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Abstract: The complexity of even comparatively simple biochemical systems necessitates a computational description to 

explore and eventually understand the dynamics emerging from the underlying networks of cellular interactions. Within 

this contribution, several aspects relating to a computational description of large-scale biochemical networks are 

discussed. Topics range from a brief description of the rationales for computational modeling to the utilization of Monte 

Carlo methods to explore dynamic properties of biochemical networks. The main focus is to outline a path towards the 

construction of large-scale kinetic models of metabolic networks in the face of incomplete and uncertain knowledge of 

kinetic parameters. It is argued that a combination of phenotypic data, large-scale measurements, heuristic assumptions 

about generic rate equations, together with appropriate numerical schemes, allows for a fast and efficient way to explore 

the dynamic properties of biochemical networks. In this respect, several recently proposed strategies that are based on 

Monte Carlo methods are an important step towards large-scale kinetic models of cellular metabolism.  
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1. INTRODUCTION 

 All biological systems, from single pathways to 
multicellular organisms, continuously respond to, change, 
adapt, and regulate their internal biochemical states. 
However, cellular interaction maps are usually depicted as 
static networks, such that a compound or entity of interest is 
connected or linked (borrowing concepts from graph theory) 
to one or more other compounds or entities. Although 
usually owed to constraints in visualization, such a static 
depiction provides a misleading impression of cellular 
interactions and organization. Cellular interactions are 
dynamic – they are characterized by a certain strength at a 
certain time, which might change according to cellular 
circumstances. For example, it is known that allegedly 
interacting proteins are not necessarily expressed 
concurrently at the same time or in the same tissue. Similar, 
metabolism constantly reshapes its fluxes in response to 
available nutrients and other environmental or intracellular 
factors, resulting in a temporal compartmentation of 
metabolic processes.  

 Unfortunately, while the topology of cellular interactions 
is increasingly known, detailed information about the 
dynamics of cellular interactions, their strength in different 
tissue and at different spatial and temporal locations, is only 
scarcely available. Nonetheless, a growing number of studies 
emerge that aim to describe the kinetics and temporal 
behavior of biological interactions – aiming to develop 
dynamic mathematical models of cellular processes. Current 
mathematical models are not only confined to classic 
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instances of temporal cellular regulation, such as circadian 
clocks and other cellular rhythms [1], pattern formation and 
development [2, 3] or small signalling circuits [4], but 
increasingly aim at large-scale metabolic and regulatory 
networks [5-10].  

 This review seeks to describe and summarize recent 
efforts to characterize the dynamics of biological and 
biochemical systems. Our focus is the computational 
perspective, namely the construction of large-scale kinetic 
models to describe biological processes. The manuscript is 
organized as follows: The first section provides a brief 
description of the concepts and history of mathematical 
modeling of biochemical networks. In the second section, the 
key steps to translate a given pathway diagram into a kinetic 
model are discussed. In this respect, of particular interest are 
heuristic and approximative methods that allow to deal with 
incomplete and uncertain data, such as methods based on 
Monte Carlo analysis. The next section is focussed on the 
computational description of metabolic networks. It is shown 
that some functional regularities of enzyme-catalyzed 
reactions allows for an efficient computational description 
and simulation of metabolic networks. Subsequently, a top-
down strategy for the analysis and simulation of metabolic 
networks is presented which may serve as a stepping stone 
for the construction of genome-scale kinetic models. 

2. MODELING OF BIOCHEMICAL SYSTEMS 

  Mathematical modeling has a long history in the 
biochemical and biological sciences, tracing back at least to 
the description of simple enzyme kinetics by Henri, Haldane, 
Michaelis and Menten. Probably the first computational 
model – in the sense the term is understood today – of a 
biochemical process was published by Britton Chance in 
1943  [11], who used a mechanical differential analyzer to 
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solve the equations for the behavior of a simple enzymatic 
system. The pioneering work of Chance was taken up and 
continued in the 1950s and 1960s, resulting in metabolic 
models of increasing complexity and size, see Garfinkel et 
al. [12] for an early review. Not surprisingly, these early 
simulations were severely limited by inadequate computer 
hardware and the lack of appropriate algorithms to deal with 
the stiffness of differential equations describing the 
dynamics of biochemical systems [13]. Only the rather 
recent advances in computational feasibility have allowed to 
perform large-scale simulation routinely – with a renewed 
interest in computational methods triggered by the advent of 
Systems Biology [14].  

