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Abstract: In this study, induced changes in the secondary structure of the human insulin were carried out by addition of 

various reagents causing modification in the disulfide bond such as dithiothreitol (DTT) three dimensional structure of in-

sulin. CD spectra were taken accordingly and the spectra recorded. There are methods to predict and estimate spectral 

changes of a peptide molecule, however there is no method to process CD spectral data and correlate them with that of in-

ducing factor. Artificial intelligence backpropagation algorithm, as a strong model building tool was used here for predic-

tion and data mining. Therefore, artificial neural network (ANN) methodology was used to build a model to study the ef-

fect of selected biochemical factors in the downstream process of a recombinant peptide.  
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INTRODUCTION  

 Insulin is the major anabolic hormone in all 'higher' or-
ganisms involved in regulating the uptake of glucose by cells 
of the body, amino acid synthesis and the conversion of car-
bohydrate into triacylglycerols [1]. Human insulin was 
shown to contain 51 amino acids, arranged in two chains (an 
acidic A-chain of 21 residues and a basic B-chain of 30 resi-
dues). Insulin is a globular protein containing two chains; its 
structure as a monomer in solution resembles a crystallo-
graphic T-state protomer [2, 3]. 

 At the production of insulin, the upstream process in-
cludes the bioreactor application, for which an estimated 30 
hour time at 370 Cº in a 40 m

3
 reactor would suffice. The 

downstream would follow by isolation of the inclusion bod-
ies after removal of the cell fragments. Following that, fur-
ther purifications and oxido-reductive modifications on re-
combinant human insulin are applied. During such steps the 
secondary structure of insulin is affected. It is necessary for 
S-S bonds to be opened prior to final refolding. Such a proc-
ess requires sulfur atoms to be converted into –SH function-
ality [4]. Despite the fact that the efficiency of protein isola-
tion from inclusion bodies is high, such manipulations are 
crucial steps in the whole downstream process, especially for 
scale-up and manufacturing of recombinant protein from 
inclusion bodies. Oxidation breakdown can produce the 
higher amount of properly folded fusion protein feeding the 
later digestion process. This makes it vulnerable to higher 
scrutiny and optimizations. Insight into the informational 
content of protein sequences has been obtained from genetic 
analysis of allowed and disallowed sequences [5] and from  
 

 

*Address correspondence to this author at the Department of Medical Bio-

technology, Biotechnology Research Center, Pasteur Institute, #69 Pasteur 

Ave., Tehran, 13164, Iran; Tel: (98-21) 6640-5535; Fax: (98-21) 6646-

5132; E-mail: sardari@pasteur.ac.ir; ssardari@hotmail.com 

development of knowledge-based algorithms for evaluating  
the fit between a given sequence and a known structural  
template [6]. However, complementary insights into direc- 
tion and extent of downstream in-process factors affecting  
structural features that contribute to the native state have not  
been provided before. Yet the construction of incorrectly  
folded models and their analysis using empirical force fields  
have been applied [7]. This approach allows direct visualiza- 
tion of competing “threads” but is largely restricted to com- 
puter simulation domain [8]. There are partial folds in rela- 
tion to energy landscapes and possible mechanisms of insu- 
lin fibrillation. Circular dichroism (CD) is an instrumentation  
technology for elucidating the secondary structure of the  
proteins and peptides. It also allows the detection and quanti- 
tation of the chirality of molecular structures. CD is a variant  
of absorption spectroscopy which measures the difference in  
absorption of left and right polarized light in the ultraviolet  
(UV) band by a medium or sample. Although the peptide  
bond is planar and hence symmetric, there is usually an  
asymmetric alpha-carbon on either side; hence the peptide  
bond transitions interact to give a CD signal which is very  
sensitive to secondary structure. In the far UV region (180- 
250 nm) the CD of a protein is primarily that of the amide  
chromophores along the backbone. With the introduction of  
an optically active sample, a preferential absorption is seen  
during one of the polarization periods and the intensity of the  
transmitted light now varies during the modulation cycle.  
The variation is directly related to the circular dichroism of  
the sample at that wavelength. Successive detection is per- 
formed at various wavelengths leads to the generation of the  
full CD spectrum. CD uses very little sample (200 μl of 0.5  
mg/ml solution in standard cells), it is non-destructive and  
relative changes due to influence of environment on sample  
(pH, denaturants, temperature etc.) can be monitored very  
accurately. CD has an important role in the structural deter- 
minants of proteins. The real power of CD is in the analysis  
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of structural changes in a protein upon some perturbation, or  
in the comparison of the structure of an engineered protein to  
the parent protein. CD is rapid and can be used to analyze a  
number of candidate proteins from which interesting candi- 
dates can be selected for more detailed structural analysis  
like NMR or X-ray crystallography. This method proved to  
be an effective downstream method optimizing assistant  
while having the capability of being routinely used as a  
complementary quality control (QC) instrument, which can  
identify the nature of peptide folding in each step.  

