
 The Open Bioinformatics Journal, 2012, 6, 37-42 37

 1875-0362/12 2012 Bentham Open

Open Access

A Cloud Computing System to Quickly Implement New Microarray Data
Pre-processing Methods

Dajie Luo1,#, Prithish Banerjee1,#, E. James Harner1, James A. Mobley2 and Dongquan Chen3,4,*

1Department of Statistics, West Virginia University, Morgantown, WV 26505, USA
2 Department of Surgery, University of Alabama at Birmingham (UAB), USA
3Biostatistics and Bioinformatics Shared Facility, Comprehensive Cancer Center and 4Division of Preventive Medicine,
UAB. Birmingham, AL 35294, USA

Abstract: Background: Pre-processing, including normalization of raw microarray data is crucial to microarray-related
data analysis. It takes time and effort to build newly-developed algorithms into commercial software or locally developed
systems. While most new algorithms emerge in the form of sharable R packages, it can be difficult for many biologists to
apply them as soon as they are available. Currently, we rely on statisticians and experienced programmers to develop and
implement code to access those R packages. Therefore, we need a robust procedure to quickly implement pre-processing
methods as they appear. The newly emerging cloud computing concept has directed us toward a new way for providing an
easily accessible service to the biologists without requiring them to have any programming knowledge in R.

Results: Based on our earlier Java-based software tool JavaStat, we developed an internet based application prototype to
upload data and carry out pre-processing applications that include normalization, statistical analyses and plots. More im-
portantly, R packages, e. g., for newly-developed normalization methods, and GC-robust multichip algorithm (RMA) for
exon arrays, can be easily incorporated into the system with limited inputs from a biologist or a programmer. The data are
stored in the cloud and the R code runs on server.

Conclusion: The newly emerged cloud computing concept provides us a new way to provide an easily accessible and up-
to-date service to biologists, as evidenced by our JavaStat system to incorporate new pre-processing package as they ap-
pear. Users can access the application with a newly incorporated module through the Web. We expect this and other simi-
lar systems greatly decrease turn-around time, improve accessibility of newly developed R model for pre-processing algo-
rithms.

Keywords: Microarray, normalization, software, Java-based.

INTRODUCTION

JavaStat

 JavaStat, a previously reported system written in Java
[1], has a highly interactive statistical and modeling envi-
ronment. The front-end is an interactive graphical user inter-
face (GUI) for data analysis and dynamic visualization with
data management capabilities. The back-end server uses
R/Bio-conductor as a powerful computing engine to run
complex statistical models and carry out various types of
microarray analyses. The concept revolves around the use of
RMI (Remote Method Invocation) to communicate front-end
commands with a back-end Java server program (JRIServer),
which in turn communicates with R using JRI (Java/R Inter-
face). A workflow has been developed in JavaStat for this
purpose. The computation and data storage are completely
done on the server, so it is not necessary to install R on client
machines and thus no additional knowledge of R is required
for clients.

*Address correspondence to this author at the Division of Preventive Medi-
cine University of Alabama at Birmingham, Birmingham, AL 35294, USA;
Tel: (205) 975-7131; Fax: (205) 934-4262; E-mail: dongquan@uab.edu
#The authors contribute equally to the work.

 Although a user account is required to enable the feature
of workflows, (e.g. genomic analysis and modeling), the
system could potentially support a large number of users, as
the server side program is designed to be scalable. While R
is a single thread application, our system enables multiple R
instances to run simultaneously on the server to load balance
requests from large number of clients. The benefits of cloud
computing is to reduce investment in infrastructure such as
computing, storage, software, and upkeep. The analysis of
genomics datasets in R usually requires high end computing
due to the large size of high throughput data sets. Within our
architecture, the computing is performed on the server side,
so the client computer doesn’t need to be very powerful or
costly.

