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Abstract: Gene regulation is a complex and relatively poorly understood process. While a number of methods have sug-

gested means by which gene transcription is activated, there are factors at work that no model has been able to fully ex-

plain. In eukaryotes, gene regulation is quite complex, so models have primarily focused on a relatively simple species, 

Saccharomyces cerevisiae. Because of the inherent complexity in higher species, and even in yeast, a method of identify-

ing transcription factor (TF) binding motifs must be efficient and thorough in its analysis. Here we propose a method us-

ing the very efficient Fast Orthogonal Search (FOS) algorithm in order to uncover motifs as well as cooperatively binding 

groups of motifs that can explain variations in gene expression. The algorithm is very fast, exploring a motif list and con-

structing a final model within seconds or a few minutes, produces model terms that are consistent with known motifs 

while also revealing new motifs and interactions, and causes impressive reduction in variance with relatively few model 

terms over the cell cycle. 
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1. INTRODUCTION 

 While many methods have focused on modeling gene 
regulation through finding individual motifs to which tran-
scription factors bind, a very significant part of regulation is 
driven by the cooperation of multiple factors. Recently, 
methods have been developed to consider the synergistic 
effects of multiple transcription factors [1-7]. The intriguing 
MARS-based methods [1, 2] were able to predict several 
pairs of motifs, as well as three-way interactions, that are 
likely to be functional in cooperatively binding to transcrip-
tion factors. The present paper introduces the use of FOS to 
rapidly find motifs and interacting groups of motifs involved 
in gene regulation. Because of Fast Orthogonal Search’s 
efficiency, third and potentially higher order cross products 
are easily searched and several groups of motifs that show 
high potential for functional cooperative behavior are found. 

 One strength of the proposed method is that it is able to 
discover motifs and synergistic pairs and groups of motifs 
without introducing a great number of parameters. While 
more complex models can approximate a system’s output 
(gene expression) more accurately over the training data, 
there is a tendency for the added accuracy to be a side effect 
of noise fitting. All models built by FOS were done so with 
few parameters to reduce this problem. Cross validation 
(CV) was used in order to distinguish motifs which appear 
infrequently, indicating that those motifs are more likely to 
be fitting noise rather than explaining real regulatory effects 
on expression levels. 

 Three main measures of this method’s performance were 
deemed important in its design: the accuracy of the models, 
their simplicity, and the running time. The objective was to  
 

 

*Address correspondence to these authors at Walter Light Hall, 19 Union 

St., Kingston, ON, Canada K7L 3N6; Tel: 1-647-294-9190; 

Fax: 1-613-533-6615; E-mail: ian.minz@utoronto.ca; Tel: 1-613-533-2931; 

Fax: 1-613-533-6615; E-mail: korenber@queensu.ca 

create concise prediction models with high levels of correla-
tion to the expression levels, while lowering the amount of 
time required by previous methods. Models able to accu-
rately predict expression levels with very few terms are ob-
viously far more desirable for several reasons. Firstly, it is 
unlikely that a large number of transcription factors is re-
quired, by analogy to the relatively simple regulations that 
occur in other biological systems. Secondly, a large number 
of terms in a model could mean a small contribution by each, 
so that those motifs’ contributions would likely be statisti-
cally insignificant. By the same token, a large contribution 
by a small number of motifs or groups of motifs would mean 
each is more likely to be predictive. 

 Several previous methods have used gene clustering in 
order to determine motifs found in similarly-transcribed 
genes [7-10]. While these methods have been used to dis-
cover functional sequences, this approach introduces a loss 
of information, since genes within a cluster may lack motifs 
shared by other genes [11]. To avoid this loss of information, 
lists were created without narrowing down the possibilities 
for motifs based on gene clustering data.  

2. METHODS 

 A program that accepts an array of gene expression data, 
genes’ promoter region sequences and a list of candidate 
motifs and outputs a list of potential TF-binding motifs was 
created using MATLAB. Publicly available gene expression 
data for 715 genes of the S. cerevisiae genome, taken in 77 
experiments, were used. In contrast to previous methods 
which calculate weight matrix scores [1, 2, 5, 11-13] or in-
troduce other complexities, our method simply correlates the 
word counts present in the promoter regions of genes to the 
log ratio of those genes’ expression levels (the ratio between 
the test sample and a control). For each search, only one time 
point was used, and the majority of the models were created 
using the expression levels of the alpha-arrest experiment at 
the 14 minute time point, which takes place during the M/G1 
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boundary of the cell cycle [11]. This time point was used in 
order to compare results to those found by previous methods. 
At different time points, gene expression becomes regulated 
by different transcription factors, and while results are, in 
general, from the 14 minute time point, the program can ana-
lyze any number of time points, by creating separate models 
which correlate to the expression levels at the corresponding 
times. 