 Computational approaches, such as structural bioinfor-
matics [9,10], molecular docking [11-13], molecular packing 
[14, 15], pharmacophore modeling [16], Mote Carlo simu-
lated annealing approach [17], protein subcellular location 
prediction [18-20], protein structural class prediction [21], 
identification of membrane proteins and their types [22], 
identification of enzymes and their functional classes [23], 
identification of proteases and their types [24], protein 
cleavage site prediction [25-27], and signal peptide predic-
tion [28, 29] can timely provide very useful information and 
insights for both basic research and drug design and hence 
are widely welcome by science community. The present 
study was attempted to use artificial neural network (ANN) 
methodology to build a model to study the effect of selected 
biochemical factors in the downstream process of a recombi-
nant peptide in hope to provide useful information for basic 
research and drug development. An artificial neural network 
(ANN) is composed of many processing elements (PE). Each 
processing element has inputs, transfer functions and output. 
Processing elements are connected with coefficients and are 
arranged in layers, i.e., input layer, output layer and hidden 
layers in between [30]. Application of ANN in pharmaceuti-
cal research is a new field with novel potentials to be discov-
ered. A variety of areas have been described to benefit from 
such algorithm predictions that range from industrial design 
systems to optimal formulation prediction and SAR evalua-
tions [31, 32]. In this study the influence of selected reaction 
condition and mixture ingredients used in the above-
mentioned steps on recombinant human insulin folding and 
its optimization for human insulin production applying CD 
spectroscopy were investigated.  

MATERIAL AND METHODS 

 The CD-spectra were obtained at 250 ºC on a Jasco J-810 
spectropolarimeter (Tokyo, Japan). Protein (human insulin) 
concentration was 0.5 mg/ml unless otherwise indicated. The 
far-UV spectra are recorded using a step size of 1 nm and a 
bandwidth of 1.5 nm. Spectra are recorded in a cell with a 
path length of 0.1 mm, the cell path length for far-UV spec-
tra (190-250 nm). The spectra were corrected for buffer con-
tributions. Quartz cuvettes of 1 mm in path length at 22 °C 
were used. The CD-spectra were analyzed and the secondary 
structure content was calculated using the program Spectra 
Manager for Windows 95/NT, Spectra Analysis, Version 
1.53.02 [Build 1], JASCO Corporation. Human insulin 
(Lilly-Eksir) solution was made in pure ware at a concentra-
tion of 0.5-1 mg/ml using dilute 0.1 N HCl to co-dissolve.  

DTT and Salt Treatment 

 Aliquots from stock solutions were mixed to a final con-
centration of 0.5-1 mg/ml human insulin and treated with 
DTT (0.2 mM) and other salt solutions varying from 0.1 to  

1 mM. In case of using buffer solutions, the pH was justified 
to 7 with 10-100 mM Tris-HCl. Samples were incubated for 
60 minutes before the spectra were collected for the salts and 
varied for DTT, with the DTT being added immediately be-
fore measurements were taken. The absorbance of each sam-
ple was then measured every 3 minutes over the course of 30 
minutes. Data were collected at 1-nm intervals over the 
range 240-190 nm for native protein, and for denatured pro-
tein with a collection time of 5 s/data point. To eliminate 
contributions from buffer, salt solutions were prepared in the 
same manner described above. To obtain correct spectra, 
their spectral data were subtracted from those of protein so-
lutions  

Heat Treatment 

 The effect of heat as an affecting factor in all the steps of 
a typical downstream process was measured using the heat-
ing module connected to the Jasco CD instrument. This 
module uses the circulating water adjusted to the desired 
temperature to operate.  

Sulfitolysis 

 To study the factors affecting S-S bond, the sulfitolysis 
reaction was used. In this method, the concentration of pro-
tein was adjusted to 0.5mg/ml using the above mentioned 
buffer solution and Na2SO3 and K2S4O6 were added to make 
concentration of 7.9 and 6 mg/ml respectively. The pH was 
adjusted to 9.1 using NaOH 2M solution and sample was 
incubated for 12h at room temperature [33]. The CD spec-
trum of the control solutions, buffers or the salt solutions, 
were subtracted from the main solution’s spectrum. 

