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Abstract: The transcription factor complexes Mlu1-box binding factor (MBF) and Swi4/6 cell cycle box binding factor 
(SBF) regulate the cell cycle in Saccharomyces cerevisiae. They activate hundreds of genes and are responsible for nor-
mal cell cycle progression from G1 to S phase. We investigated the conservation of MBF and SBF binding sites during 
fungal evolution. Orthologs of S. cerevisiae targets of these transcription factors were identified in 37 fungal species and 
their upstream regions were analyzed for putative transcription factor binding sites. Both groups displayed enrichment in 
specific putative regulatory DNA sequences in their upstream regions and showed different preferred upstream motif loca-
tions, variable patterns of evolutionary conservation of the motifs and enrichment in unique biological functions for the 
regulated genes. The results indicate that despite high sequence similarity of upstream DNA motifs putatively associated 
with G1-S transcriptional regulation by MBF and SBF transcription factors, there are important upstream sequence feature 
differences that may help differentiate the two seemingly similar regulatory modes. The incorporation of upstream motif 
sequence comparison, positional distribution and evolutionary variability of the motif can complement functional infor-
mation about roles of the respective gene products and help elucidate transcriptional regulatory pathways and functions.  

Keywords: G1-S transition, cell-cycle, fungal evolution, motif finding, transcriptional regulation, regulons, TFBS, gene 
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INTRODUCTION 

 Eukaryotic cells commit to the cell cycle late in G1 at a 
G1-S phase called Start. Transcription of hundreds of genes 
is induced as part of the G1-S transition, including those 
responsible for DNA synthesis, budding and spindle pole 
body duplication [1]. Much of this transcriptional program 
depends on MBF and SBF transcription factors [2]. 

 MBF and SBF are heterodimeric complexes sharing a 
common trans-activating or regulatory subunit, Swi6 [3]. 
Their DNA-binding components (Mbp1 for MBF and Swi4 
for SBF) are related proteins with different target DNA se-
quences, ACGCG (MCB, or Mlu1 cell cycle box) for Mbp1 
[2] and CRCGAAA (SCB, or Swi4/6 cell cycle box) for 
Swi4 [4].  

 There is a considerable amount of information known 
about MBF and SBF and their effect on G1-S-regulated tran-
scription. They are generally known as G1-S transcriptional 
activators. While single deletion mutants of either Mbp1 or 
Swi4 are viable in S. cerevisiae, the double deletion mutant is 
lethal with arrest occurring in G1 [3]. It has been shown that 
in some cases the removal of either transcription factor 
minimally influences the transcription rate of putative target 
genes [5]. It has also been reported that the DNA-binding  
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subunits, Mbp1 and Swi4, may be functionally redundantei-
ther because some promoters have instances of both binding 
sites [6] or because of cross-binding [7]. Finally, a number of 
genes show increased expression in the absence of MBF 
and/or SBF suggesting their role as repressors or repressor 
activators for some genes [3].  

 It is assumed that cell cycle regulatory components are 
conserved among eukaryotes, reflecting the importance of 
this process [8]. Nevertheless, there have been only two 
studies that mentioned the question of conservation of G1-S 
transcriptional regulation across fungal evolution [9, 10]. It 
should be noted, however, that the main focus of those pa-
pers was the conservation and evolution of multiple other 
regulatory networks. Additionally, in both cases the research 
focused on a more limited selection of fungal species (14 [9] 
and 17 [10]), seven of which were members of the Sac-
charomyces genus. In this study, we analyzed 38 fungal spe-
cies that are evenly distributed across fungal phylogeny rep-
resenting three major phyla, Zygomycota, Basidiomycota 
and Ascomycota and spanning across hundreds of millions 
of years of evolution.  