2.1. Fast Orthogonal Search 

 The Fast Orthogonal Search algorithm was employed in 
order to create concise models based on candidate motifs and 
motif groups that exhibit word count profiles with strong 
correlation to gene expression levels. Unlike previously re-
ported methods, which use various types of linear regression 
or regression trees [14], FOS implicitly orthogonalizes the 
terms prior to adding them to the model, ensuring the mini-
mal amount of redundancy in the model and very fast opera-
tion [15,16]. FOS is a system identification algorithm that 
operates by searching through a list of pre-designated candi-
date functions and iteratively adding the term that lowers the 
mean squared error (MSE) of the model by the greatest 
amount. Portions of a slightly modified Cholesky decompo-
sition are used to rapidly locate this term. The consequence 
is that a large set of candidates can be quickly explored for 
the best choice without carrying out a full linear regression 
for each candidate. Moreover, the implicit orthogonalization 
of terms added to the model avoids the need to recalculate 
previously computed quantities for existing terms. Terms are 
added to the model sequentially until no candidate is able to 
improve the MSE beyond a certain threshold. This threshold 
is based on a standard correlation test requiring that a poten-
tial model addition be highly correlated with the unexplained 
residual at that point, and helps to avoid adding terms that 
are merely fitting noise [17]. Once the terms have been se-
lected, least-square estimates of their coefficients are given 
directly as a byproduct of the algorithm [15]. 

 The set of candidate functions was in part made up of 
basis functions of the form cm(n), the count of appearances of 
the motif m in the genes n = 1, … , N. In addition to these  
cm(n), cross-products (including powers) of these functions 
were added to the set of candidates to represent cooperativity 
between motifs. Cross-products up to third order were al-
lowed as candidates to reflect the presence of several differ-
ent motifs in the promoter regions of genes. These cross-
products were calculated as follows. For a pair of motifs m1 
and m2, with word count profiles cm1(n) and cm2(n), a new 
candidate function cm1,m2(n), representing a dual contribution 
of these motifs, was created such that 

)()()( 212,1 ncncnc mmmm =  (2.1) 

 This can be extended to consider any number of motifs 
by determining, for each gene, the product of the word 
counts of all motifs under consideration. 

 It is important to note that the candidates are not assumed 
to be orthogonal functions. The models developed by FOS 
are of the form: 
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where p0(n) = 1 and for m > 0 the pm(n) are the non-
orthogonal candidate functions which were selected to be 
included in the model, and the am are the associated coeffi-
cients which best fit the output (i.e., are least-square esti-
mates). Finally, E(n) is the log expression ratio of gene n, 
e(n) is the model error, and M is the number of (non-
constant) terms included in the model and is not held fixed. 
Since a0 is a least-square estimate and p0(n) = 1, it follows 
that the average value of e(n) over all the genes used to iden-
tify the model is zero. Because a constant term is first added 
to the model prior to adding any other terms, the model can 
alternatively be written as: 
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 The above equation appears to be linear in its parameters 
and developing it amenable to linear approaches, but this is 
only so once the model terms pm(n) have been determined 
and the problem reduces to estimation of the remaining un-
knowns, the am. In fact finding the model terms and their 
coefficients that will minimize the MSE is a nonlinear least-
squares problem. The term selection used by FOS is a non-
linear process, and FOS excels in selecting model terms (and 
least-square estimates of their coefficients) that are near-
optimal in such nonlinear MSE minimizations. This capabil-
ity enables FOS to obtain much greater improvements by 
adding cross-product terms than have been observed with 
linear methods. 

 FOS is related to a method by Desrochers [18] for select-
ing terms for nonlinear models, but amongst other differ-
ences, the computational and memory storage requirements 
of the latter method are proportional to the square of the 
number of candidates, whereas in FOS they depend linearly 
on the number. 

 Using fast orthogonal search, we can efficiently build up, 
implicitly, an economical series representation of the form 
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where the wm(n) are mutually orthogonal over the data re-
cord, and the gm are the orthogonal expansion coefficients 
achieving a least-squares fit. In the particular application of 
this paper, the model output y(n) = E(n), the log expression 
ratio of gene n. 

 The orthogonal expansion coefficients in (2.4) are given 
by [15,16] 
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 The over-bar signifies taking the average over all genes n 
used to identify the model. The mr and D(m,r) can be calcu-
lated by the following pseudocode, which achieves a Chole-
sky factorization: 

D(0,0) = 1 

FOR m = 1 TO M 

Calculate D(m,0) from (2.7) 

FOR m = 1 TO M 

FOR r = 0 TO m – 1 

Calculate mr from (2.9) 

Calculate D(m, r + 1) from (2.8) 

 Once the gm and mr are known, the coefficients am in 
(2.2) can be obtained by [15-17]: 
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 Note that the reduction in MSE by adding the M-th non-

constant term, pM(n), is equivalently 

).,()(
2

MMDgMQ M=  (2.15) 

 A similar observation was made by Desrochers [18]. 