Current Microarray Data Analysis Tools and Normaliza-
tion Methods

 We have been using commercial products such as
GeneSpring (Agilent, CA), Partek (Partek Inc, MO), Ge-
nome Studio (Illumina, Inc, CA), and open source tools such
as Bioconductor [2], which are capable of analyzing most
types of single and dual color arrays. Affymetrix also pro-

38 The Open Bioinformatics Journal, 2012, Volume 6 Luo et al.

vides a simple tool called Expression Console for simple
data preprocessing and displays. It is common that newly
developed pre-processing methods are not made readily
available to investigators simply because they need to be
incorporated into either commercial products or locally-
developed tools. Although it is usually quicker for new tools
to be available in the open-source community, such as in the
R Foundation, biologists and statisticians often still require
extra help from programmers to implement and use these
newly developed packages.

 The pre-processing procedure is a crucial step before
statistics, and is meant to minimize the inherent non-linearity
of microarray analysis stemming from scanners, reagents
(e.g. dyes), and sequence contents, while also adjusting for
changes due to experiments carried out at different times
and/or by different people. At present, there is no consensus
on pre-processing methods, which have been emerging more
frequently than ever before. Notably, the most commonly
used pre-processing methods include MAS5 (Microarray
Suite 5, Affymetrix) for single color arrays [3], Dchip for
multi-color arrays [4], and others such as the robust multi-
array analysis (RMA) [5], quantile [6], GC-RMA [7], and
PLIER [3]. More recently PQN and DQN [8] attempted to
compare various normalization methods. However, not all
these methods are available in any of the software packages
mentioned above. The objective of this study is to develop a
procedure to streamline the implementation and to make
newly-developed pre-processing methods available as they
appear.

MATERIAL AND METHODS

Implementation

 Clients access the server as shown in the Fig. (1). A
group of duplicated applications called JRIServers run con-
tinuously on the cloud-based server. The JRIServer listens to
requests from the client programs and accesses R installed
on server. The R objects that were created throughout the
active computation period are retained in each user's work-
space. Thus the subsequent requests from the same user can
access and manipulate the user’s data.

Operational Procedure

 System access and analysis follow the following proce-
dure: 1) JavaStat sends the request that contains the com-
mand, client data, and the client identification to a server
through the Internet. 2) The JRIServer puts the request that
contains the identification into a queue. Control is instantly
returned to the client, which is free to send another remote
request. 3) JRIServer has a thread checking the queue con-
tinuously. It reads the next request out of the queue if the
queue is not empty. 4) The thread generates R code and runs
it on the server. 5) R reads (or writes) the user-owned work-
space file as required. 6) The thread converts the R results
into a Java object when the analysis is completed and puts it
into a repository with finished tasks. 7) The client program
JavaStat polls the server periodically. 8) The server reads
results from the repository when polled and sends them back
to the client according to cached identifications.

 This architecture supports multiple JRIServers and R
instances running on the same server to improve the effi-
ciency. If multiple users are on the client side, each of them
may access a different JRIServer and their requests are run in
parallel.

RESULTS AND DISCUSSION

Functionality of the Modified System

 We built our system based on an earlier system as de-
scribed [1]. Users can monitor the workflow, preview the
number of genes of significance, and the running status.
JavaStat utilizes the Affymetrix-related R packages to im-
plement the pre-processing workflow for the 3’-UTR-based
array, gene-based arrays, and exon-based arrays. The process
includes background adjustment, normalization, and summa-
rization. Users can apply a combination of options in each
step. The finished project is then saved as an easy-to-follow
tree structure as shown in the Fig. (2).

 JavaStat uses Java Web Start technology that can be de-
ployed over a local user network with a single click. It en-
sures that the most current version of the application is de-
ployed to the client desktop. Thus it offers maintenance free
benefits for clients. Although Web a application could be

Fig. (1). Software architecture and user data management.

���

������

�	

�

�����

�����

������
�������

����
�������
����

������

A Cloud Computing System to Quickly Implement New Microarray Data The Open Bioinformatics Journal, 2012, Volume 6 39

Fig. (2). JavaStat: a Java-based platform for array statistics.

used as a frontend for cloud computing, it lacks dynamic
graphics and other features of the Java frontend unless cer-
tain plug-ins are used. JavaStat supports data management in
spreadsheet like sorting, merging, saving, etc. These features
are difficult to implement using HTML technology alone.
Most of the Bioconductor commands take time to finish,
JavaStat uses threading to poll results from the server to
make it faster. Usually a Web system has to send the user
emails when the results are ready.