 These studies recognized the potential of computational 
methods by combining biologically generated data with the 
output of a motif-finding algorithm [9]. Motif finding is the 
process of computational identification of sequence patterns 
that are important both for transcription regulation analysis 
and protein function prediction [11]. Different motif finders 
employ various search strategies and use different DNA mo-
tif representations [12]. However, a majority of existing tools 
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try to find only a specific type of motif. Because of that, they 
exhibit similar performance over multiple datasets from mul-
tiple species. In fact, in a benchmark study, 13 widely used 
motif finders displayed low absolute measures of correctness 
[13].  

 Combining several motif finding approaches can improve 
the accuracy of prediction. Our method, Suite for Computa-
tional identification Of Promoter Elements (SCOPE) uses an 
ensemble approach to combine three search strategies by 
looking for three kinds of motifs: short and non-degenerate 
(e.g. ACGCG), short and degenerate (e.g. WCGYG) and 
long and bipartite (e.g. AYGNNNNNNCRT) [14]. The indi-
vidual algorithms are all run in parallel and then combined to 
return the best scoring motifs. SCOPE outperforms numer-
ous existing motif finders and is highly robust to the pres-
ence of extraneous sequences in the input gene set [14].  

 In this paper, we analyzed the evolutionary conservation 
of putative upstream regulatory motifs responsible for G1-S 
transcriptional regulation. Starting with well-studied sets of 
S. cerevisiae MBF and SBF gene targets, we generated a list 
of orthologs in other fungal species. Orthologs from each 
species were then analyzed by SCOPE. High-scoring candi-
date motifs from each run were compared to the S. cerevisiae 
computationally predicted binding sites. Sequence logos of 
these motifs were then displayed on the fungal tree in order 
to gain additional insights into the relationship between fun-
gal evolution and consensus sequence of the putative tran-
scription factor binding sites. We have also analyzed combi-
nations of computationally predicted motifs in the upstream 
regions of corresponding gene sets. Finally, MBF- and SBF-

regulated genes from S. cerevisiae and sets of orthologous 
genes from other fungal species were analyzed for functional 
enrichment and functional specificity. Using this experimen-
tal approach, we showed overall conservation of G1-S tran-
scriptional regulons across fungal evolution in terms of up-
stream regulatory motifs, their patterns and functional anno-
tations of the respective genes. 

MATERIALS AND METHODOLOGY 

 An overview of our approach is shown in Fig. (1) and 
described in the following sections. 

S. cerevisiae Gene Set Source 

 Lists of MBF and SBF gene targets were generated as 
follows. The initial transcriptional regulatory map of S. cere-
visiae [15] was constructed by combining genome-wide 
chromatin immunoprecipitation data, phylogenetic conserva-
tion and prior knowledge. It was refined by applying conser-
vation-based motif discovery algorithms, PhyloCon [16] and 
Converge [17]. Following the approach undertaken by Har-
bison et al. [15], we restricted the analysis to genes from 
MacIsaac et al. [17] containing highly significant motifs 
(bound by the corresponding factor at a p-value  10-3 denot-
ing a high confidence of the interaction between a regulator 
and promoter regions based on both genome-wide location 
data and several motif discovery methods) conserved across 
three out of four related yeast species (S. cerevisiae, S. mi-
katae, S. kudriavzevii and S. bayanus). Using these criteria 
and removing gene targets for both MBF and SBF, we gen-
erated two unique sets of 68 MBF and 40 SBF gene targets.  

 

Fig. (1). Flowchart of the experimental pipeline.  
A set of genes regulated by MBF or SBF transcription factors from S. cerevisiae (or their orthologs from other fungal species) are analyzed 
via SCOPE to identify best-scoring upstream DNA motifs. These motifs are compared to the known regulatory motifs via STAMP and their 
combinations are assessed via a module analysis approach. Starting gene sets are analyzed via DAVID and FunCat enrichment in functional 
annotations. 
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Fungal Ortholog Identification 

 We used a maximum likelihood fungal phylogeny that 
was constructed from a concatenated alignment of 153 uni-
versal orthologs in 42 fungal genomes [18]. Thirty-eight of 
these species were analyzed in this study (Table S1).  

