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Abstract: e-PROPAINOR (www.math.iitb.ac.in/epropainor/) is a web-server based on extension of PROPAINOR for pre-
diction and computational function elucidation of 3-D structure of proteins. It predicts the C  structure of a given protein 
sequence. Computational efficiency and reliability are key features of its software. Moreover, it also gives an estimate of 
the RMSD of the predicted structure. For the structures predicted with estimated RMSD of the order  5Å, it predicts 
likely sites of five major types of protein functions.  

Keywords: Protein Structure prediction, Nonparametric regression, Nonparametric Discriminant analysis, Distance geometry. 

1. INTRODUCTION 

 Determination of protein structure and function is impor-
tant in biomedical sciences, and biotechnology. With the 
advancement of experimental and computational research 
this has motivated the development of several prominent 
databanks, web-servers and related Bioinformatics utilities 
since past few decades.  

 Many important features of proteins are hidden in their 
complicated sequences. Therefore, sequence-based predic-
tion methods, such as protein structural class prediction 
[1,2], tight turn prediction [3, 4], protein quaternary attribute 
prediction [5, 6], protein folding rate prediction [7, 8] are 
highly desired because they can timely provide very useful 
information for both basic and applied research. Towards 
applied research — especially or relevance in computer 
aided drug development, sequence based approaches have 
been successfully deployed to — pKa value prediction in 
protein [9], HIV protease cleavage site prediction [10-12], 
signal peptide prediction [13], protein subcellular location 
prediction [14, 15], identification of enzymes and their func-
tional classes [16], identification of GPCR and their types 
[17-19], identification of proteases and their types [20], and 
protein 3D structure prediction based on sequence similarity 
[21], as well as a series of user-friendly web-servers for pre-
dicting various attributes of proteins as recently summarized 
in Table 3 of [22], and drug development. 

 In this study, we report a user-friendly web-server devel-
oped in our lab for predicting the C  structure of a protein 
and its likely functional sites according to its sequence in-
formation in hopes that it may become a useful tool for drug 
design and protein science research. 

 Large numbers of computational methods of prediction 
of secondary and tertiary structure of proteins are based on 
and homology modeling using sequence alignment and or 
molecular dynamics simulation. The ab-initio approaches  
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attempt this without homology modeling. Promising poten-
tials of research in genomics and proteiomics have boosted 
newer interest protein structural genomics and hence en-
hanced the significance of ab-initio prediction of protein 
tertiary structure [23-30]. Our recently developed algorithm 
PROPAINOR: PROtein structure Prediction using AI and 
NOnparametric Regression also contributes in this regard 
[31-37].  

 A comprehensive comparative review of different algo-
rithms and servers for ab-initio prediction of protein tertiary 
structures developed since nearly a decade is presented in 
[38]. Distinct features of PROPAINOR are also highlighted 
there along with the methods of ROSETTA [28] and I-
TASSER [30] that are known as best servers so far. Good 
accuracy — comparable with the best methods and signifi-
cantly fast computations of PROPAINOR made a good case 
for its web-implementation.  

 The PROPAINOR algorithm makes use of Knowledge-
based Nonparametric Regression modeling (NPR), Multi-
variate Analysis of Variance (MANOVA) and Nonparamet-
ric Discriminant Analysis. It solves the computational prob-
lem of protein 3D- structure prediction as a probabilistic 
programming problem based on estimators of inter-residue 
distances at C  positions [31, 32].  

 For short and medium sized proteins (sequence length 
70-150 amino acids) this algorithm is found equivalent or 
better in terms of prediction accuracy as compared to exist-
ing best ab-initio computational methods. Apart from the 
non-requirement of sequence-homology, the modularity and 
computational efficiency of its algorithm, and estimation of 
reliability index of the predicted structure are some signifi-
cant features of PROPAINOR [33].  

 Successful use of PROPAINOR on new biotechnologi-
cally and pharmaceutically important proteins like Human 
Seminal Plasma Prosthetic Inhibin [34, 35] and a two do-
main EF-Hand Calcium Binding Protein from Entamoeba 
Histolytica [36, 37] has motivated us to extend it for longer 
proteins and provide the utility on the Internet for wider re-
search applications.  
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 As a first step towards its extension for multi-domain 
proteins we have developed Bayesian methods for prediction 
of domain boundary points [39, 40]. We have also incorpo-
rated some modifications in the method of inter-residue dis-
tances for protein sequences of length > 150 amino acids. 
(Throughout this paper the word residue would imply C  
atom of an amino acid of the protein sequence under consid-
eration).  

 e-PROPAINOR (www.math.iitb.ac.in/epropainor/) is a 
web-server based on extension of the above approach. It also 
incorporates our novel contribution towards prediction of 
functional sites of a protein structure. In this paper we high-
light its methodology and salient features – including per-
formance evaluation and discuss its scope and importance.  