 However, despite the long history and the recent surge in 
applications, several fundamental questions relating to 
computational modeling as a credible research tool are not 
resolved. There are no clear criteria what properties 
constitute a good model. What standards can be conjured up 
to separate good and bad models? And, once constructed, 
what can be learned from a good model? As put by J. E. 
Bailey, “modeling is relatively meaningless without explicit 
definition, at the outset, of its purpose” [15]. Clearly, to 
answer such questions is no trivial task. For example, 
recently the capability to successfully em predict cellular 
outcomes has been suggested as the ultimate hallmark of 
modeling [16]. However, the ability to predict does not entail 
the ability to explain. As pointed out by Casti [17], the 
Ptolemaic geocentric system of astronomy was exceedingly 
predictive in its time and initially also outperforming the 
Copernican system within the available standards of 
observational accuracy. Nonetheless, the Ptolemaic system 
was woefully inadequate to explain the movements of 
planets. Similar problems arise for almost any simple and 
straightforward criterion to judge the quality and standards 
of model construction.  

 Nonetheless, computational modeling has its firm place 
in current molecular biology. In practice, modeling of 
biochemical phenomena is usually performed with one or 
both of the following two rationales in mind: First, models 
are a method of representation: As noted by Yuri Lazebnik 
in his iconic article [18], the language used by biologists for 
communications is not unlike that used by stock market 
analysts. Both disciplines use vague expressions and avoid 
clear predictions. To overcome the pitfalls of imprecise 
verbal communication, the utilization of a mathematical 
formalism may provide a suitable language to describe 
observed functional relationships. For example, a reasonably 

precise and unambiguous description of the functional form 
of an observed interaction, rather than a vague verbal 
expression, is a prerequisite for other researcher to contrast a 
reported result with their own observation. Second, models 
are a method of deduction: Once the individual interactions 
are described in an appropriate formal language, 
mathematical theory and computational methods provide a 
tremendously powerful set of tools to explore the emergent 
properties of biochemical networks. Computational models 
provide a formal framework in which experimental 
observations can be understood.  

 In this sense, modeling of biochemical systems, as 
understood within this article, follows the relation described 
by Casti [17] and is depicted in Fig. (1). The modeling 
process provides the appropriate encoding operations to 
express biological interactions in a formal mathematical 
language. The encoding of a biological systems into a 
mathematical framework then allows for a formal 
interrogation of the systems behavior, utilizing set of rules 
and computational methods (theorems). The inferred 
properties of the formal system (the model) become 
predictions about the biological or biochemical system. The 
modeler is mainly concerned with the encoding/decoding 
relations that translate back and forth between the biological 
and the computational world, whereas specialists in both 
fields develop the experimental and computational methods 
that drive progress in either realm. According to this view, 
mathematical and computational modeling epitomizes one of 
the the paradigms of systems biology: Mathematical 
modeling is a systematic and ordered way to describe our 
current knowledge of biological processes [15, 19, 20]. It 
allows to address the emergent properties of networks of 
interactions – properties that are neither accessible by a 
detailed exploration of the properties of the constituents of 
the system, nor by intuitive reasoning about how these 
constituents interact. However, it should be noted that the 
shift in paradigm often attributed to systems biology, the 
shift from an interest in properties of constituents to an 
interest in properties of systems, is not so new after all. No 
later than 1977, David Garfinkel already cites a remark made 
by the chemical engineer L. E. Scriven: “Were a chemical 
engineer to capture a strange factory, the last thing he would 
think of would be to use a steamroller and then separate the 
wreckage by sedimentation. Nor would he freeze the factory 
and saw it up for analysis” [13]. Similar, the current 
foundations of kinetic modeling of biochemical systems 
have been laid already almost 40 years ago, most notably 

 

 

 

 

 

 

 

 

Fig. (1). The modeling relation according to Casti [17]. The modeling process is based on the encoding and decoding relations that translate 

between the biological and the mathematical world.  
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with the formulation of Biochemical Systems Theory (BST) 
by M. Savageau [21, 22] and later Metabolic Control 
Analysis [23, 24]. 

3. FROM TOPOLOGY TO DYNAMICS 

 Obviously, there exists no single mathematical or 
computational technique or framework that is able to 
comprehensively cover all aspects of a biological system. 
Rather, computational modeling has many facets and covers 
a broad range of methodologies and applications [20]. 
Current computational models of biological systems include 
purely topological [25] and stoichiometric descriptions [26-
28], as well as Boolean models [29, 30], models based on 
ordinary differential equations [20], spatial models [31], 
stochastic models [32-34], Petri nets [35, 36], and 
combinations thereof, just to name a few. Even when 
focusing entirely on a description based on ordinary 
deterministic differential equations (ODEs) – arguably still 
the most prevalent method for modeling biological systems – 
we are faced with a rich diversity in formal descriptions and 
approximative schemes. See also Steuer and Junker [20] for 
a more detailed discussion. While in the following our focus 
is almost entirely on models based on ODEs, most issues are 
likewise applicable to other formal computational 
frameworks.  

 In principle, the construction of a computational model is 
rather straightforward. Given a biological system of interest, 
one needs to run through a series of simple and defined steps 
until the final model is obtained.  