 Fungal orthologs for S. cerevisiae targets of MBF and 
SBF were identified by mining PhylomeDB [19], a public 
repository of complete collections of gene phylogenies. This 
database utilizes combination of multiple approaches for 
phylogeny reconstruction, including maximum likelihood or 
Bayesian tree inference, alignment trimming and evolution-
ary model testing. When the internal identifiers were not 
easily convertible to standard gene names, we used the 
RSAT suite and looked for mutually highest scoring ortholog 
pairs [20]. 

SCOPE Runs 

 For each run, standard gene names were used as input. A 
fixed upstream sequence length of 800 bps was used since it 
corresponds to most frequently used upstream region size for 
fungal analyses [20]. 

Motif Comparison 

 STAMP [21] allows users to query defined motifs against 
databases of known motifs or against user-provided datasets. 
For each input motif, an alignment between the motif and the 
known transcription factor binding site or the user-specified 
motif is performed and the p-value of an alignment (that is a 
relative measure of motif similarity) is calculated. The p-
values are calculated based on the methods from Sandelin 
and Wasserman [22] where 10,000 simulated matrix mod-
ules were constructed for the analysis of score significance 
given the lengths of aligned matrices. This extensive analysis 
enables the assignment of empirical p-values to the align-
ment scores.  

 We first used STAMP to calculate the similarity between 
S. cerevisiae computationally predicted motifs (from 
SCOPE) and biologically verified transcription factor bind-
ing sites from SGD [23] in order to identify the best matches. 
Then we calculated similarities between these best-matching 
SCOPE motifs for S. cerevisiae and highest-scoring motifs 
from each SCOPE run of corresponding orthologs in other 
fungal species. The S. cerevisiae motif served as an input 
motif and was compared to a user-defined dataset of SCOPE 
motifs from each fungal ortholog run. For each motif pre-
dicted by SCOPE, its PWM (position weight matrix) was 
converted into Jaspar/Consite input format supported by 
STAMP in which motif representation is preceded by a >-
containing line which lists the motif name. The actual motif 
representation has 4 rows of characters that begin with the 
DNA letter represented by the frequencies in this row1. 
STAMP analysis was done with the following default pa-
rameters: Pearson Correlation Coefficient for column com-
parison metric, ungapped Smith-Waterman for alignment 
method, iterative refinement for multiple alignment strategy 
and UPGMA for tree-building algorithm. 

                                                            
                                                           1 The authors wish to thank Piotr Teterwak for help in converting the 

SCOPE output data into an appropriate input format for STAMP. 

Module (Motif Pattern) Analysis 

 In addition to identifying individual upstream sequences, 
we were also interested in analyzing patterns of motifs (or 
modules). We define a module as the arrangement of two 
motifs separated by a conserved distance. A module may 
consist of two of the same motifs (homotypic module) or two 
different motifs (heterotypic module).. 

 In order to distinguish between different modules, we 
have developed a comprehensive approach that calculates a 
module score reflecting the overall quality of a module2. In 
its current implementation, the module score includes five 
components that are assigned a weight from 0 to 1 and are 
combined to generate the overall module score from 0 (de-
noting a low quality module) to 1 (denoting a high quality 
module). The five components are as follows:  

1) Sig value, which is the sum of Sig values for two motifs 
comprising the module. The Sig value of a motif is a signifi-
cance value as calculated by SCOPE that is an indication of 
the overrepresentation and position distribution of a motif in 
the gene set compared to the rest of the genome. For detailed 
description of Sig value, see [24]; 

2) ABC score, a measure of how non-random the intermotif 
distance distribution is for the entire set of instances of the 
module. ABC stands for Area Between Curves and indicates 
how non-random the intermotif distribution for the actual 
modules is in comparison to randomly generated modules; 

3) Module position, a measure of how non-random the posi-
tion distribution of the module is for the entire set of module 
instances;  

4) Coverage which is equal to the fraction of genes in the 
set that contain at least one instance of a given module; 

5) Motif orientation within modules, a measure of the asym-
metry of the occurrences of a module with both motifs in the 
same orientation vs. motifs in different orientations.  