2. MATERIALS AND METHODS 

 The root-software for e-PROPAINOR incorporates inte-
gration of five major sets of modules consisting of inter-
linked computer programs written in C++, Perl and Shell 
scripts. The broad architect of its core software has six inter-
connected layers of modules; execution of modules in one 
layer triggers the execution of modules in next layer and so 
on (see Fig. 1 for illustration). The first level (Layer1) deals 
with reading the input sequence (in fastA format), predicting 
its secondary structure using standalone version of PSIPRED 
[41] and if necessary, identifying the likely structural domain 
boundary points (dbp). It may be noted here that the 
PSIPRED predicted secondary information is used only if its 
reliability measure is  6 for the consecutive segment (in the 
sliding window) of five amino acids in the sequence. Moreo-
ver this is used only for dbp prediction [39, 40] and/or at 
Layer 4 for some heuristics/estimation of certain medium-

range pair-wise distances that could not be estimated by the 
statistical procedure with confidence level above the average 
of other distances of similar category.  

 Layer 2 is most crucial as it pertains to estimation of ex-
pected inter-C  residue distances of all pairs of amino-acids 
on which a probabilistic version of distance-geometry ap-
proach is applied to get the C  coordinates. This layer has ten 
modules for estimation of sequence features, estimation of 
distances, estimation of likelihood of contacts, local folds, 
etc. 

 Statistical modeling and data mining used here emanates 
from our idea of considering the inter-residue distance (Dij) 
between C  atoms of amino acids at positions i and j as a 
random variable; i  j ; i, j = 1, …., L; L = length (total no. of 
amino acids) of the protein sequence. In view of Nature’s 
random effects and theoretical possibility that a protein se-
quence can fold into any 3-D form, this consideration 
amounts to, as also remarked in [30], most general modeling 
in the landscape of inter-residue distances. We estimate ex-
pected lower and upper bounds on these unknown distances 
using its nonparametric regression on statistically significant 
features of the protein sequence.  

 Additive model of nonparametric regression [42] is used 
for this purpose. Nineteen features of the protein sequence 
are found important in the case of long-range distances (Dij 
for the pairs with | i – j |  20). The features include both the 
sequential and individual amino acid properties [43-45] in-
cluding — length of the sequence, relative frequencies in the 
similarity clusters of amino-acids in the patch i+5 to j-5, 
proportion of sliding window segments of size 5 that have 
average alpha propensity > 60%, percentage concentration of 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1). Schema of Software-Architect of e-PROPAINOR. 
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hydrophobic residues in the specific segments, etc. Only 
seven of the nineteen features are found sufficient in the case 
of short and medium-range distance estimates (i. e., Dij for 
the pairs with | i –j |  3 and 4  | i –j | 7).  

 Multivariate Nonparametric Discriminant Analysis 
(NDA) of the pairs in short-, medium- and long-range dis-
tances is then carried out to predict the categories (e.g. short 
contacts, bump, hydrophobic core, long-range contact, etc) of 
the pair of residues and hence of the distance-types. Accord-
ingly the estimates of lower and upper bounds on pair-wise 
distances are updated [33].  

 The quantities used in the objective function f (given by 
equation (1) below) of the probabilistic programming prob-
lem, e.g. the bump-distance lbump, the weights, t for tth cate-
gory of distance-types, the probabilities pij

* (= Pr{lij  Dij  
uij}), etc are also computed by the modules at this layer using 
the training sample estimates and geometric and probabilistic 
modeling based heuristics [33]. Unless further refinement is 
required the Layer 4 is not activated and these estimates are 
supplied directly to Layer 5.  

 For the distances that could not be estimated with above-
average confidence level due to bad fitting of the Non-
parametric Regression (NPR) or discrepancies in NDA clas-
sification, or predicated type of secondary fold, etc, refined 
estimates are computed at Layer 4. Heuristics based on 
PSIPRED-predicted secondary folds [33] and quasi-
alignment of the segments containing the concerned residues 
— using stand alone version of BLAST search [46] — are 
applied for this purpose. Only the prediction made with reli-
ability level  6 in the output of PSIPRED are used. The 
term quasi-alignment implies approximate and selective 
alignment: the entire sequence is aligned but the contact in-
formation of the aligned portion of the template sequence is 
used only for segments of interest. If no alignment or no sub-
stantial inter-residue contact information is available for 
some pairs of amino acids, the corresponding distance esti-
mates are not supplied to Layer 5. The parameters (weights 
etc) are recomputed for the refined estimates and all are sent 
to the next layer. If the total number of inter-residue distance 
estimates acceptable from Layer 3 and Layer 4 is less than 
70% of the desired 2( )N

distances then the system also 
sends a warning signal to the next layer. This remark on non-
reliability of the predicted structure is displayed along with 
the output, if any.  