 JavaStat can perform multiple hypothesis testing on tab-
delimited text files. Thus the user can preprocess raw data in
the Affymetrix Expression Console and upload it to the
cloud for multiple hypothesis testing (using the ‘multtest’ R
package) to find significant genes between treatment and
control groups, as shown in the Fig. (3).

 Additional normalization methods such as GC-RMA for
Exon arrays were incorporated for Affymetrix-based arrays
in JavaStat as shown in the Fig. (4). The modified system
offers options to adjust expression levels based on GC con-
tents for 3’ arrays, gene arrays, and exon arrays. These fea-
tures were not available in GeneSpring at the time of devel-
opment.

 Various adjustment options for multiple t-tests can also
be applied. The results including raw data, p value, adjusted
p values, gene IDs and names, etc, can be downloaded for
downstream analysis such as pathways analysis. Other anno-
tation files such as Gene Ontology (GO) annotations can also
be merged to the result as shown in the Fig. (5).

 Another important option available to the user is to im-
port and export .cel files in Affymetrix-required format, but
with normalization applied in JavaStat. Users can then utilize
the modified .cel file within the software of their choice for
further analysis. Normalization applied directly to .cel files
are carried out by an R package named aroma.affymetrix in
CRAN repository. Users can also choose to continue their
analysis within JavaStat.

 In summary, for additional pre-processing or normaliza-
tions, we developed the following procedure to implement
them as they appear. This includes: 1) Administrator installs
new Bioconductor packages in R. 2) The software developer
modifies the Java program to call function of new normaliza-
tion methods in R. Java code may be modified on both the
server side and client side. 3) Server programs are deployed
to the cloud. Client programs are deployed to Web server. 4)
At the next launch of JavaStat, the client will automatically
detect and install the updates. Then the new function will be
available to the users.

Implementation Issues and Solutions

 With the use of R/Bioconductor as a backend computing
engine, the effort of programming is significantly reduced.
But embedding R in an application is a two-edged sword.
The debugging process may be difficult because R packages
are usually hard to implement by users although the devel-
opers may provide source codes. For example, at the time
when we were developing this software, the "aroma" pack-
age initially could not handle missing values in the exon ar-
ray; the "multtest" package for multiple t-tests prompts an

����
���	
��

���� ������

��������

�������	
������������	�����
���

���

���

���

��

�
� ��� ��� ��� ��� � ���

����������	�����

������� 	!�"����
�#���
�������	
�$��	�����
�������	
�%���#�
����������	��&��
'�# �#������'��	�

#�!(������	!��!���	!#���)(�

����
����*��+���������,
-�

.��
�������

���� �����
��������	�
�������
���
�������
����	�
�������
���
�����
	�����

������������
������������
�������������������

��
�����
��
�����
��
�����
��
�����
��
����� 	
��
���

	
��
�����
	
�
�����
	
�
�����
�
��
����
����

#�!(

��� ��� ����

&'/

�	!�����	!��!

��	!#���)(�

����

�������

��	��������������������	����������

������ ���!

40 The Open Bioinformatics Journal, 2012, Volume 6 Luo et al.

Fig. (3). QC, grouping and statistics in JavaStat.

Fig. (4). Data preprocessing and normalization.

error if duplicated values exist in one group. Since we rely
on the authors of the packages to fix those problems, it is
unpredictable and time-consuming since package owners are
not obliged to provide customer support. Another problem is
that R packages are not necessarily backward compatible.
It sometimes erases all installed packages when installed or
upgraded. R packages need a longer life span or continued
supports from owner are needed. Backward compatibility is
crucial for broad applications. Our approach of implement-
ing packages on a server lessens the requirement since all
installations are centrally monitored by server administrator
and client software is not affected.

