best set is based on 

the collocation features, while composition vector features 

contribute very little. We observe that very few predictions 

are made when using only the composition vector features, 

i.e., only about 250 residues were predicted as type I turn 

and 36 as type IV (with corresponding res

predQ  equal 26% and 

14%, respectively), and no residues were predicted to as-

sume the remaining turn types. This poor result is expected 

due to very low number of features, i.e., 3, in this set. We 

note that high res

totalQ  values are due to large number of true 

negative predictions. On the other hand, both the collocation 

vector and the positional vector features strongly contribute 

to the prediction. Although predictions with positional vector 

features have the highest MCC values, i.e., overall they are 

 

 

 

 

 

 
Fig. (5). Selected composition and positional vector features. Rows show the type of the feature, i.e., CV stands for composition vector and 
Pi denotes positional vector for i

th
 position in the tetrapeptide, while columns correspond to amino acids. 
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better than the predictions with the other sets of features, the 

collocation features are characterized by higher res

predQ , which 

indicates that they generate fewer false positives when com-

pared with the number of true positives, i.e., they are more 

selective than the positional features. This is again expected 

since the collocation features are based on information about 

two positions in the beta-turn tetrapeptide, while positional 

vector features are associated with only one position. 

 We observe that for type VIII beta-turn TP = 0 in case of 

all individual feature sets, and when using the complete fea-

ture set. This shows that the proposed method is not capable 

of predicting this type of beta-turns. We hypothesize that this 

is due to lack of features that would allow differentiating 

these turns from other beta-turn types. As observed in [13], 

type VIII turns are characterized by high conformational 

heterogeneity (they cannot be stabilized by backbone hydro-

gen bond), and thus the underlying conformational prefer-

ences of amino acid are much harder to capture when com-

pared with other beta-turn types. This is even more difficult 

when considering that beta-turns of type VIII have to be dif-

ferentiated from non-beta-turns. We note that competing 

prediction methods are characterized by similarly poor pre-

dictions for this beta-turn type [11-13], see Table 2. 

Comparison with Competing Prediction Methods 

Quality of Beta-Turn Type Prediction 

 Using the parameterized SVM classifiers, the training 

sets of the 426 dataset were downsampled to 3%NT and 

8%NT, and 7-fold cross-validated tests were run on the 

complete test sets. Although our predictions were run at the 

level of tetrapeptides, the predictions were aggregated and 

each residue was tested with respect to prediction of a given 

beta-turn type and non-beta-turn in order to allow compari-

Table 1. Comparison of contribution of individual feature sets (composition vector, positional vectors, and collocation vector) on 

prediction of beta-turn types. The table reports MCC, res

predQ , res

obsQ , and res

totalQ for 7-fold cross validation on dataset 426. All 

results are based on 8% sampling of non-beta-turns (8%NT) and use optimized SVM with C = 3 and  = 0.3 

MCC 
Beta-turn type 

Composition vector Positional vectors Collocation vector All features 

I 0.03 0.18 0.14 0.18 

II 0.001 0.23 0.23 0.23 

VIII 0.001 0.00 0.001 -0.01 

NS 0.001 0.12 0.06 0.15 

IV 0.00 0.11 0.06 0.12 

res

totalQ  
Beta-turn type 

Composition vector Positional vectors Collocation vector All features 

I 90.4 78.1 86.7 78.3 

II 96.2 79.6 94.0 86.1 

VIII 97.2 97.2 97.2 97.0 

NS 98.0 95.6 97.9 95.0 

IV 90.0 81.5 87.2 80.4 

res

obsQ  
Beta-turn type 

Composition vector Positional vectors Collocation vector All features 

I 0.7 42.7 18.2 42.6 

II 0.01 69.3 26.8 53.5 

VIII 0.01 0.0 0.01 0.0 

NS 0.01 18.1 2.5 25.3 

IV 0.1 24.9 8.4 27.9 

res

predQ  
Beta-turn type 

Composition vector Positional vectors Collocation vector All features 

I 26.4 19.8 23.7 20.0 

II 0.01 12.1 24.5 14.5 

VIII 0.01 0.0 0.01 0.0 

NS 0.01 11.4 18.3 12.2 

IV 13.9 18.4 18.8 18.3 

1the corresponding 0’s are due to lack of predictions of the corresponding beta-turn type, while the remaining 0’s are due to lack or very low number of true positive predictions.  
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son with competing predictors. The resulting quality indices, 