 Layer 5 uses all the refined estimates received from 
Layer 4 and the acceptable ones from Layer 3 in the follow-
ing objective function.  
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 This function is minimized with respect to xi’s subject to 
the triangular inequality constraints using conjugate gradient 
(CG) method:  

||xi – xj||  ||xi – xm|| + ||xm – xj||  i  j  m; i, j, m  {1, 2, 
…, L};  

 If no optimal solution is obtained, the system does not 
predict any solution. Else, from among the optimal solutions, 
the redundant ones are filtered out using our superimposition 
program at Layer 6. In case there are more than 5 distinct 
solutions, the best 5 are chosen in terms of the optimal value 
of f.  

 Finally, expected range of RMSD is predicted using 
PERT/CPM approach [33] for each predicted solution, if 
any.  

2.1. Functional Site Predication 

 If the expected RMSD is  5Å then likely functional sites 
are also predicted at this Layer. The module for functional 
site prediction deploys our recent algorithm based on logistic 
regression modeling [47, 48].  

 A logistic regression model is a statistical model, which 
estimates the probability of a categorical response variable 
(say Y) for a given vector (say X) of regressor variables using 
a logit function of the latter. We have fitted 5 logistic regres-
sion models — one each for major classes of protein func-
tions, namely – Translation Regulation Activity, Transporter 
Activity, Antioxident Activity, Transcription Regulation 
Activity, and Enzyme Regulation Activity.  

 In each model Y has two categories: Y = 1 and Y = 0 im-
plying respectively “Functional site” and “Not a functional 
site”. A site is predicted as a likely functional site if the es-
timated Pr (Y=1) is greater than a threshold.  

 The regressor variables in each model include — struc-
tural properties like closeness and relative surface area ob-
tained from the SARIG web-server [49], and some biophysi-
cal properties of amino acids.  

 Necessary details of the models and estimated parameters 
with RoC — curves of performance evaluation are reported 
in a separate paper [48]. 

2.2. User Interaction 

 The user has to first register on the server site 
(www.math.iitb.ac.in/epropainor/). This procedure is simple 
and interactive. Upon successful registration he/she may 
upload the input sequence online at the server site. Necessary 
user-guideline is also available on the site (click the link 
“Help” on the top bar after clicking “run ePropainor). The 
server (a Fedora6 station on a Pentium-IV dual core PC) 
automatically picks up the job on first come-first served ba-
sis. The text files containing predicted solutions in PDB for-
mat and the predicted RMSD information are sent to the user 
via email soon after completion of the job. The output files 
containing results, if any, on predicted functional sites are 
also supplied with these. In the mean time, the user may 
check the job status – e.g. position in the queue – on the 
server site.  

3. PERFORMANCE EVALUATION 

 For test runs we extracted a set of non-redundant (i.e. 
belonging to different structural and functional families) 
proteins of length greater than 40 and less than or equal to 
500 amino acids from the Protein Data Bank 
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(www.rcsb.org/pdb). From these we chose the ones having 
pair-wise sequence homology  30%. The final set had 
nearly 4800 protein sequences, the crystallographic or NMR 
structures of which are also available in the PDB.  

 In statistical prediction, the following three cross-
validation methods are often used to examine a predictor for 
its effectiveness in practical application: independent dataset 
test, subsampling test, and jackknife test [50]. However, as 
elucidated in [14] and demonstrated by Eq.50 of [15], among 
the three cross-validation methods, the jackknife test is 
deemed the most objective that can always yield a unique 
result for a given benchmark dataset, and hence has been 
increasingly used by investigators to examine the accuracy 
of various predictors (see, e.g., (see, e.g., [51-60])  

 As part of Jackknife approach of cross-validation (e.g. in 
[61-64]), we have used random subsets of about 1000 of 
these as training and remaining as validation samples. On an 
average for 70% of those in validation sample the actual 
RMSD (between the predicted and the PDB C  structure) is 
found to lie between 4.6Å ± 3.5 Å; only for about 12% of the 
validation candidates the actual RMSD is found to lie be-
tween 11Å to 20Å on an average. The performance for the 
7.4% in the remaining is in-between the above ranges and no 
feasible/optimal solution is found for the rest.  