CONCLUSION

 The newly emerging cloud computing concept provides
us a new way to provide an easily accessible service to bi-
ologists, as evidenced by our JavaStat system to incorporate
new pre-processing packages as they appear. Users can ac-
cess the Web-based application to upload data, run normali-

zations and analyses, and download results without much
input from a biologist or a programmer. Similar system will
greatly increase the accessibility of new algorithms in R.

AVAIABILITY AND REQUIRMENT

 Project name: JavaStat.

 Project home page: http://javastat.stat.wvu.edu.

 Operating system(s): Platform independent.

 Programming language: Java.

 Other requirements: Java 1.3 or higher.

 License: Free access for academic users.

 Any restrictions to use by non-academics: yes.

LIST OF ABBREVIATION

GC-RMA = Guanine Cytosine Robust Multi-
Array Analysis.

�"�

����������

#	(�* !�!� �,
����

��

+��

0

���

�
�� - � � � 0 � + �������-������

�����

��������������
���������� �!�
�������������"#�

���
��� �
� #����
 �������

�����
 �� ��
���

��

����
���
��	

�
����������
������
���������

�

������

����������� �

!"�

#!"� ���$ � �

���%$ ��� ��!�

!&

��'�(

���)�(

 �* (

� +��*

',� +����'�)�&

' ���

����

 � "�*�'��,��%,����

**�'�-�

��� '�� .�'��/�'����.�'�

�0�����1�2��'��/+#���
�0�����1�2��'��/+#���

�0��1��1�2��'��/+#���
�0�����1�2��'��/+#���
�0�����1�2��'��/+#���
�0��3��1�2��'��/+#���
�0��	��1�2��'��/+#���
�0��4��1�2��'��/+#���
�0��5��1�2��'��/+#���
�0�����1�2��'��/+#���
�0�����1�2��'��/+#���
�0�����1�2��'��/+#���

�������

��������

�������	
���

�
��
����� "��$���

�����#$%� ��!&��!�
��!���&�&
$!���$�!�&��
#��&&
'&"#$!�
'��!�$#�&

�(

'��!�$#�&�����&�

)�#������

 *��+
%��!	
��� ��&���������

#�!(*/

�1���,
���2�
#�!(

�	!��!

��	!#���)(�

����

�	!����

A Cloud Computing System to Quickly Implement New Microarray Data The Open Bioinformatics Journal, 2012, Volume 6 41

Fig. (5). Results can be displayed together with annotations.

HTML = Hypertext Markup Language.

GO = Gene Ontology.

AUTHORS’ CONTRIBUTION

 DC is the PI, DL is a system developer and administrator
and PB is an R and Java programmer. Together with system
architect JH who is the mentor of DL and PB, and JM who
provided advices from application perspectives, all contrib-
uted to system design, development and implementation.

ACKOWLEDGEMENT

 The authors would like to thank colleagues in WVU Cen-
ter of Neurosciences and Clinical Translational Sciences
Institute (CTSI) for helpful discussions, and Claire S. Chen
for proof reading. The project is partially support by a CO-
BRE grant from NCRR, NIH to D. Luo, P. Banerjee and
Institutional funding from WVU CTSI.

CONFLICT OF INTERESTS

 The authors do not declare any conflict of interest in this
study.

APPENDIX: Procedure Readme for accessing JavaStat

1. Contact the JavaStat administrator for a user name and
password.

2. Install Java on your computers.

3. Download the application from http://javastat.stat.wvu.
edu. Since JavaStat uses Java Web Start, no other instal-
lation process is needed.

4. Users have two options to perform the analysis. One is
to upload CEL files for analysis. This kind of analysis
will include array preprocessing and then differential
gene expression analysis. The other option is to perform
your normalization process in Affymetrix Expression
Console, then to output gene expression data to a tab de-
limited text file.

5. Click “R Login” to login to the server with your user-
name and password.

6. Select menu “Workflow” -> “Upload”. You can either
upload a group of CEL files for 3’ Affymetrix array,
Exon array, or one tab delimited txt file that contains
gene expression signal values.