 In selecting pM(n), we only need to carry out the above 
pseudocode for m = M, which allows us to avoid repeating 
calculations done for previous values of m. Once pM(n) has 
been chosen, by searching the list of available candidates to 
find the one that maximizes Q(M) of (2.15), the abbreviated 
pseudocode can be repeated to recalculate C(M) and gM. This 
allows the mr, D(M,M), C(M) and gM to be properly set prior 
to searching for pM+1(n) [15]. This implementation reduces 
memory storage requirements, an important consideration in 
searching for regulatory motifs and cooperating groups of 
motifs, but more efficient code is available [19] with in-
creased memory storage. 

 In summary, to model the gene expression level by motif 
appearances in the promoter regions of the genes, the gene 
expression data were treated as a time series, while profiles 
of the raw word counts of each motif in each gene, and 
cross-products thereof, were treated as the candidate func-
tions. Previous methods used basis functions such as splines 
in order to more specifically choose terms. Using spines in-
troduces a threshold where only above (or below) a certain 
word count does a motif have any biological function [1]. 

Having functions based on word counts already introduces a 
switch-like characteristic that the splines are meant to em-
phasize. When splines were incorporated into the FOS pro-
gram, only very minimal improvements were found in the 
models, at the expense of greater complexity and longer run-
ning time. It was deemed more valuable to allow a greater 
variety of candidate motif sequences in lieu of simply in-
creasing the number of candidates by multiplying them by 
various spline functions. 

2.2. Input Motif Lists 

 Several motif lists, falling into two categories, were used 
as lists of candidate motifs from which to build models. Ini-
tially, it was desired that all motifs of lengths 5bp to 10bp be 
searched. However, due to the massive numbers of possible 
candidate motifs (approximately 250,000 possible 10bp-long 
motifs were found in the promoter regions of the 715 genes 
used), lists of degenerate “skeleton” motifs were created. By 
only designating a certain number of “prongs” in each motif 
list, the number of different motifs in these longer lists was 
decreased to allow for much more computationally feasible 
searching. The skeleton lists will hereafter be referred to by 
names of the form NbpPp, where N is the number of base 
pairs and P is the number of prongs. An example of a skele-
ton motif is the following: actnntcngn. This motif is 10 
base pairs in length and each of the 4 spaces, denoted by 
“n”, can be any of the four bases. Due to its length and num-
ber of required prongs (six), it would be in the 10bp6p list. 

  Three different lists of skeletons were created for each of 
the 10mers and 9mers. The number of prongs used in each 
list was 5, 6, or 7. The six skeleton lists created are (i) 
10bp7p, (ii) 10bp6p, (iii) 10bp5p, (iv) 9bp7p, (v) 9bp6p, and 
(vi) 9bp5p. On average, these lists ended up with approxi-
mately 4000 skeleton motifs each. While this method of 
grouping motifs together to create one skeleton representing 
a family of motifs does result in information loss since FOS 
will then not search each 10bp motif for activity, it allows 
for the possibility that transcription factors are able to bind to 
any of a family of motifs. Some details about the binding of 
TFs to DNA are still unknown, and the possibility that 
spaces in the motifs are necessary must not be overlooked. 
Methods have analyzed and found potentially functional 
degenerate motifs. Methods have analyzed oligomers with 
fixed spacing [10]; however, no previous methods have used 
lists composed of skeleton motifs with irregularly placed 
prongs. It has been noted that human TFs are likely to bind 
to much more degenerate motifs than in yeast [5], and so it 
will become more important to search these lists in analyzing 
human gene expression data. 

 These lists were created starting with a complete list of 
all 10bp (or 9bp) possible motifs found in the promoter re-
gions of the set of genes. All motifs were compared to the 
first motif in this list, and a histogram showing the number 
of matches at each base position was generated. For 10mers 
and 7-pronged skeletons, three positions are allowed to be 
arbitrary. The three positions at which the least motifs shared 
a base with the first motif were then allowed to be any of the 
four bases and a new skeleton motif was built with prongs 
(i.e., fixed bases) matching the first motif at the other posi-
tions. All motifs fitting this skeleton were removed from the 
list, and the skeleton was added to the list of skeleton motifs. 
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This process was repeated until all motifs in the 10mer list 
were represented in the skeleton list. This process was 
analogously repeated for the five other lists of various forms 
of skeleton motifs. 

 In addition to the skeleton motifs, lists of every occurring 
5mer, 6mer and 7mer were searched for active motifs. While 
most other methods have inputted lists of motifs found to be 
significant by previous methods, we make no assumptions 
and the program requires no a priori information. 