Functional Enrichment Analysis 

 Functional annotation tools DAVID [25, 26] and FunCat 
[27] were used to calculate functional enrichment in 
MBF/SBF-regulated gene sets and their orthologs. DAVID 
functional enrichment calculation was done for the S. cere-
visiae and Schizosaccharomyces pombe. FunCat was used 
for Neurospora crassa, Ustilago maydis and Fusarium 
graminearum. Different tools were used for different species 
because only a limited selection of species could be analyzed 
by a single tool. 

RESULTS 

SCOPE Analyses of MBF and SBF Target Gene Sets  

 Sets of MBF-regulated S. cerevisiae genes and their 
orthologs in other fungal species were analyzed via SCOPE. 
According to SGD [23], the sequence of the binding site for 
Mbp1, the DNA-binding subunit of MBF is ACGCGT. From 
the S. cerevisiae SCOPE run, we identified the ACGCGTH 
motif as the best match to ACGCGT, with a STAMP p-value 
of 8.3 x 10-10. We compared SCOPE-predicted motifs from 
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other fungal runs to ACGCGTH via STAMP [21]. All the 
best STAMP hits were high-scoring motifs with a CGCG 

tetranucleotide core (Table 1). The median Sig value for all 
fungal runs was 75.7 which is approximately equivalent to 
the p-value of 1.6 x 10-23 (~ 1/275.7). These motifs displayed 
strong sequence similarity to S. cerevisiae SCOPE-predicted 
motifs (Table S2). STAMP p-values of alignments between 
the S. cerevisiae SCOPE motif for MBF (ACGCGTH) and 
similar motifs from other fungi were in the range of 10-5 – 
10-12, with the median p-value of 5.5 x 10-9. These data imply 
that the MBF motif has been highly conserved during fungal 
evolution. 

 The same analyses were done for the sets of SBF-
regulated S. cerevisiae genes and their fungal orthologs. In 
terms of the binding site, we used the sequence CRCSAAA 
which is a composite of two SGD motifs (CACGAAAA and 
CGCSAAA) for Swi4, the DNA-binding component of SBF. 
Among S. cerevisiae motifs predicted by SCOPE, CRCGA-
RAD had the highest similarity to CRCSAAA, with a 
STAMP p-value of 5.9 x 10-11. We used STAMP to compare 
motifs from all other fungal SCOPE runs to the CRCGA-
RAD sequence. The list of the best STAMP matches was 
used to assemble heterogeneous motifs as shown in Table 2. 
The median Sig value in this case was much lower (18.9) 
than for MBF motifs, but still highly significant with an ap-
proximate p-value of 2.0 x 10-6 (~ 1/218.9). Similarly, 
STAMP p-values were less significant, being in the range of 
10-1 – 10-14, with the median p-value of 3.7 x 10-3 (Table S3). 

 Analysis of Position Distributions of Putative MBF and SBF 
Binding Sites 

 We investigated the position distributions of putative 
MBF-binding sites in the upstream regions of the analyzed 
fungi (Fig. 2). It is apparent that the CGCG-containing motif 
typically occupies a preferred location in the first 200 nu-
cleotides upstream of the gene start and does not display a 
uniform distribution across the upstream region as a whole. 
On average across all species, 51% of all occurrences of 
CGCG-containing motifs were in the 0-200 upstream region 
(Table 3). Thirty-one out of 38 species had a majority of 
MBF motif occurrences in the 0-200 quartile (7 remaining 
species had a majority of MBF motif instances in the 201-
400 quartile).  