7. Once the data is uploaded, select menu “Workflow” ->
“Diagram Objects”. A tree structure of objects will ap-
pear. If you left-click one object, the name and type of
this object will be displayed. You can right-click each
object to perform appropriate tasks such as normaliza-
tion and multiple hypothesis testing. After selection, a
dialog will prompt the user with choices for a particular
task. For example, the dialog of “differential gene ex-
pression…” step will ask for the type I error rate, sample
types, and sample filters, etc.

8. After a task is submitted to the server, the task panel will
display the status of all the tasks running on the server.
Depending on the size and complexity of your task, time
to finish the task on the server may vary. You must
leave JavaStat running to get the results back. Quitting
the program at this time will cause the results to be lost.

9. You can double-click each object to load it from the
server. After loading, a window that contains the graph
presentation and report will be shown for this object. In
the object window, you can select menu “Analysis” to
perform an appropriate analysis. You can click the black
triangle on the top-left corner of the graph to get the op-
tions menu. For example, in the object window, you can
download adjusted p-values, log2 fold changes, and in-
tensity values of the rejected genes from the options
menu. Downloaded data in the table window can be
saved as a .csv or tab-delimited text (.txt) file.

REFERENCES

[1] D. L. E. James Harner and J. Tan, "JavaStat: a Java/R-based
statistical computing environment," Comput. Stat., vol. 24, pp. 295-
302, 2009.

[2] R. C. Gentleman, "Bioconductor: open software development for
computational biology and bioinformatics," Genome Biol., vol. 5,
p. R80, 2004.

[3] E. Hubbell, "Robust estimators for expression analysis,"
Bioinformatics, vol. 18, pp. 1585-1592, Dec 2002.

[4] C. L. A. W. Wong, "The analysis of gene expression data: DNA-
chip analyzer (dChip), " Stat. Biol. Health, pp. 120-141, 2003.

����� ��	
 �����
 ������� �����
���������	�
��

��
 � � ���� ���� ��	� ������ ����� �����
!" !
#! $
%&%

"�$ �
�!' �
�(�
%' �
�& '

"!# '
"#(""�(#�#$

"(& !(!&
"&! !"&#
"%� '�$!
"(&(�&

(#� $'!%
�(" #&'(

(& &&'�
'$�� �$%"

$# ��$&)� �!&"
)" $'&!
)� #!($
)� '���
)� �%#'
)" %(!#
)� &$'$
)� '$(%
)# �#%!
)" $�#%� �

� �
� �
� �
� �
� �
� �
� �
� �
� �� �

� �
� �
� �
� �
� �
� �
� �
� �
� �#&""%*�+

#($&$*�+
#(!#�*�+
#'!�$*�+
#'"%'*�+
#�%�(*
*�+
#�('�*�+
#��(�*�+
"%�%*�+
"(%&*�*�+

"�
%
$
!
&
(
'
#
�
"

�

42 The Open Bioinformatics Journal, 2012, Volume 6 Luo et al.

[5] R. A. Irizarry, "Summaries of affymetrix genechip probe level
data," Nucleic Acids Res., vol. 31, p. e15, Feb 2003.

[6] B. M. Bolstad, "A comparison of normalization methods for high
density oligonucleotide array data based on variance and bias,"
Bioinformatics, vol. 19, pp. 185-193, Jan 2003.

[7] R. A. I. Zhijin Wu, R. Gentleman, F. M. Murillo and F. Spencer,
"A model-based background adjustment for oligonucleotide
expression arrays," J. Am. Stat. Assoc., vol. 99, pp. 909-917, 2004.

[8] W. M. Liu, "PQN and DQN: algorithms for expression
microarrays," J. Theor. Biol., vol. 243, pp. 273-278, Nov 21 2006.

Received: February 02, 2012 Revised: April 14, 2012 Accepted: April 16, 2012

© Luo et al.; Licensee Bentham Open.

This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/li-
censes/by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.