ANN 

 A standard feed-forward network, with back propagation 
rule and with single hidden layer architecture was chosen 
applying the EasyNN, 8.01 (1999-2001). The wavelengths, 
insulin treatment concentration, were used as the inputs, 
while the kind of treatment was the output of the network 
architecture. There were assigned numerical values to vari-
ous treatment conditions; these values were arbitrary to pre-
vent text based learning and modeling. They ranged from -
500 to +500 and would indicate the general category in each 
treatment. Insulin concentration, treatment amount and time 
of incubation, in addition to the CD degree values at each 
particular wavelength (240-190 nm) would comprise the 
input values. The number of neurons was kept minimum to 
avert an over-fitting problem, which is usually produced by 
more weights due to higher numbers of neurons in input and 
hidden layers. However, to produce the optimum architec-
ture, powerful enough to model the functions and not create 
errors more than 0.05%, the total number of hidden layer 
neurons was varied from 10 to 50 and the hidden layers were 
from 1 to 3. The architectures were produced that met the 
error limit condition using least number of calculation cy-
cles. Higher numbers of hidden layer did not improve the 
performance, yet can decrease the speed of calculation. This 
finding is in accordance with previous reports [34]. 

RESULT  

1. Effect of Temperature  

 The effect of temperature on human insulin as monitored 
in two different wavelengths (194.8 and 208.1 nm) are 
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shown in Fig. 1a) and b) for increasing temperature denatur-
ing profiles and Fig. 1c) and d) for decreasing temperature 
renaturing profiles 
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Fig. (1). a) Profile of insulin thermodynamic study; CD data at 

208.1 nm with increasing temperature.  

b) Profile of insulin thermodynamic study; CD data at 194.8 nm 

with increasing temperature.  

c) Profile of insulin thermodynamic study for refolding; CD data at 

194.8 nm with decreasing temperature.  

d) Profile of insulin thermodynamic study for refolding; CD data at 

208.1 nm with decreasing temperature.  

2. Oxidative Folding Study 

 Since insulin is mainly composed of alpha helix as the 
dominant secondary structure, the effect of sulfitolysis rea-
gent [34] is easily detected as indicated. Fractional content of 
insulin secondary structure elements in the oxidative 
un/refolding is shown in the Table 1. 

Table 1. Content of Insulin Secondary Structure Elements in 

the Oxidative Un/Refolding (the Values are in Per-

centage) 

Time (min) 

Structure 

1 3 6 9 12 15 20 

Alpha 18.6 19.3 14.9 13.7 11.6 10.2 9.1 

Beta 44.7 38.2 46.1 44.0 44.4 46.9 44.5 

Turn 8.4 11.6 9.1 8.6 9.4 7.2 8.6 

Random 28.3 31.0 30.0 33.7 34.6 35.7 37.8 

 

3. Kinetics of S-S Bond Reduction 

 DTT is a compound that has been used commonly in the 
downstream process for reducing the disulfide bonds. The 
numbered values are indicated in the Table 2. As shown in 
the Fig. (2), the progress of time domain on the completion 
of the reaction and separation of S-S bonds can be monitored 
by CD.  

Table 2. The Secondary Elemental Component of Insulin 

Treated with DDT at Various Time Intervals (the 

Values are in Percentage) 

Secondary Structure 

(%) 

Insulin Treatment 

Alpha  Beta Turn Random 

- 42.6 31 13.9 12.5 

DTT 8.2 40.8 10.6 40.4 

Na2SO3, K2S4O6 18.3 37.4 0 44.3 

 

4. Effect of Reducing Agents 

 Reduction of insulin by agents like DTT would cause 
conversion of S-S bonds to –SH. In these circumstances, 
chain A and B are separated and the only dominant structure 
would be beta. In fact, this has been indicated in our study, 
obtaining 44.5 % of beta after 20 min at pH=8 (Tris, DTT 
5mM, and Insulin 1mg/ml). This study was completed in 
conditions with reduced buffer concentration. Although at 
the beginning, the level of beta sheets was quite different at 2 
and 0.5 mM of DTT, the yield was similar at the end of 20 
min period (data not shown). In all instances, alpha contribu-
tion was not less than 8%.  