 Specifically: (i) The building blocks of the system of 
interest must be assembled, that is, a list of all participating 
compounds and their interactions must be compiled. (ii) 

Each interaction has to be assigned to a specific functional 
form, given by a rate equation or other mathematical rule 
that specifies the nature of the interaction. (iii) Next, a 
quantitative value has to be assigned to each kinetic 
parameter. The values of kinetic parameters are obtained 
from the primary literature, dedicated databases, or 
specifically determined experimentally for the system at 
hand. Alternatively, parameters can be estimated from global 
measurements and time series data [37, 38]. (iv) Finally, the 
fully parameterized model can be interrogated using the 
sophisticated computational machineries developed in the 
past decades. The model needs to be validated by additional 
data, not already used in its construction. Novel experiments 
can be formulated based on predictions of the model. The 
entire process is exemplified in Fig. (2).  

 However, in practice, a number of obstacles hamper the 
straightforward construction of computational models. Only 
rarely the interaction topology of a biological phenomenon is 
comprehensively known. Likewise, the functional form of 
biological interactions is often difficult to assess. In many 
cases, functional interactions are not direct but mediated by 
additional compounds or processes which are not explicitly 
accounted for in the model – resulting in potentially 
arbitrarily complex interaction functions. Even for direct 
interactions, the respective interaction functions may be 
highly nonlinear. In particular for interactions involving 
multiple components, the precise functional form usually 
cannot be inferred from first principles and is difficult to 
map experimentally [39]. The most significant obstacle, 
however, is still the lack of reliable quantitative data with 
sufficient accuracy to animate computational models. 
Despite the torrent of data accompanying the advances in 
'omics' technologies, these data are often not suitable for 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (2). In principle a computational model of a biochemical network is easily constructed: First, the interaction topology of the model is 

assembled, either in the form of a list of all interactions or as a pathway diagram. These 'building blocks' are usually extracted from available 

pathway repositories and databases. Second, each interaction is assigned to a specific functional form and the network is assembled into a 

system of differential equations (or any other suitable mathematical representation). Third, each kinetic parameter is assigned to a 

quantitative value obtained either from direct experiments, the primary literature, or data repositories. Finally, the model can be evaluated 

using computational methods and compared to experimentally observed timecourses or phenotypic data. The process is repeated iteratively.  
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model construction. Either, as for most data obtained by 
large scale methods, measurements are only qualitative or at 
best semi-quantitative. Or, the data do not cover the specific 
requirements of interest, for example in terms of time-
resolution, temperature regimes, sub-cellular resolution or 
other constraints. As yet, parameterization of kinetic models 
remains a laborious process, integrating data from diverse 
sources – often associated with considerable compromise.  

 Given these profound obstacles in model construction, it 
is not surprising that the main challenge of computational 
modeling is to deal with uncertain and only partially 
available kinetic information. Several strategies have been 
suggested, each with specific assets and drawbacks. At a 
basic level, three broad categories can be distinguished: The 
first category consists of strategies that seek to describe the 
dynamics of biochemical systems without any recourse on 
kinetic parameters. Examples include logical models, models 
using parameter-free threshold functions, as well as models 
based on Boolean dynamics [30, 40-42]. However, the 
dynamics found in such models is often qualitatively 
different from results obtained from a description by 
conventional chemical kinetics. Furthermore, some variants 
of parameter-free dynamics are not genuinely parameter-free 
but implicitly assume heuristic global parameters which are 
set equal for all interaction functions. The second category 
consists of methods that seek to derive stringent statements 
on the dynamics of biochemical systems, solely based on 
knowledge of its topology or structure. The most prominent 
examples are chemical reaction network theory (CRNT), 
developed by Horn, Jackson, and Feinberg [43-45], and 
stoichiometric network analysis (SNA), developed by B. L. 
Clarke [46]. Both approaches provide an algebraic 
framework to relate aspects of network structure to various 
kinds of dynamics in a systematic way and only rely on 
weak assumptions about kinetic parameters. The last 
category consists of Monte Carlo methods to evaluate the 
possible behavior of biochemical networks and explicitly 
account for uncertainty in network structure and parameters 
[9, 16, 47-56]. Monte Carlo methods offer the advantage that 
they do not necessarily rely on simplifying assumption, but 
rather aim to translate uncertainties in input parameters into 
uncertainties or probabilities of output quantities. However, 
while conceptually often straightforward, Monte Carlo 
methods are usually computationally expensive and require 
extensive multiple numerical evaluations of a pathway of 
interest. In the next section, Monte Carlo sampling as a tool 
to describe the dynamics of metabolic networks is discussed. 