2.3. Reduction in Variance 

 The reduction in variance (RIV) was used as a measure 
of the created models’ abilities to explain variations in the 
gene expression data, and was calculated by the following 
equation: 

%RIV = 1
E(n) Ê(n) E(n) Ê(n)
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and where E(n) is the log expression ratio of gene n at the 
single time point studied, and the over-bar signifies taking 
the average over all the genes used to fit the model. Note that 
in the numerator, inside the mean-square term, the mean 
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over the genes used to identify the model. However, the 
%RIV will also be used to evaluate the identified model over 
novel gene expression data, in which cases the over-bar will 
denote the average over the new data where the mean in 
question is not necessarily zero. 

3. RESULTS 

 For each motif list, ten-fold cross-validation was used to 
determine regulatory motifs that repeatedly are found by 
FOS. For each set of conditions (motif list, order of interac-
tions allowed, pre-screening [pre-ranking] on or off), models 

Table 1. Summary of Modeling Results 

%RIV on Modeling Genes %RIV on Testing Genes 
Pre Screened? # of Top Terms Motif List 

1
st
 2

nd
 3

rd
 1

st
 2

nd
 3

rd
 

Yes 10 10bp7p 11.77 12.50 12.50 3.36 2.69 2.69 

Yes 15 10bp6p 13.72 19.33 20.08 3.72 5.33 6.24 

Yes 5 10bp6p 10.70 11.25 11.21 6.27 2.14 2.09 

Yes 15 10bp5p 11.68 17.94 19.15 2.61 4.66 1.15 

Yes 10 10bp5p 10.94 14.16 14.17 2.35 5.53 4.58 

Yes 10 9bp7p 10.37 11.22 11.22 0.83 0.90 0.90 

Yes 10 9bp6p 19.11 20.23 20.27 8.61 9.76 9.48 

Yes 10 9bp5p 6.58 8.69 11.55 4.30 2.37 0.88 

Yes 10 7mers 24.79 24.79 24.79 14.32 14.32 14.32 

Yes 15 6mers 20.54 28.19 28.75 15.35 13.01 12.25 

Yes 10 6mers 20.05 21.00 21.77 16.27 14.87 15.08 

Yes 10 5mers 17.85 21.52 23.10 13.77 15.18 5.87 

Yes 15 5mers 18.16 24.94 28.84 12.52 8.61 -0.59 

No 10 10bp7p 15.96 17.03  -10.65 -9.40  

No 15 10bp6p 16.59 20.23  -4.47 0.59  

No 10 10bp6p 16.59 18.09  -4.47 -2.44  

No 5 10bp6p 16.59 17.00  -4.47 -5.49  

No 15 10bp5p 14.91 20.47  -7.27 0.45  

No 10 10bp5p 14.91 17.66  -7.27 1.25  

No 10 9bp7p 13.41 16.08  -20.89 -18.27  

No 10 9bp6p 21.41 21.90  -2.31 3.16  

No 10 9bp5p 21.51 22.11  -2.53 -3.15  

No 10 7mers 32.75 32.75  -17.07 -17.07  

No 10 6mers 22.75 22.58  12.00 12.55  

No 10 5mers 18.18 22.35  9.64 13.24  

No 15 5mers 18.18 25.29  9.64 9.00  
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were built on 90% of the genes and tested for their fit on the 
other 10%. This was repeated so as to build a model holding 
out each of the sets of 10% of the points, making ten models 
per set of conditions. A histogram of motif appearances in 
the models was generated, and those appearing above a cer-
tain number of times were considered significant. The num-
ber of motif appearances out of 10 is called its CV score. 
Generally, known motifs appeared in 8-10 out of 10 models, 
so a threshold of 7 appearances was used in order to main-
tain a high level of rigor in considering motifs to be signifi-
cant. Those motifs found only 1-3 times are quite possibly 
false positives, which are found due to their counts’ similari-
ties to the noise in the gene expression levels. Those with 7-
10 appearances, however, are highly unlikely to be acciden-
tally found.  

 In general, very concise models were built by FOS. Even 
with low numbers of terms, the models’ reductions in vari-
ance (RIVs) ranged from 6.6-32.8%. Thus, FOS was able to 
create accurate models with very few terms. Often, 3-5 mo-
tifs or groups (i.e., cross-products) of motifs were able to 
accurately explain the variation in the genes’ expression lev-
els. Table 1 shows the RIVs associated with the models built 
from various lists. A number of runs were pre-screened, 
while a number were not. The pre-screening process involves 
running FOS on the entire list and pre-ranking the top indi-
vidual motifs. Then FOS is re-run with only these top indi-
vidual motifs and cross-products as candidates. This process 
limits the number of higher order interactions by only con-
sidering the possibility of cooperation between motifs that 
have a high significance level on their own. The number of 
top terms considered by FOS was generally taken to be 10 
(not counting their cross-products), but several trials were 
executed with 5 or 15 terms. When pre-screening was not 
used, all possible single motifs were searched, though the 
prescreening process was still done to limit the number of 
higher order interactions. Reduction in variance is reported 
in 6 columns per motif list. FOS was run once when allow-
ing only single motifs (i.e., no cross-products) to be 
searched. FOS was run again with 2

nd
 order interactions of 

motifs being considered in addition to the single motifs, and 
then once more with 3

rd
 order interactions being added onto 

the 1
st
 and 2

nd
 order interactions. The model RIV refers to 

the RIV calculated based on the 90% of genes used for de-
termining the model, while the test RIV refers to the RIV 
calculated based on the 10% of genes withheld during mod-
eling. 