 The progress of disulfide bond reduction was observed 
by electrospray ionisation and Fourier transform ion cyclo-
tron resonance mass spectrometry. Circular dichroism was 
used to monitor conformational changes of reduced proteins 
and of their unreduced counterparts [35].  
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5. Effect of pH on the Structure 

 Acidity has potential effects on folding and the molecular 
reactions. By using the insulin solution at different pH value 
and measuring the CD absorption spectra at two different 
wavelengths, 194.8 and 208.1 nm, it became evident that 
alpha helix is more prevalent at pH=5. While pH=10 and 
above have the least alpha helix contribution, similar values 
were obtained for pH=7 and pH=9. This has been shown in 
Fig. (3). 

 

 

 

 

 

 

 

Fig. (3). Alpha helix content change according to change in pH; CD 

correlation data at 194.8nm.  

 

6. Artificial Neural Network 

 The network architecture used was 54:32:7:1, and those 
are the node numbers for input layer, and two hidden layers 
and the output. The average error was 0.0059%. The epochs 
were 2047 to reach a level below the desired learning error. 
It could be possible to give text strings for the solution con-
ditions in the building of the architecture, however, in gen-
eral, better results would be reached if the real values were 
used and the output of treatment condition would be given 
numerical codes. The insulin solutions with various 
concentrations were also given different identification codes. 

Sensitivity 

 To obtain the sensitivity, the inputs are all set to the me-
dian values and then each in turn is increased from the low-

est value to the highest value. The change in the output is 
measured as each input is increased from lowest to highest to 
establish the sensitivity to change. Sensitivity Analysis is not 
the same as Input Importance. Sensitivity Analysis is a 
measure of how the outputs change when the inputs are 
changed. It is a method for measuring the cause and effect 
relationship between the inputs and outputs. Input Impor-
tance is a measure of how each input will influence the next 
layer in the network. Sensitivity Analysis shows how much 
an output changes when the inputs are changed. The highest 
values are related to insulin concentration, treatment concen-
tration, and incubation treatment time. For the wavelengths, 
values between 190 and 203 nm, show a more significant 
impact. The correlation coefficient (R

2
) between the pre-

dicted and the actual treatment type was 0.94, which is 
within the acceptable range concerning the versatility of in-
formation and size of the network (Fig. 4). The acceptable 
neural network prediction results have been reported to be 
accurate within error of 5.5% [36]. Leave-n-out validation 
was carried out on the network. When n=1, it is also called 
jackknife cross-validation. Table 3 shows the Leave-n-out 
validation data. In statistical prediction, the following three 
cross-validation methods are often used to examine a predic-
tor for its effectiveness in practical application: independent 
dataset test, subsampling test, and jackknife test [37]. In the 
independent dataset test, although none of the proteins to be 
tested occurs in the training dataset used to train the predic-
tor, the selection of proteins for the testing dataset could be 
quite arbitrary unless it is sufficiently large. This kind of 
arbitrariness may directly affect the conclusion. For instance, 
a predictor yielding higher success rate than the others for a 
testing dataset might fail to remain so when applied to an-
other testing dataset [38]. For the subsampling test, the prac-
tical procedure often used in literatures is the 5-fold, 7-fold 
or 10-fold cross-validation. The problem with the sub-
sampling examination as such is that the number of possible 
selections in dividing a benchmark dataset is an astronomical 
figure even for a very simple dataset (see Eq.50 of [39]). 
Therefore, any practical result by the sub-sampling test only 
represents one of many possible results, and hence cannot 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (2). Kinetics of S-S bond reduction at different DTT incubation times (minute). 
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avoid the arbitrariness either. In the jackknife cross-
validation, each of the samples in the benchmark dataset is in 
turn singled out as a tested sample and the predictor is 
trained by the remaining samples. During the jackknifing 
process, both the training dataset and testing dataset are ac-
tually open, and a sample will in turn move from one to the 
other. The jackknife cross-validation can exclude the mem-
ory effects during entire testing process and also the result 
thus obtained is always unique for a given benchmark 
dataset. Therefore, of the above three examination methods, 
the jackknife test is deemed the most objective [38], and has 
been increasingly used and widely recognized by investiga-
tors to examine the accuracy of various predictors [40-47].  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (4). The correlation between actual and predicted insulin 

downstream treatment indicators. The correlation coefficient (R
2
) 

between the predicted and the actual treatment type was equal to 

0.94.  

 

Table 3. Leave-n-Out Validation Model Data 

 Sum of Absolute Errors in Learning 

Left “n” Cycle 1 Cycle 10 

1 11.3131 12.4941 

4 12.4989 12.7422 

 

DISCUSSION 

 In the early days of insulin production, chains A and B 
were expressed and purified separately and then chemically 
transformed to the active insulin molecule by an oxidative 
step. Today, recombinant proinsulin is produced as a fusion 
protein and processed by several steps into active insulin. 
Optimized production strains of E.coli synthesize up to 40% 
of their cell mass as proinsulin fusion protein. Thus a 40 m

3
 

bioreactor can produce about 100 g of pure recombinant hu-
man insulin, which is about 1% of the annual world demand 
[35].  