 Analysis of positional data for the putative SBF-binding 
sites showed a less distinct distribution in the upstream re-
gions of the fungal gene sets (Fig. 3). In this case, a plurality 
of motif instances in all species (32%) was found in the 201-
400 upstream region (Table 4). Only 15 out of 38 species 
had a majority of SBF motif occurrences in the 201-400 
quartile. Of the remaining 23 species, 7 had most SBF in-
stances in the 0-200 quartile, 7 in the 401-600 quartile, and 8 
in the 601-800 quartile. 

MBF and SBF Motif Sequence Conservation across Fun-
gal Evolution 

 We compared MBF motif sequences across all species 
studied (Fig. 4). There appears to be a trend towards conser-
vation of the MBF binding site in general and its CGCG core 
in particular throughout fungal evolution. 

Table 1. Putative Fungal MBF Regulatory Motifs Identified 
by SCOPE 

Species Motif Sig Value 

Ashbya gossypii DACRCGW  77.1 

Aspergillus fumigatus DACGCGY  41.5 

Aspergillus nidulans ACGCGTB  82.4 

Aspergillus terreus ACGCG  73.2 

Botrytis cinerea CGCGWNH  78.1 

Candida albicans ACGCG  65.5 

Candida dubliniensis DDCGCGW  92.4 

Candida glabrata ACGCGTH  51.0 

Candida guilliermondii CGCGNH  62.0 

Candida lusitaniae ACGCGTH  71.3 

Candida tropicalis ACGCG  90.4 

Chaetomium globosum DCGCGHY  74.3 

Coccidioides immitis DWCGCGW 106.0 

Coprinopsis cinerea ACGCG  37.8 

Cryptococcus neoformans RWCGCGW  66.6 

Debaryomyces hansenii CGCGNH  78.8 

Fusarium graminearum DCGCGHH  96.1 

Fusarium verticillioides DCGCGNY  55.0 

Histoplasma capsulatum CGCGTB  43.1 

Kluyveromyces lactis DHDWCGCGW  94.4 

Kluyveromyces waltii ACGCGTNH 126.6 

Magnaporthe grisea CGCGWH  79.7 

Neurospora crassa DCGCGHH  70.3 

Rhizopus oryzae DCRCGHH  42.8 

Saccharomyces bayanus HNACGCGW 334.7 

Saccharomyces castellii ACGCGWH 243.0 

Saccharomyces cerevisiae ACGCGTH 374.8 

Saccharomyces kluyveri DNWCGCGW 126.5 

Saccharomyces kudriavzevii ACGCGTND 262.5 

Saccharomyces mikatae ACGCG 247.1 

Saccharomyces paradoxus DCGCGTB 331.8 

Schizosaccharomyces pombe DWCGCGW  54.8 

Sclerotinia sclerotiorum DCGCGHH 111.7 

Stagonospora nodorum ACGCG  39.4 

Trichoderma reesii DCGCGHH  68.7 

Uncinocarpus reesii ACGCGTB 43.6 

Ustilago maydis ACGCG 29.7 

Yarrowia lipolytica CGCGNH 24.7 

The CGCG core is marked in bold. Sig value is the SCOPE measure of the 
statistical significance of a predicted motif. 

 Similar analysis of SBF motifs across fungal evolution 
showed several interesting patterns (Fig. 5). A majority of 
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fungi, from Rhizopus oryzae to Candida albicans, did not 
display a highly specific conserved sequence. Instead, 16 out  