 The models that achieved a very high RIV but did not 
perform well when tested on the points that were held out 
show that in these cases, FOS very accurately modeled the 
training expression data, but did not capture a model that 
explains the expression in general. In other words, these 
models have included terms that have only fit the noise in 
the data. A more accurate measure of the models’ accuracy is 
their ability to explain variations in other genes’ expression 
levels (i.e. the testing genes – those genes not used to build 
the model). A high RIV on the testing genes implies that a 
model has found terms which explain all genes’ expression 
profiles. Strong evidence of the value of the pre-screening 
process appears from the largely negative %RIV on the test-
ing genes achieved when bypassing the pre-screening proc-
ess. The majority of the runs that were not pre-screened re-
sulted in models performing poorly on the testing genes. The 

5-mers and 6-mers achieved better results than most, but 
their performance is still enhanced by pre-screening. 

3.1. Significant Motifs and Groups of Motifs 

 FOS returned a number of motifs through analysis of the 
various motif lists. A histogram of the cross-validation 
scores of these motifs for the 14-minute time point (at the 
M/G1 boundary) is shown in Figs. (1) (5-7mers), (2) (9bp 
skeleton motif lists) and (3) (10bp skeleton motifs). In all 
cases here pre-screening was used to select the top 10 terms, 
which, together with cross-products up to 3

rd
 order, were 

then searched by FOS to find the final models. One motif 
that is consistently found by FOS is the well-known MCB 
element. There are several forms of the element whose ap-
pearances predict expression levels very accurately. The 
most effective form in terms of reduction in variance was 
found to be the 5mer acgcg. While another form of the mo-
tif, cgcgt, occasionally appears in models, the acgcg is 
found nearly every time among the models built from the 

7mers  

cctcgac 10 

gacgcgt 10 

aacgcgt 10 

tgcgaag 10 

tgagaac 9 

tttgctc 8 

aacttct 7 

cgagtgt 6 

6mers  

acgcgt 10 

aaacaa 10 

ctaagc 10 

gttccg 9 

5mers  

acgcg 10 

aaaca 10 

agggg, ctcga 10 

gtaat, gtaat 9 

gtaat 9 

tgttc 9 

cgcgt, tgttc, gcccg 8 

tgttc, tgttc 8 

gtaat, gtaat, gtaat 7 

Fig. (1). The number of appearances of some of the most com-

monly found motifs and groups of motifs is shown for the 14-

minute time point (at the M/G1 boundary). Motifs are separated by 

list. 
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5mer list. Cross-validation shows that this motif appears 10 
out of 10 times, without fail. Another 5mer that appears con-
sistently is aaaca, known as the STE12 element. Two mo-
tifs not previously reported are the gtaat and tgttc mo-
tifs, which FOS finds to appear quite regularly. Both consis-
tently appear 8 to 9 times out of 10 through CV experiments, 
which hints that these motifs have a high probability of being 
functional. Among the 5mers, FOS finds three pairs of mo-
tifs as well as two third order sets that consistently appear in 
the models. One of these pairs, agggg/ctcga, is found by 
FOS every run. CV results show it to appear 10 times under 
most conditions. This pair of motifs is highly significant, and 
it is almost certain that the cooperativity between those two 
motifs is strongly influential on gene expression at the par-
ticular time point (alpha-arrest) used. Both elements in the 
pair have been previously found: the first is the known STRE 
element, and the second corresponds to a portion of the motif 
cctcgac, which has been reported in the literature [11]. 
While both have been found, their synergistic functionality 
has not been previously mentioned. The gtaat/gtaat 
squared term is found 9 times through CV. Slightly less sig-
nificant is the tgttc/tgttc squared term, which appears 8 
times under the set of conditions considered here. Two 3

rd
 

order groups are found with regularity. While not appearing 
quite as often as some of the single motifs, there is reason to 
believe that the cgcgt/tgttc/gcccg and gtaat/gtaat/ 

gtaat groups, which appear 8 and 7 times through CV, 
respectively, might be functional in cooperative regulation. 

 The 6mers show highly significant motifs as well, with a 
great deal of corroboration with the 5mers. Three motifs, 
acgcgt, aaacaa and ctaagc are found in every model 
built. The first of these is the most well-known form of the 
MCB element. The second motif is the STE12 element. It 
does not seem that the last motif appears in the literature, but 
there is agreement with other motif findings (skeletons) by 
FOS. The motif gttccg is also consistently found, with a 
CV score of 9. A small number of pairs of motifs are found, 
but no higher-order combinations of 6mers are found often 
enough to seem worthy of note.  