 Circular dichroism (CD) is a valuable spectroscopic tech- 
nique for studying protein structure in solution because many  

common conformational motifs, including alpha-helixes, L- 

pleated sheets, poly-L-proline II-like helices and turns, have  

characteristic far UV (190-250 nm) CD spectra. CD has an  

important role in the structural determinants of proteins.  

However, the effort expended in determining secondary  
structure elements is usually not worth it because it is some- 

what unreliable. The real power of CD is in the analysis of  

structural changes in a protein upon some perturbation, or in  
comparison of the structure of an engineered protein to the  

parent protein.  

 Modern secondary structure determination by CD are 

reported to achieve accuracies of 0.97 for helices, 0.75 for 

beta sheet, 0.50 for turns, and 0.89 for other structure types 
[48]. For many proteins and peptides, the values of secon-

dary structure are in direct correlation with their activity. The 

secondary structure would affect the three dimensional struc-
ture of the molecule and that would in turn, result in change 

in interaction of the peptide with its target receptor and phar-

macological profile of the drug. Temperature as seen in Figs. 
(1a-d) has great impact on the unfolding and folding of 

insulin. As temperature is also part of the downstream proc-

ess, it was included in the study to better consider the differ-
ent conditions under which the peptide molecule is pro-

duced.  

 Incubation of proteins or peptides containing disulfide 
bonds (S-S) with DTT would result in cleavage of S-S bonds 

producing approximately equimolar amounts of free thiols (-

SH). The effect of S-S bond cleavage of human insulin and 
the fusion protein on some of its structural properties, includ-

ing conformation, were investigated. As shown in Table 2, 

the effect of incubation period is incremental and is repre-
sented in the modification of secondary structures observed.  

 Cleavage of S-S bonds may decrease the solubility of 
human insulin and also shifts its isoelectric point to lower pH 

values. S-S bond cleavage resulted in changes in shape and 

hydrodynamic volume of the protein, increasing the specific 
viscosity, with cleavage of up to 3 S-S bonds. Both UV dif-

ference spectral measurements indicated that conformational 

flexibility increases with S-S bond cleavage. CD spectra of 
the fusion protein at native condition and under denaturing 

conditions (sulfitolyzed) were taken. Data were collected at 

1-nm intervals over the range 260-200 nm for native protein, 
and 260-211 nm for denatured protein. Secondary structure 

estimations by far UV-CD suggested a gradual decrease in 

(alpha-helical and beta sheet) content of the protein with 
progressive cleavage of its S-S bonds. However, fully S-S 

bond cleaved protein maintained some (alpha-helical and 

random coil) structure. The analysis of the CD spectrum has 
shown the presence of approximately 35-37% alpha-helical 

structure (32% for insulin and 39% for proinsulin, [35] indi-

cating a proinsulin-like structure of the S-sulfonated FP 
molecule, stable even in 7.5 M urea in spite of the absence of 

disulfide bonds in the S-sulfonated molecule. Sulfitolysis of 

the protein also decreases its (RP C18-binding) ability. In 
addition to the S-S bond content of the protein, in our study, 

the protein folding showed to depend on the reaction me-

dium composition (including additives), and the presence of 
impurities like accompanied cell components, concentrations 

of protein, and temperature. This method can be used as a 

suitable IP-QC tool to determine the direction of downstream 
processing effectively.  

 



6    The Open Bioinformatics Journal, 2009, Volume 3 Sardari and Soltani 

CONCLUSIONS  

 In conclusion, there are various applications in the fields 
of ANN, including clinical data evaluation [49, 50] and drug 
development and molecular studies [30]. This study came up 
to show the importance of CD and power of ANN in model-
ing data from spectropolarimetric analysis of peptides in 
settings including the pharmaceutical industry. It is known 
that the CD data are valuable in the comparative experiments 
but not to determine the absolute shape and secondary struc-
ture of peptides and proteins. Therefore, modeling of CD 
data by supervised ANN methods further strengthens the 
ability of CD in predicting the information needed in re-
search and production pharmaceutical peptides and proteins, 
which is particularly important in the case of limited access 
to in vivo facilities and saving time. Such applications can 
accompany the databases included in the CD instruments to 
facilitate the methodologies involved in molecular three di-
mensional structure determinations.  
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