4. THE DYNAMICS OF METABOLIC NETWORKS 

 Cellular metabolism – the biochemical interconversion of 
small molecules catalyzed by enzymes – is an important 
determinant of cellular physiology and of relevance for many 
biotechnological and medical applications. In contrast to 
other areas of cellular regulation, computational modelling 
has played a valuable role in understanding the functioning 
of metabolic pathways for many decades. Metabolic systems 
are particularly accessible to a systematic computational 
approach for a number of reasons: First, the function of 
biochemical pathways is usually exerted by mass-transfer. 
This fact makes it comparatively easy resolve the topological 
organization, for example by isotopic labeling techniques 
that trace the passage of a compound through the pathway. 

Consequently, the topology of metabolic networks is often 
reasonably well known, at least as compared to the topology 
of other networks of cellular regulation. Second, the 
mechanisms and kinetics of single enzymes have been 
extensively studied for more than a century. The mode of 
action of single enzymes, as the building blocks of large-
scale computational models, are therefore reasonably well 
understood and are accessible by a large number of 
experimental techniques. Third, most components and 
pathways of a metabolic network have a well-defined 
functionality, for example to provide cellular energy in the 
form of ATP or to provide building blocks for cellular 
growth. Taken together, a known topology, a known 
functional form of most interactions, and a clear-cut 
functionality establish a rewarding basis for the translation of 
a biological network into a computational model.  

 Given the opportune properties of metabolic networks, it 

is not surprising that many current computational studies on 

cellular metabolism already aim at a rather large-scale 

description and are often reasonably predictive [20, 27, 57, 

58]. However, most current work is focussed on flux-balance 

analysis (FBA), a methodology that requires only knowledge 

of the stoichiometry of the network. While FBA is a 

tremendously powerful tool to assess the large-scale 

properties of metabolic networks, additional methods are 

needed to describe the dynamic properties of such networks. 

In this respect, there is increasing interest to bridge the gap 

between the already successful topological description and 

the scarcity of dynamic models [6, 7, 9, 48-50, 59-61]. The 

aim of most of these studies is to unite the advantages of 

FBA, its computational efficiency and predictive power, 

with a more detailed description of the dynamics of the 
system.  

 In this respect, a promising approach is to exploit the 

functional regularities of enzymatic reactions to construct 

kinetic first-draft models, followed by a Monte Carlo 

evaluation of model properties. Rather than building upon 

detailed knowledge of the kinetics of each individual 

reaction step, the kinetic description may start with heuristic 

assumptions about generic reaction mechanisms. Enzyme 

kinetic rate laws are usually derived from mechanistic 

descriptions, based on a number of simplifying assumptions 

such as quasi-steady state or rapid equilibrium assumptions 

[20]. Although the resulting detailed functional forms might 

considerable differ and depend on the specific minutiae of 

enzymes and binding mechanisms, most enzymatic reaction 

equations share several common features: (i) The flux 

through a reaction depends on the available substrates of the 

reaction. If one or more substrates are not available, the 

reaction does not proceed. Usually, the flux continuously 

increases with increasing substrate concentrations, although 

exceptions of this rule exist due to saturation or allosteric 

regulation. (ii) As the amount of available enzyme is limited, 

there exists a region where a further increase in substrate 

availability does not result in an increased flux. Enzyme-

catalyzed reactions exhibit saturation. (iii) All chemical 

reactions are reversible. The direction of a reaction is 

determined by the change of free energy. In particular, if 

substrates and products are in thermodynamic equilibrium, 
the net flux is zero.  
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 A large number of approximate functional forms for 

generic reaction kinetics has been suggested and compared 

in the literature [61-66]. However, most simple choices, such 

as as mass-action, power-law or lin-log kinetics, violate one 

or more of the requirements stated above. For a generic 

reaction mechanism that interconverts ns  substrates A  into 

np  products B ,  

 

A1 + A2 +…+ Ans B1 + B2 +…+ Bnp  

a reasonable functional form, in compliance with basic 

biochemical and thermodynamic requirements, is given by 

the expression  

r(A,B) =
VM

i=1

ns

KMi

i=1

ns

Ai
j=1

np Bj

Keq

F(A,B,KM )
  .          (1) 

 Within this heuristic Michael-Menten-type equation (1) 

the vectors 
 
A = {A1,…,Ans }  and 

 

B = {B1,…,Bnp }  denote 

the concentrations of substrates and products, respectively; 

Keq  denotes the thermodynamic equilibrium constant; VM  

denotes a maximal reaction velocity; and F(A,B,KM )  

denotes a positive polynomial that depends on kinetic 

parameters KM . Additional factors that account for 

allosteric regulation may be included, either as a 

multiplicative term corresponding to a modulation of the 

maximal reaction velocity VM , or, as an additive term on the 

polynomial F , corresponding to competitive inhibition.  