Analysis of Motif Patterns in MBF and SBF Gene Sets 

 In order to evaluate potential conserved patterns of two 
motifs (which we call modules) for MBF and SBF gene sets, 
we analyzed homotypic modules formed by two adjacent 
instances of MBF/SBF binding site in each species. We then 
calculated module scores and other relevant module statistics 
such as number of occurrences per gene, median distance 
between motifs within a module, coverage, median upstream 
position and ABC score (see Materials and Methods). Com-
plete data for MBF and SBF gene sets are shown in Tables 
S4 and S5, respectively. According to median statistics, a 
typical MBF module was consistently different from a typi-
cal SBF module in terms of higher module score, smaller 
inter-motif median distance, higher coverage, closer location 
to the transcription start site and higher ABC score. For ex-
ample, a typical MBF module was formed by two instances 
of MBF binding sites separated on average by 38.6 ± 31.4 
bps, present in 46% of the genes in the gene set and located 
at 218 bps upstream. A typical SBF module had an average 
inter-motif distance of 78.6 ± 63.2 bps, was found in 38% of 
the genes in the gene set and was located at 386 bps up-
stream. 

 We have also investigated the behavior of the module 
statistics across four major fungal groups derived from the 
phylogeny in [18]: 1) Scer (S. cerevisiae)-like fungi compris-
ing primarily Saccharomyces species; 2) Ncra (Neurospora 
crassa)-like fungi combining Sordariomycetes and Leotio-
mycetes representatives; 3) Afum (Aspergillus fumigatus)-
like species comprising Eurotiomycetes species including 
members of Aspergillus genus; and 4) Calb (Candida albi-
cans)-like fungi combining Candida species. For each mod-
ule statistic, we subdivided all fungal data into top and bot-
tom halves and looked at the distribution of the species from 
a given fungal group according to their values. This way, we 
were able to associate each fungal group with a unique pat-
tern of module criteria. While some module metrics may 
behave similarly in different fungal groups, their combina-
tions result in unique profiles distinguishing different sets of 
closely related species from each other. For MBF, module 
median position was the least informative (Table 5), whereas 
for SBF that was true for module score (Table 6). 

Functional Enrichment Analysis of MBF and SBF Gene 
Sets 

 We analyzed the original MBF input genes from S. cere-
visiae in terms of their functional annotations. According to 
DAVID [25, 26] and FunCat [27] analyses, S. cerevisiae 
targets of MBF were generally enriched in various cell cycle 
and DNA-related processes, such as DNA metabolism, proc-
essing, recombination and repair. Functional annotation 
analyses of the orthologs of S. cerevisiae MBF-regulated 
genes in other species showed enrichment in similar func-
tional terms (Table S6). 

 S. cerevisiae genes regulated by SBF were generally re-
sponsible for cell wall organization and biogenesis. The 
analysis of orthologs of these genes in other fungi showed 
that, together with cell cycle and DNA processing functional 