which were computed for prediction of each beta-turn type, 

are summarized in Table 2. The proposed method is based 

on the 8%NT sampling, while the results for the 3%NT sam-

pling are provided for comparative purposes. 

 Considering the MCC, we observe that all methods are 

characterized by relatively poor performance on type VIII 

beta-turns. The proposed method has comparable perform-

ance when predicting NS turns against BETATURNS, and 

when predicting type IV beta-turns when compared with 

BTPRED and COUDES. However, the proposed method is 

outperformed when predicting all other beta-turn types. The 

most similar quality of predictions is provided by BTPRED. 

It is important to bear in mind the limited, and easily expli-

cable information, that is used in the proposed model. 

 Considering the res

totalQ , the results are high and vary little 

between different prediction methods due to the high number 

of true negatives. Therefore, res

obsQ and res

predQ are examined. 

The proposed method exhibits res

obsQ over 40% for type I beta-

turns, over 50% for type II beta-turns, and over 25% for NS 

and IV types of beta-turns. The results for type I and II beta-

turns are relatively consistent with the competing methods, 

however, the proposed method surpasses COUDES and 

BTPRED for type IV beta-turns. res

predQ is relatively compara-

Table 2. Comparison of beta-turn type prediction quality expressed with MCC, res

predQ , res

obsQ , and res

totalQ for 7-fold cross validation 

test on dataset 426
1
. The quality indices concerning the proposed method are shown in 8%NT and 3%NT columns 

MCC 
Beta-turn type 

8%NT 3%NT COUDES BTPRED BETATURNS 

I 0.18 0.15 0.31 0.22 0.29 

II 0.23 0.23 0.30 0.25 0.29 

VIII -0.01 0.01 0.07 0.06 0.02 

NS 0.15 0.17 --- --- 0.17 

IV 0.12 0.12 0.11 0.03 0.23 

res

totalQ  
Beta-turn type 

8%NT 3%NT COUDES BTPRED BETATURNS 

I 78.3 55.4 84.5 91.2 74.5 

II 86.1 81.4 91.0 95.5 93.5 

VIII 97.0 96.7 90.7 97.5 96.5 

NS 95.0 94.1 --- --- 98.1 

IV 80.4 57.1 84.9 96.8 67.9 

res

obsQ  
Beta-turn type 

8%NT 3%NT COUDES BTPRED BETATURNS 

I 42.6 72.8 50.0 46.6 74.1 

II 53.5 65.8 52.8 58.4 52.8 

VIII 0.0 0.8 18.7 18.0 2.8 

NS 25.3 31.8 --- --- 13.3 

IV 27.9 63.5 17.7 2.2 72.0 

res

predQ  

Beta-turn type 

8%NT 3%NT COUDES BTPRED BETATURNS 

I 20.0 14.2 30.8 13.9 22.1 

II 14.5 12.7 22.2 12.2 25.5 

VIII 0.0 3.9 6.9 3.3 7.2 

NS 12.2 12.0 --- --- 23.7 

IV 18.3 13.9 20.7 9.3 18.6 

1Results for BTPRED taken from [12] and results for BETAETATURNS were taken from [11]. We note that BTPRED used a different test set. We also note that COUDES [13] 
predicts type I’ and type II’ turns whereas our method and BETATURNS combines them into NS type, and BTPRED ignores the entire NS category (and thus the corresponding cell 
in the table are left empty). All quality indices are based on per residue comparison. 
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ble across the methods, excluding type VIII beta-turns, with 

the proposed method ranging between 12 and 20% of the 

predictions being the actual beta-turns, where COUDES 

ranges from 20 – 30%, BTPRED 9 – 14% and 

BETATURNS 18 – 26%. We observe that the proposed 

method outperformed BTPRED with respect to this quality 

index. 