 Analysis of the 7mers shows two motifs of the MCB 
family that are found by FOS without fail. The aacgcgt 
and gacgcgt elements both appear in every model created 
with the 7mer list and cross-validation shows the two to ap-
pear 10 times on every run. Two other motifs are also found 
to be in every model: cctcgac and tgcgaag. Another 
7mer found to be highly significant is the motif tgagaac. 
The striking similarities in the last two mentioned motifs 
indicate that there is likely a degenerate motif to which an 
important TF can bind. The two similar motifs tgcgaag 
and tgagaac could be grouped together as tgmgaas 

9bp5p  

naaacannn 10 

ncnncgnct 8 

nngncgctn, ncnncgnct, nngntggnt 8 

nntngttnt 7 

ncnncgnct, ncnncgnct 7 

9bp6p  

ncctcgncn 10 

acgcntcnn 10 

nngntggtt 10 

natntancg, natntancg 9 

nnngttccg 8 

ngcncnccg 7 

natntancg 7 

9bp7p  

ngacnaagc 10 

tntacgcnt, atcnactan 9 

ggnggnccc 8 

acnttggcn 7 

Fig. (2). The number of appearances of some of the most com-

monly found 9bp skeleton motifs and groups of motifs is shown for 

the 14-minute time point (at the M/G1 boundary). Motifs are sepa-

rated by list. 

10bp5p  

nncnnancgc 10 

ttngnnngtn 9 

nncnnancgc, nncnnancgc 8 

nnntnacgng 7 

10bp6p  

nannntaatt, ntnnnagatg 10 

nannntaatt 9 

gncgcntcnn 9 

nannntaatt, gncgcntcnn 8 

nannntaatt 8 

aaannaacnn 7 

10bp7p  

anctnaattn 10 

nggntangtt 9 

nntntttctt, ngggagntgn 8 

gncgcgtcnn 8 

nntntttctt 8 

gncgcgtcnn 7 

cnngggcatn 7 

Fig. (3). The number of appearances of some of the most com-

monly found 10bp skeleton motifs and groups of motifs is shown 

for the 14-minute time point (at the M/G1 boundary). Motifs are 

separated by list. 
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(where m can be either a or c, and s can be either c or g). 
No significant pairs of motifs or groups of third order are 
found among the 7mers, likely because of the fact that re-
quiring seven straight bases to be held is a fairly rigid con-
straint. 

 Turning to the results of the modeling based on the skele-
ton motifs, we begin with the least degenerate list, the 9bp7p 
list. The motif ngacnaagc is repeatedly found, with CV 
scores of either 9 or 10. This motif is a near fit to tgcgaag, 
and especially the 6mer ctaagc, both found by FOS. 
Among this list, FOS also finds one pair of skeleton motifs, 
tntacgcnt/atcnactan, which is quite significant. The 
first of the two closely fits the 6mer version of the MCB 
element, acgcgt. Two other individual skeletons are found 
to repeatedly appear as well (ggnggnccc and 
acnttggcn). Among the 9bp6p list, three notable individ-
ual motifs come up 10 times each: acgcntcnn, fitting the 
MCB shape (acgcgt), the skeleton nngntggtt, and 
ncctcgncn, the latter closely fitting the cctcgac element 
also found among the 7mers. Among the 9bp5p list, the 
STE12 motif aaaca is found in the naaacannn skeleton. 

 Because of the high level of corroboration between the 
motifs found by FOS and those found by previous methods, 
this method has been shown to exude a convincing ability to 
model the control of gene expression. In particular, FOS 
finds some of the most well-known motifs, such as the MCB 
and STE12 elements, consistently so it is clear that FOS is 
able to correctly determine motifs that have controlling ef-
fects on gene expression. A high level of corroboration also 
exists between the different lists searched by FOS, with 
many bases being shared among the high-ranking motifs 
found in different lists. With confidence that motifs found by 
FOS are correctly discovered, the fact that FOS also finds 
unknown motifs and groups of motifs with high levels of 
consistency suggests that it may be able to predict other mo-
tifs that could be further analyzed for functionality. 

3.2. Running Time 

 One of the advantages of employing FOS as the method 
of model-building is its speed. Speed is determined by sev-
eral algorithm and data-related factors: the length of the time 
series, the MSE threshold below which no terms are added 
and the number of candidate functions. Because 715 cell-
cycle genes were used, the time series length was constant 
for all runs. The threshold, min , that had to be exceeded to 
add the M-th non-constant term was chosen to be 

=

=

1

0

22

min ),()(
9.10 M

m

m mmDgnE
N

 (3.1) 

where the E(n) are the log expression ratios of the genes n 
used to identify the model, N is the number of genes, M – 1 
is the number of (non-constant) terms already in the model 
and the over-bar signifies taking the average. The gm and 
D(m,m) are calculated as described by Korenberg [15]. The 
gm are the coefficients of the orthogonal functions that are 
implicitly created from the non-orthogonal pm(n), and the 
orthogonality means that existing gm do not have to be recal-
culated when new terms are added to the model. The D(m,m) 
are equal to the mean-square of the corresponding orthogo-
nal functions implicitly created. 