 The generic rate equation described in Eq. (1) is 

reversible, with a net-flux r = r+ r  that is given by the 

difference between the forward and backward direction. The 

direction of the reaction is determined by the ratio  

r

r+
= j=1

np

Bj

i=1

ns

Ai

1

Keq

=:
Keq

  ,          (2) 

where  denotes the mass-action ratio. To emphasize the 

distinction between thermodynamic and kinetic properties, 

Eq. (1) can be expressed as  

 

r(A,B) =

VM
i=1

ns Ai
KMi

F(A,B,KM )
=r+ (A,B)

1
Keq

  .         (3) 

 A number of options are available to specify the detailed 

functional form of F(S,P,KM ) . Possible choices are 

discussed in [61, 62, 66] and are usually based on the 

assumption of a generic random-order binding mechanism of 

substrates and products.  

 Once the functional form of each reaction equation is 

assigned, the metabolic pathway or network is translated into 

a system of differential equations, following the steps shown 

in Fig. (2). The system of ODEs can then be written in the 

compact form  

dS
dt

=N r(S)  ,           (4) 

where N  denotes the stoichiometric matrix and S  the vector 

of all substrates and products within the network.  

 As most of the kinetic parameters are usually unknown, 

an analysis of Eq. (4) may commence with a Monte Carlo 

strategy to obtain information about the typical or possible 

dynamic behavior of the network. Sampling the parameters 

is not straightforward, but must incorporate a number of 

physicochemical constraints to ensure plausibility of the 

ensemble of models. In particular, assuming a known 

stoichiometry, three types of parameter values are required to 

animate the rate equations given by Eq. (1): (i) The 

equilibrium constant Keq : The value Keq  is a 

physicochemical quantity and entirely determined by the 

change in standard Gibbs free energy of the reaction. While 

not dependent on the specific organism or cell type, the 

thermodynamic equilibrium is sensitive to a number of 

intracellular parameters, such as temperature. While a 

detailed experimental quantification is often not available, a 

number of algorithms exists that allow for a reasonable 

computational approximation [67-71]. Approximative values 

of Keq  for each reaction can therefore be assigned even for 

reasonably large networks. (ii) The affinity or Michaelis-

Menten constants KM
: Although the experimental estimation 

of Michaelis-Menten constants is possible and rather 

straightforward, such estimates are usually done on an 

individual basis and large-scale automation is not possible. 

An increasing number of repositories [72, 73] and automated 

retrieval systems [74] exist. Nonetheless uncertainty in 

affinity constants is certainly one of the major constraints in 

kinetic modeling. Furthermore, values provided in data 

repositories are often not accompanied by the raw data, 

along with the methods and the functional forms used for 

their estimation, which significantly hampers their re-

utilization in different conditions. (iii) The maximal reaction 

velocities VM : The parameters representing the catalytic 

activity and maximal reaction velocity are arguably the most 

difficult parameters to assign on a large-scale level. Though 

parallel measurements are possible [75], the values are 

dependent on enzyme expression – and may thus change 

rapidly and significantly with respect to different conditions. 

Also post-translational modification mechanisms, such as the 

deactivation of enzymes by phosphorylation, alter the 

effective values of VM . While in the long run, enzyme 

concentrations and their respective activity will be kinetic 

variables within integrated models, rather than kinetic 

parameters, most current models treat enzyme concentrations 

and activity as a constant quantities – thereby making the 

model highly dependent on experimental circumstances.  

 Utilizing a Monte Carlo strategy and given the 

considerations above, the kinetic parameters may be sampled 

according to the following rules: The equilibrium constant 
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Keq  are globally assigned to best-guess values, as obtained 

from large-scale approximation of thermodynamic 

properties. The affinity or Michaelis-Menten constants KM  

are sampled randomly in intervals [KM
min ,KM

max ] , with either 

global boundaries common for each parameter or boundaries 

assigned individually for each parameter. The choice of the 

boundaries may be guided by the distribution of available 

values in large-scale repositories. The intervals may further 

be refined if similar reactions have been experimentally 

characterized in related organisms. Within the assigned 

interval, the values may either be sampled from a uniform 

distribution, or from a distribution that is, for example, 

constructed according to the entirety of kinetic parameters 

available in large-scale repositories [76]. In general, different 

variants for the sampling strategy should be tested – it must 

be ascertained that reported results are not an artifact of a 

particular strategy, but are robust against slight variations in 

the methodology. The sampling of the maximal reaction 

velocities may follow similar rules as for the affinity 

constants. However, independent sampling of velocity 

parameters for each reaction may easily lead to 

unphysiological bottlenecks in the network. Alternatively, 

the maximal reaction velocities may be assigned such that 

they exceed a minimal value – with the minimal value for 

each reaction chosen according to a previously determined 

steady-state flux distribution. A crude first-guess approach is 

to globally assign the maximal velocities to rather high 

values, such that they exceed any expected flux value. Such 

a strategy is warranted by the observation that most reaction 

do not operate close to saturation and most enzyme activities 

are in large surplus relative to the observed in vivo fluxes 

[77]. More refined methods to chose appropriate reaction 

velocities are discussed below.  