Quality of Beta-Turn vs. Non-Beta-Turn Predictions 

 We also present comparison of results when combining 

prediction of all beta-turn types into the prediction of generic 

beta-turns. In this case, any predicted beta-turn type is con-

sidered as a generic beta-turn and the proposed method is 

compared against several related methods [13, 22, 23, 27, 43, 

44, 52-54] based on 7-fold cross validation on dataset 426, 

see Table 3. We note that several other beta-turn prediction 

methods, which are not included in our comparison, were 

also developed [55, 56].  

 We observe that the proposed method matches the pre-

diction quality (measured using MCC) of the most accurate 

sequence-only based methods, and as expected has quality 

lower than the quality of methods that utilize multiple 

alignments and predicted secondary structure. We note that 

the Chou-Fasman method [52] which is a sequence-only 

based method characterized by similar MCC as the proposed 

method, is based on a set of probabilities assigned to each 

residue, conformational parameters, and positional frequen-

cies determined by computing the relative frequency of a 

given secondary structure type as well as the fraction of resi-

dues appearing in that type of secondary structure. This 

means that the design of this method was based on data with 

known secondary structure, while the proposed method was 

based purely on knowledge of beta-turns and non-beta-turn, 

and without of knowledge of any other secondary structures. 

Most importantly, we note that only two sequence-only 

based methods, i.e., Thornton’s method [23] and Chou’s 

method [1], are available. In contrast to Thornton’s method 

that addressed prediction of only type I and II beta-turns, the 

proposed method addressed prediction of five turn types, and 

provides quality comparable with that of the Thornton’s 

method. Direct comparison with Chou’s method, which pre-

dicts six beta-turn types (types I, I’, II, II’, VI, and VIII), is 

relatively difficult since these beta-turn types differ from the 

types predicted by the proposed method. 

 Table 3 shows that the proposed method finds 63% of all 

beta-turns, and that 36% of the predicted beta-turns are the 

actual beta-turns. This indicates that the selected features that 

were applied in the proposed method are in fact associated 

with beta-turns. We note that the res

obsQ values of the proposed 

method are similar to values obtained by the competing 

methods that utilize the PSI-BLAST and/or predicted secon-

dary structure, while we suffer lower values of res

predQ . The 

latter indicates that inclusion of the predicted secondary 

structure and evolutionary information allows for more se-

lective predictions, i.e., removal of some false positive pre-

dictions. 

 Fig. (6) shows ROC curve (TP rate = TP / (TP + FN) vs. 

FP rate = FP / (FP + TN)) for the beta-turn predictions per-

formed with the proposed method. The Figure shows that our 

results are substantially better than a random prediction, i.e., 

the ROC curve is above the diagonal line. For example, the 

results show that our method obtains 26.8% TP rate for 10% 

FP rate. We note that we could not draw ROC curve for 

beta-turn type predictions since different turn types overlap 

Table 3. Comparison of beta-turn vs. non-beta-turn prediction accuracy with competing prediction methods. The prediction qual-

ity is expressed with MCC, res

totalQ , res

predQ , and res

obsQ  for 7-fold cross validation test on dataset 426. The quality indices con-

cerning the proposed method are shown in 8%NT and 3%NT rows 

Prediction Method 
 res

totalQ
 res

predQ
 res

obsQ  MCC 

proposed method (8%NT) 

proposed method (3%NT) 