 The above threshold corresponds to a 99.9% confidence 
interval, and varies from the threshold corresponding to a 
95% confidence interval only in the coefficient, which is 
10.9, rather than 4 [17]. The only factor that was variable 
was the number of candidate functions, which corresponds to 
the total of the number of motifs and motif interactions 
searched. When the pre-ranking function is turned on, only 
the top 1

st
 order motifs and their cross-products were in-

cluded as candidates. For the majority of runs, the top 10 
motifs from the pre-ranking were used. While other cutoffs 
were tried, cross-validation showed that allowing more than 
the top 10 introduced higher levels of noise fitting, while less 
than 10 sometimes excluded motifs that are necessary for 
cooperative binding. Cross-product terms using the top 10 

Table 2. Running Times Using Various Motif Lists  

Running Time (seconds) 
Motif List Order Allowed # of Motifs 

Prescreening Modeling Total 

5mers 1st 1024 4.95 0.04 4.99 

5mers 1st + 2nd 1024 4.95 0.24 5.19 

5mers 1st, 2nd + 3rd 1024 4.95 2.60 7.55 

6mers 1st 4096 18.44 0.03 18.47 

6mers 1st + 2nd 4096 18.44 0.21 18.65 

6mers 1st, 2nd + 3rd 4096 18.44 2.17 20.61 

7mers 1st 16384 80.83 0.03 80.86 

7mers 1st + 2nd 16384 80.83 0.33 81.16 

7mers 1st, 2nd + 3rd 16384 80.83 3.53 84.36 

10bp7p 1st + 2nd 4041 16.67 0.09 16.76 

9bp7p 1st 3706 14.84 0.03 14.87 
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motifs would then add 55 and 220 distinct 2
nd

 and 3
rd

 order 
terms, respectively. Pre-screening motifs would involve run-
ning FOS on the entire set of individual motifs in a given 
list, meaning anywhere from 1024 (5mers) to 16384 (7mers) 
motifs would be searched. 

 Table 2 shows the measured running times for a selected 
set of runs. All runs were executed on a notebook with a 2.0 
GHz Pentium Centrino processor. Clearly, the length of the 
pre-screening process is highly dependent on the length of 
the candidate motif list. However, once only the most sig-
nificant candidates are found, the addition of candidate pairs 
and groups of motifs does not greatly affect the overall run-
ning time. Another item to note is the linear relationship be-
tween the prescreening time and the number of candidate 
motifs. Only fairly concise lists of motifs ( 16384) were 
searched (in  81 seconds) in the pre-screening, but more 
lengthy lists could be used without running time blowing up. 
Memory constraints, however, do become a factor as the 
number of candidate functions increase, and thus more pow-
erful computers become desirable. 

3.3. Cell Cycle 

 Over the course of the cell cycle, genes’ transcription 
levels change drastically, allowing for physiological changes 
to take place within the cell. Various TF-binding motifs 
found by FOS were used to show their individual contribu-
tions to the reduction in variance across the 715 genes over 
the course of the cell cycle. The reduction in variance of the 
well-known MCB (acgcgt) element was previously shown 
to have a sinusoidal-like plot across the cell cycle [1, 2]. 
FOS also shows a sinusoidal-like plot, with no contribution 
from MCB at 4 time points across the two cell-cycles, which 
was also found by MARSMotif [1, 2] and REDUCE [11]. 
FOS clearly is able to capture the peak activity of MCB that 
occurs at the 21 minute time point, exactly agreeing with 
MARSMotif. The plot of the acgcgt motif’s contribution 
to the RIV across the two cell-cycles is shown in Fig. (4). 

3.4. Noise Levels 

 Noise levels are very significant in the process of model-
ing gene expression purely by word counts of potential regu-
latory elements. Expression is enhanced and repressed by the 
binding of transcription factors to the regulatory motifs 
found in the DNA upstream of coding regions; however, 
several factors other than motif appearances have an effect 

on the changes in transcription level. Therefore, it is impos-
sible to account for all the variations in the expression data 
solely by the counts of motif occurrences. Das et al. [1, 2] 
estimate noise to account for ~50% of the variations in the 
data. Some noise is introduced by inaccuracies in the collect-
ing of the microarray data. A more important source of noise 
comes from the fact that concentrations in the TFs have great 
effects on the expression levels. Although a gene may have 
plenty of binding sites, should the corresponding TF concen-
tration be low, binding will not occur and transcription will 
occur at a lower rate than would be predicted by the number 
of motif appearances. 