 For each sampled instance of the parameters the model 

properties are evaluated. While the ensemble will not 

necessarily pinpoint the actual behavior of a pathway, 

evaluation of the ensemble allows us to test for generic or 

possible behavior and to check the consistency with 

experimentally observed behavior. In addition to 

straightforward sampling, the parameter space can also be 

evaluated using more sophisticated methods, such as a 

targeted search for parameter region corresponding to 

specific behavior [78]. The evaluation may be further refined 

using partial information on rate laws and kinetic 

parameters, as well as model selection based on available 

phenotypic data [54]. 

5. STRUCTURAL KINETIC MODELING 

 An alternative strategy that aims to avoid some of the 

difficulties and pitfalls associated with determining the 

appropriate distributions for parameter-sampling was 

suggested recently [20, 48, 51]. Instead of using a classic 

bottom-up approach of model construction, we propose to 

implement a top-down approach that is based on 

experimentally available physiological data. In particular, 

while most kinetic parameters are not directly accessible 

using high-throughput techniques, great strides have been 

made in the large-scale characterization of metabolic systems 

in terms of their concentrations and fluxes. High-throughput 

metabolomics and fluxomics studies are now almost 

standard techniques in the analysis of cellular metabolism 

[79-85]. Given the recent progress in technical possibilities, 

the comprehensive quantification of all concentrations and 

fluxes within a metabolic system is, at least in principle, 

experimentally feasible [86, 87].  

 The intervals for kinetic parameters may thus be chosen 

such that the resulting kinetic model is consistent with an 

experimentally determined metabolic state. Of course, an 

observed set of concentrations and fluxes does not allow to 

uniquely identify the complete set of kinetic parameter – 

rather the observed concentrations and fluxes implicitly 

specify an ensemble of possible models – which is 

subsequently subject to statistical evaluation. The top-down 

strategy is illustrated in Fig. (3).  

 In practice, we assume knowledge of a – not necessarily 

unique or stable – state that satisfies the steady-state 

condition N r0 = 0 , where r0 := r(S0 )  denotes the 

stationary flux vector at steady state concentrations S0 . The 

set {r0 ,S0}  characterizes the metabolic state of the system.  

 To construct an ensemble of models consistent with the 

metabolic state, the parameters are sampled according to the 

following rules: (i) The equilibrium constants Keq  are 

chosen as above and, in absence of experimental data, are 

assigned to values obtained from computational 

approximations. (ii) The affinity or Michaelis-Menten 

constants KM  are assigned to (either global or individual) 

intervals [KM
min ,KM

max ] . In addition to the criteria given 

above, interval boundaries can be chosen according to 

known metabolite concentrations. For example, the interval 

may be constraint to a 10  or 100 -fold variation around the 

maximal and minimal concentrations values, using a 

logarithmic distribution. (iii) Finally, the maximal reaction 

velocities VM  are chosen such that the system is consistent 

with its metabolic state {r0 ,S0} . In particular, with all other 

parameters assigned, the value of VM  for each reaction is 

uniquely determined. Given the functional form Eq. (1), the 

parameter VM  can be calculated as  

VM =
r0

i=1

ns

KMi
F(A0 ,B0 ,KM )

Ai
0 Bj

0

Keq

  .         (5) 

 Utilizing the rules specified above, any set of sampled 

Michaelis-Menten constants is, by definition, consistent with 

the metabolic state {r0 ,S0} . A subsequent Monte Carlo 

analysis then explores the dynamic properties associated 

with this specific metabolic state.  

 A further drastic reduction of the numerical effort 

required for the Monte Carlo analysis can be achieved by 

utilizing a local linear approximation of the system. In fact, 

an explicit computational simulation of the system is often 
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not necessary: Many properties of interest are readily 

available using only knowledge of the Jacobian matrix J  of 

the network. The Jacobian matrix determines the stability of 

a state, the linear response to perturbations, the flux and 

concentration control coefficients, time hierarchies and 

several other properties of direct relevance for the dynamics 

of the system [20, 48, 88]. Formally, the Jacobian matrix J  

is obtained by a series expansion of Eq. (4),  

 

dS
dt

=N r0
=0

+N
r
S S0

=:J

S S0( ) +…  .         (6) 