 In most cases the interval of predicted RMSD is found to 
contain the actual RMSD. Testing on CASP8 benchmark 
entries of length between 41 and 500 has shown the predic-
tions close to the top-ranked solution in 4.5% cases; no fea-
sible/optimal solution in 6.1% cases. For most of the others it 
has shown above-average performance in terms of RMSD as 
compared to the top ranking solutions.  

 The prediction of functional sites is so far tested on about 
35 proteins from each functional class under consideration. 
The average sensitivity and specificity of this prediction are 
about 68 to 92% and 61.8 to 80.1% respectively.  

 In all test runs the average CPU time taken per solution 
(of C  coordinates) for proteins of length <150 is about 3-4 
minutes. That for proteins of length 300 to 500 is about 15-
28 minutes. For other proteins, the average computing time 
is found to lie in-between 5 to12 minutes.  

4. DISCUSSION  

 Computational methods for determining/predicting pro-
tein tertiary structure are crucial in Proteiomics research-and-
development in the absence of confirmed experimental de-
tails. These are also frequently used to complement or refine 
the experimental findings and to test the flexibility and sensi-
tivity of different structural parameters.  

 Data-driven (probability distribution-free) statistical min-
ing approaches are of special interest in this context. These 
also have potential to complement the homology based 
methods and supervised machine-learning techniques for 
better understanding of structural genomics and greater ap-
plications of Bioinformatics and Computational Biology in 
full exploration and exploitation of the available databanks. 
Our approach in PROPAINOR contributes in this regard with 
promising scope. Its extension and web-implementation (e-
PROPAINOR) offers wider utilization and possibilities in 
Bioinformatics applications.  

 Fast prediction with fairly good accuracy is most signifi-
cant feature of this web- server. Performance evaluation of 
the core algorithm PROPAINOR as reported in our earlier 
papers [31, 33] shows its superiority in computation time — 
including the time of atomic structure prediction by Max-
Sprout [65] — over other comparable ab-initio threading 
methods. In terms of RMSD of predicted structure too, while 
the average over different validation samples is comparable 
with the best-known methods, its shows greater consistency 
of performance as the standard deviations of RMSD in these 
samples are lowest in case of PROPAINOR. These strengths 
are carried in the performance of e-PROPAINOR as well.  

 Because of high diversity in the protein structures with 
respect to long-range contacts, the statistical estimates asso-
ciated with these are often predicted with lower confidence 
level. Specific heuristics of globular geometry (e.g. compact 
folding of hydrophobic core [33]), beta strand distances, etc, 
are therefore used in different discriminant classes. The 
methods based on multiple sequence alignment do not have 
such constraints of approximation. However, substantial 
alignment in most parts of the sequence is essential under 
these methods. Though, indirectly, these methods too use 
some heuristics such as — homology of structure implied by 
homology of sequences. Whenever this assumption is not 
satisfied these methods make drastic errors in structure pre-
diction. Methods (as in servers like I-TASSER [30]) that use 
structural motif libraries and incorporate several options of 
sub-structures are generally found better. We are currently 
working on estimation of probability distribution of struc-
tural motifs to modify the heuristics, wherever relevant in the 
core-method of e-PROPAINOR. 

 A unique feature of e-PROPAINOR, which is most de-
sired in the case of prediction of the structure of a newly 
determined protein sequence, and which should be incorpo-
rated in other structure prediction servers too, is that an esti-
mated interval of likely RMSD is provided with each pre-
dicted solution. It is also a distinct facet of this server that 
rather than predicting a wrong or totally random solution 
without any warning, it either does not predict any or puts a 
remark on non-reliability of the predicted structure as the 
case may be.  

 The solutions are provided in standard PDB format, 
which could be used for all kinds of further refinement 
and/or analysis of the properties/functions of the correspond-
ing protein/its translating gene. (The side-chains and other 
atomic co-ordinates could be attached to the predicted C  
backbone using high-reliability methods/programs like 
MaxSprout [65].) 

 The core software of e-PROPAINOR is modular for 
compatible linkage options with gene databanks, NMR (NoE 
distances) data and chemical activity etc and related soft-
wares. At present we use the link only with SARIG program 
(http://bioinfo2.weizmann.ac.il/~pietro/SARIG/V3/index.ht
ml) for computation of closeness and relative surface acces-
sibility of the residues in predicted structure. Using these 
features and biophysical properties of amino acids the logis-
tic regression module in the last layer of e-PROPAINOR 
software predicts possible functional sites on the structures 
that are predicted with substantial accuracy. Currently only 
five major classes of protein functions are considered. Ex-
tension and improvement in this utility is under progress.  
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 Other utilities for detection of specific function class [63, 
64] and activity pockets along with possible genome charac-
terization will be added successively with feasible linkage 
with relevant databanks and web-software.  
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