64.5 

44.8 

36.7 

29.4 

63.0 

90.6 

0.24 

0.20 

Chou-Fasman [10, 52] 65.2 37.6 63.5 0.26 

Thornton [10, 23] 68.0 38.6 52.4 0.23 

GORBTURN [10, 53] 70.5 39.3 37.3 0.19 

1-4 & 2-3 correlation [10, 54] 59.1 32.4 61.9 0.17 

Sequence-only based methods 

Sequence coupled [10, 22] 53.3 32.4 72.8 0.17 

SVM (multiple alignment) [43] 77.3 53.1 67.0 0.45 

BTSVM [44] 78.7 56.0 62.0 0.45 

BETATPRED2 (multiple alignment) [11, 27] 75.5 49.8 72.3 0.43 

COUDES ( threshold= 0 for PSSM) [13] 74.8 48.8 69.9 0.42 

COUDES ( threshold= -100 for PSSM) [13] 75.5 49.8 66.6 0.41 

SVM (single sequence) [43] 74.8 49.1 67.9 0.41 

BETATPRED2 (single sequence) [11, 27] 74.3 48.4 71.2 0.41 

KNN [28] 75.0 46.5 66.7 0.40 

Methods that utilize PSSM and/or pre-

dicted secondary structure 

BTPRED [10, 12] 74.4 48.3 57.3 0.35 
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in the sequence, i.e., the same residue is often classified into 

several beta-turn types. 

DISCUSSION AND CONCLUSION  

 The proposed method succeeds in providing similar per-
formance to other methods that utilize the same information 
(only the sequence). The results for beta-turn type prediction 
have proven similar in certain regards to other machine 
learning methods that use additional information and the 
results for beta-turn vs. non-beta-turn predictions are consis-
tent with the sequence-only based methods. At the same 
time, we observe that only two sequence-only methods are 
available for the prediction of beta-turn types from the entire 
protein chains, i.e., Thornton’s method [23] that predicts 
only type I and type II beta-turns and Chou’s method [1] that 
predicts beta-turn types I, I’, II, II’, VI, and VIII. In contrast, 
the proposed method predicts types I, II, IV, VII, and non-
specific (NS) beta-turns, which are consistent with the tar-
gets of modern prediction methods [11]. We also observe 
that inclusion of additional information such as predicted 
secondary structure and PSI-BLAST profiles provides reduc-
tion of false positive predictions.  

 The main advantage of the proposed method is simplicity 
and interpretability of the underlying model. It uses only on 
the input protein sequence and it does not rely on additional 
methods. The main contribution of this work is the develop-
ment of novel sequence-based features that allow identifying 
different beta-turns and differentiating them from non-beta-
turns. The computed features, which are based on tetrapep-
tides (entire beta-turns) rather than a window centered over 
the predicted residues, provide a more biologically sound 
model. They include 12 novel features that are based on col-
location of amino acid pairs with a single or double gap 
(which denotes inclusion of any amino acid) between them. 
The selected features further reaffirm the biological rele-
vance of the model, focusing on amino acids that are known 
to be predisposed to form beta-turns. Virtually all collocated 
pairs used by the proposed method include Gly (G) that has 
the highest potential of any residue to form a beta-turn [9, 
26]. The two motifs based on the double gap include DxxG 
and NxxG, and the only motif that does not include Gly is 
DxN. The above three amino acids, i.e., Gly (G), Asp (D), 

and Asn (N), are the top three that have the highest potential 
to form beta-turns, and additionally Asp and Asn are charac-
terized the highest positional potential at positions 1 and 3, 
while Gly has the highest potential at positions 3 and 4 [9, 
26]. At the same time, our model also includes several fea-
tures that are geared towards exclusion of non-beta-turns. 
According to [9, 26], the residues with the lowest potential to 
form beta-turns include Met (M), Ile (I), Leu (L), and Val 
(V), and they are shown to be strongly detrimental to forma-
tion of beta-turns being in position 3. To this end, the pro-
posed model includes features that encode occurrence of Ile, 
Leu, and Val at the position 3.  

 The datasets used to develop and test the proposed 
method can be freely accessed at http://biomine.ece. ual-
berta.ca/BTcollocation/BTcollocation.htm 
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