 The first term in the expansion describes the flux-balance 

constraint, which provides the foundation for FBA. Going 

beyond the zero-th order can thus be interpreted as a way to 

augment FBA with an additional term that takes into account 

some of the dynamic properties of a given steady-state flux 

distribution. In particular, utilizing the sampling strategies 

discussed above, the Jacobian matrix can be estimated by 

simple matrix multiplication and requires no further 

computationally expensive simulations. To obtain an 

expression for the Jacobian matrix, defined as  

J =N
r
S S0

  ,           (7) 

requires an evaluation of the matrix of partial derivatives at 

the specified state. In this respect, it is advantageous to 

rewrite Eq.(7) using a logarithmic representation, such that  

J =N D
r0
Q D

S0
1   ,          (8) 

where D
r0

 and D
S0

 denote diagonal matrices with elements 

r0  and S0  on the diagonal, respectively; and the matrix Q  

with elements Qij = ln ri / lnSj  denotes the matrix of 

logarithmic partial derivatives evaluated at the metabolic 

state. The elements of Q  are usually dimensionless values 

that specify the relative saturation of the reaction with 

respect to its substrates and correspond to the scaled 

elasticities of metabolic control analysis [20]. Once all 

matrices within Eq. (8) are specified, the Jacobian matrix can 

be obtain by matrix multiplication.  

 To exemplify the advantages provided by a top-down 

strategy based on logarithmic derivatives, we consider a 

simple metabolic pathway that consists of two reactions, 

producing and consuming a single metabolite S ,  

S    .           (9) 

See also Fig. (4).  

 The systems of ODEs is given as  

dS

dt
= 1 1[ ]

r1
r2

 .        (10) 

 We assume a constant influx r1 = c  and an outflux r2 (S)  

that follows a simple Michaelis-Menten kinetics,  

r2 (S) =
VMS

KM + S
  .         (11) 

 A classic computational analysis would now be based on 

the three kinetic parameters of the pathway, the influx c , the 

maximal velocity VM , and the Michaelis-Menten parameter 

KM .  

 However, we are interested in an alternative 

representation based on the metabolic state, characterized by 

the two matrices  

D
r0
=

r0 0

0 r0
and D

S0
= S0 ,       (12) 

where r0 = r1
0 = r2

0
 denotes the steady state flux. To obtain 

an expression for the Jacobian matrix, we need to evaluate 

the elements of the matrix Q ,  

Q =
0
,          (13) 

 

Fig. (3). A top-down strategy to explore the dynamics of large-scale biochemical networks. The basic idea is to generate an ensemble of 

models that is consistent with available information about the metabolic state of the system. The ensemble of models consistent with the 
metabolic state then allows for a systematic statistical evaluation of dynamic properties associated with the respective state.  
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where  denotes the logarithmic partial derivative of r2 (S)  

with respect to its substrate S . We obtain  

:=
ln r

lnS S0
=

1

1+
S0

KM

[0,1]  .       (14) 

 Clearly, the value of [0,1]  is confined to a well 

defined interval that describes the degree of saturation of the 

reaction r  with respect to its substrate S . For S0 << KM  the 

reaction operates in the linear regime with 1 , whereas for 

S0 >> KM  the reaction operates in the saturated regime, with 

0 . A similar reasoning applies to almost any arbitrary 

functional form of a biochemical rate equation. 

Consequently, the saturation parameters Qij  can often be 

sampled directly within well-defined intervals, without 

referring to any explicit functional form of the rate equations 

[48, 59, 88]. Once each element of the matrix Q  is assigned, 

the Jacobian is specified according to Eq. (8). For the 

example discussed above, we obtain  

J=
r0

S0   .         (15) 

 For a detailed evaluation, including more complex 

examples, see Steuer and Junker [20].  

 It should be emphasized that for most complex rate 

equations, the matrix Q  can be split up according to 

contributions from kinetics, regulation and thermodynamics 

[20]. In particular, a large number of rate equations can be 

written as a product similar to Eq. (3)  

r = freg rkin
+ fthd   ,        (16) 

with freg  denoting a regulatory factor, rkin
+

 denoting a kinetic 

factor, and fthd =1 /Keq  denoting the thermodynamic 

factor. In this case, the matrix Q  is given as the sum of the 

individual contributions  

Q =Qreg +Qkin +Qthd   ,        (17) 

such that the elements of each matrix can be assigned to 

well-defined and biologically reasonable intervals. We note 

that our top-down modeling strategy does not entail any 

approximation or simplification of the system. Rather it 

draws upon a description in terms of a generalized set of 

parameters. On the one hand, we have a description of the 

metabolic network in terms of the metabolic state {r0 ,S0} , 

the affinity constants KM  (or, when applicable, the 

saturation constant), as well as the equilibrium constants 

Keq . On the other hand, we have a description in terms of 

the classic enzyme-kinetic parameters KM , VM , and Keq . 

Both sets of parameters correspond to equivalent 

descriptions and are, at least in principle, interconvertible, as 

illustrated in Fig. (4).  