3.5. An Alternative Cross-Validation Method 

 The reporting of most results came from a method of 
cross-validation that modeled on different sets of 90% of 
genes and tested the model on the remaining withheld 10%. 
However, it was deemed necessary to entirely withhold a 
larger subset of genes for a more rigorous test of FOS’s 
modeling abilities. The method used in determining signifi-
cant motifs did, in fact, use all genes. Here, an alternative 
method of cross-validation is proposed. Rather than breaking 
the entire set of genes into ten sections and sequentially 
withholding 10% per model, in the new experiments 20% of 
genes were set aside, and the previous method was used to 
build 10 models out of the first 80%. This means that ten sets 
of 90% of the first 80% of genes were used for modeling. A 
histogram of significant motifs was created to keep track of 
how many times each appeared in these 10 models. Interac-
tions were only considered significant if the testing RIV (the 
average RIV on the ten sets of 8% of genes) was increased. 
Once a set of significant motifs and interactions was created, 
FOS was once again run, but this time on the entire set of 
80% of genes, in order to calculate the weighting coefficient 
to be associated with each motif or motif group. This was 
considered the final model and this would be used to predict 
the expression levels of the final 20% of genes, which were 
now completely isolated from the modeling process. 

 This method was used to create a model for 6-mers. For 

three sets of conditions (allowing no interactions, up to 2
nd

 
order interactions and up to 3

rd
 order interactions), ten mod-

els were created, using only 80% of genes. Here, the testing 

RIV (i.e. the average RIV of the ten models’ ability to pre-
dict the remaining sets of 8% of genes – all still part of the 

initial 80%) was found to drop slightly upon the addition of 

 

 

 

 

 

 

 

 

 

 

Fig. (4). Percent reduction in variance of the acgcgt (MCB) element over two cell-cycles. 
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two interactions found by FOS. These interactions were thus 

not included in the final modeling. Four motifs were found 

to appear 9 or 10 times out of the 10 models built in the first 
step (acgcgt, aaacaa, ctaagc, gttccg). FOS was run 

on the first 80% of genes to determine the coefficients for 

these four motifs. This model, when used to predict the ex-
pression levels of the final 20% of genes, yielded a RIV of 

15.41%. This testing shows that the 10 times cross-validation 

is capable of yielding terms that correspond to a high RIV 
over rigorously separated novel genes. 

4. DISCUSSION 

 In recent years, the increase in the ability to gather ge-
netic data has led to a vast library of knowledge. With many 

fully sequenced genomes and the availability of microarray 

data that can quite accurately measure transcription levels, a 
number of methods have been developed to analyze these 

data. In this paper, it has been demonstrated that FOS com-

pares favorably with previous methods and easily finds func-
tional motifs to which transcription factors can bind. Be-

cause of the efficiency of FOS, the discussed method can 

execute in very little time and build concise models with 
high degree of accuracy. 

 The implicit orthogonalization carried out by FOS is a 
key characteristic to its success in a number of applications. 

In terms of modeling gene expression profiles with motif 

counts, the implicit orthogonalization ensures that once a 
term is added to the model, the next term added will be the 

one which best explains the output while taking into account 

that the previous term has been added. Other methods not 
using this type of orthogonalization will find terms that ex-

plain the data, but might not conveniently find the terms that 

explain the remaining portions of the data after adding terms. 
The fact that FOS does this makes it a powerful tool in 

quickly building accurate and concise models. 

 The fact that no a priori information is needed means that 
this method can be employed on a complete set of motifs, 

working from scratch without requiring a separate method to 

narrow down the possible candidates. Because of the effi-
ciency of the method, large numbers of candidates can be 

searched quickly. In view of the corroboration of some FOS-

found motifs by those previously reported, it can be assumed 
likely that motifs frequently returned by FOS have a high 

probability of being active binding sites for transcription 

factors. 

 In summary, the method finds a number of motifs that 

have been found as well as a number which have not been 
previously reported. The ability of FOS to be a predictor of 

TF-binding motifs suggests that it will become an important 

algorithm in further analyzing higher order species. For the 
yeast genome, adding certain pairs of motifs to models leads 

to high levels of reduction in variance. In analyzing the 

5mers, for example, the RIV on the testing genes is im-
proved when allowing 2nd

 order interactions to be included in 

the models. When 3
rd

 order interactions are included, how-

ever, the testing RIV falls, indicating that perhaps 3
rd

 order 
interactions do not take place. Yeast is relatively quite sim-

ple, and it would not be surprising if the transcription proc-

ess were less intricately regulated than in more complex spe- 
 

cies. While, for the most part, groups of 3 or more interact-

ing motifs are not chosen by FOS, the method has the ability 

to find higher order cooperation between motifs. It is likely 
that this ability to uncover higher order synergy between 

elements will become crucial when analyzing more complex 

species such as mammals. 
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