 The approach describe here was recently applied to a 

number of metabolic systems of reasonable complexity, 

including an analysis of the metabolism of human 

erythrocytes [53]. These early results indicate that distinct 

metabolic states are indeed associated with unique dynamic 

properties. In particular, the results, together with results 

obtained by similar strategies [49, 54, 56, 59, 60] hold the 

promise that a detailed understanding of large-scale system 

does not necessarily require comprehensive knowledge of all 

kinetic parameters. Rather, a combination of phenotypic 

data, large-scale measurements, heuristic assumptions about 

typical rate equations, together with appropriate numerical 

schemes, allows for a fast and efficient way to explore the 

properties of large-scale metabolic networks. In this sense, 

Monte Carlo methods provide a path towards the 

construction and evaluation of large-scale kinetic models of 

cellular metabolism in the face of uncertain and only 

partially available kinetic data. 

 

Fig. (4). The description of a biochemical network in terms of a metabolic state provides allows for a fast and efficient evaluation of its 

dynamic properties. Usually, following the conventions of bottom-up modelling, a set of kinetic parameters gives rise to a metabolic state – 

for example obtained by numerical integration of the corresponding set of differential equations. This transformation is non-unique: Several 

metabolic states may exist for any given set of parameters (bi- or multistability). Conversely, the metabolic state can be interpreted as a set of 

parameters to characterize the biochemical system. In this case, the Jacobian can be obtained straightforwardly without extensive further 

computations. The metabolic state, together with a set of Michaelis constants or saturation parameters, usually uniquely specifies the set of 
enzyme-kinetic parameters.  
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DISCUSSION AND CONCLUSIONS 

 Computational modeling has become an indispensable 
tool to understand the function and dynamics of biochemical 
networks and is increasingly recognized as a credible 
contribution to molecular biology. As put by Mogilner et al. 
[89], “the closer the complete systematic understanding of 
cell behavior is, the more important modeling becomes and 
the more experiment and theory merge”. In this respect, great 
strides have been made to facilitate computational modeling 
also beyond the small group of researchers that are 
traditionally associated with theoretical and computational 
biology. Several trends can be observed in the literature: 
First, the community strives for a unified nomenclature to 
describe computational models. The systems biology markup 
language (SBML) is emerging as a quasi-standard 
description format for biochemical reaction networks [90]. 
Second, minimal quality and reporting standards for the 
encoding and annotation of computational models are 
defined and increasingly adopted by the community [91]. 
Importantly, a standard description format, together with 
minimal reporting standards, facilitates the exchange and 
reuse of models using model repositories [92, 93], as well as 
the development of automated tools and software platforms 
to construct, handle, visualize, and interrogate computational 
models [94, 95]. In particular, a considerable number of 
software applications have become available that also enable 
users without extensive experience in programming to 
efficiently implement kinetic models of cellular processes 
[96-100].  

 However, the challenges ahead clearly go beyond 
nomenclature and model repositories. Detailed large-scale 
models of biochemical processes are still scarce – a fact that 
reflects the considerable difficulties associated with their 
construction. Arguably most advances have been made with 
respect to metabolic networks, where the reconstruction of 
the stoichiometry is considered to be almost comprehensive, 
at least for a small number of model species [58]. 
Nonetheless, even within the rather confined realm of central 
metabolism as yet unknown reaction paths continuously 
emerge and promiscuous enzymes might play a much larger 
role that currently anticipated [101, 102]. Likewise, further 
steps must aim to integrate multiple levels of cellular 
regulation, incorporating gene expression, enzyme 
concentrations and activities, together with cell metabolism 
within a single computational model [103-105]. In this 
respect, of particular interest is the interplay between a 
circadian clock and metabolism [106, 107], as well as other 
cellular and metabolic cycles [108-112].  

 Going beyond the stoichiometry, a great challenge is the 
transition from a static topological to a dynamic description 
of cellular pathways and mechanisms. The construction of 
kinetic models requires detailed knowledge of the underlying 
processes, supplemented by quantitative data of sufficient 
accuracy – requirements that are currently only rarely met in 
practice. Nonetheless, kinetic models are probably the 
ultimate stepping stone to truly understand the dynamic 
nature of cellular regulation. As yet, the functional 
consequences of regulatory interactions is, despite (or 
because of) the success of stoichiometric analysis, almost 
entirely uncharted territory. While for small systems and 
individual pathways, the relevance of dynamic properties 

and metabolic regulation is increasingly apparent, the 
consequences of autocatalytic pathways, dynamic 
instabilities, and feedback regulation for the function of 
large-scale networks is only rarely discussed [53, 113-121]. 
In this sense, the open questions amenable to a 
computational description are manifold – and often relate to 
the foundations of metabolic regulation and function [122-
124]. Computational modeling must not only aim to 
reproduce an observed time-course or response in silico, but 
must – and does already – contribute to formulate the 
fundamental paradigms in our interpretation of cellular 
functions. 
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