Table 2. Putative Fungal SBF Regulatory Motifs Identified 
by SCOPE 

Species Motif Sig Value 

Ashbya gossypii RCACRCGAAA  15.7 

Aspergillus fumigatus TTCTT  28.6 

Aspergillus nidulans TTTCC  16.9 

Aspergillus terreus TCTNNNCCC  22.1 

Botrytis cinerea MCGCACGA  18.2 

Candida albicans AGANNNNNAAA  20.6 

Candida dubliniensis HNYWCRTT  40.0 

Candida glabrata TTTSGCR  11.9 

Candida guilliermondii AGAAAA  12.4 

Candida lusitaniae GCGANNNNNNCCC  13.3 

Candida tropicalis SRVRAGAGA 106.8 

Chaetomium globosum DCRCGWY  29.2 

Coccidioides immitis TCGAHAW  22.2 

Coprinopsis cinerea ACGCG  13.6 

Cryptococcus neoformans GADAATANA  17.2 

Debaryomyces hansenii CHTCTC  14.3 

Fusarium graminearum TTTCTT  18.5 

Fusarium verticillioides GAANNAAA  14.1 

Histoplasma capsulatum AAYYAAA  24.5 

Kluyveromyces lactis GAAAAA  25.4 

Kluyveromyces waltii CVSGAAD  22.4 

Magnaporthe grisea TTYGCSTC  11.1 

Neurospora crassa CGTCGCC  14.4 

Rhizopus oryzae CKCGAAAA  16.1 

Saccharomyces bayanus CRCGARA  75.2 

Saccharomyces castellii CSCGAMA  27.3 

Saccharomyces cerevisiae CRCGARAD  85.1 

Saccharomyces kluyverii GCGRRM  18.2 

Saccharomyces kudriavzevii CRCGAAA  87.0 

Saccharomyces mikatae CRCGAAA  86.4 

Saccharomyces paradoxus CRCGARAH  93.9 

Schizosaccharomyces pombe TTTNNNNNYTC  19.2 

Sclerotinia sclerotiorum CNHTTH  48.6 

Stagonospora nodorum AGCGCG  26.1 

Trichoderma reesii CGAGCA  12.4 

Uncinocarpus reesii TYTWYCRCS  16.1 

Ustilago maydis CTCNNNTTC  13.2 

Yarrowia lipolytica CCANNACC  14.8 
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categories, they were also involved in biogenesis of cellular 
components, budding and cell polarity (Table S7).  

 For MBF analysis, we separated the starting S. cerevisiae 
MBF-regulated gene set into a subset with modules and a 
subset without modules. We compared these subsets to each 
other and to the original (undivided) gene set in terms of 
functional enrichment. Most of the functionality of the start-

ing gene set could be accounted for by looking only at the 
genes with modules which had multiple functional terms 
with better statistics than in the original gene set (Table 7). 
The subset of starting genes with modules was very similar 
to the original gene set (in terms of the enrichment in cell 
cycle- and DNA metabolism-related processes) and while the  
 

 

Fig. (2). Position distribution of putative MBF binding sites predicted by SCOPE for upstream regions of 38 fungal species. 

X-axis shows fungal species and y-axis shows fraction of putative MBF motifs in each of four different upstream quartiles for each species. 

 
Fig. (3). Position distribution of putative SBF binding sites predicted by SCOPE for upstream regions of 38 fungal species. 
X-axis shows fungal species and y-axis shows fraction of putative MBF motifs in each of four different upstream quartiles for each species. 
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Table 3. Distribution of Occurrences of MBF-like Motifs for four Upstream Quartiles of Orthologs of S. cerevisiae MBF-regulated 
Genes 

Motif Quartiles Mean Standard Deviation Standard Error 

0-200 0.51 0.17 0.03 

201-400 0.27 0.11 0.02 

401-600 0.14 0.06 0.01 

601-800 0.08 0.06 0.01 

Mean value represents average fraction of occurrences for all fungal species for a given quartile region. 

Table 4. Distribution of Occurences of SBF-like Motifs for Four Upstream Quartiles of Orthologs of S. cerevisiae SBF-regulated 
Genes 

Motif Quartiles Mean Standard Deviation Standard Error 

0-200 0.22 0.15 0.02 

201-400 0.32 0.18 0.03 

401-600 0.25 0.17 0.03 

601-800 0.21 0.14 0.02 

Mean value represents average fraction of occurrences for all fungal species for a given quartile region. 
Table 5. MBF Module Profiles for 4 Major Fungal Groups 

Fungal groups 

Module  Scer-like Ncra-like Afum-like Calb-like 

Module score + = - + 

Occurrences/gene - + - - 

Median distance + = + - 

Coverage = + - - 

Median position = = = + 

ABC score + - + + 

 “+” means that most species in this group have a value of the statistic which is higher than median. “-“ means that most species in this group have a value of 
the statistic which is lower than median. “=” means that equal number of species in this group has a value that is higher or lower than median. Scer - Sac-
charomyces cerevisiae, Ncra – Neurospora crassa, Afum – Aspergillus fumigatus, Calb – Candida albicans. 

Table 6. SBF Module Profiles for 4 Major Fungal Groups 

Fungal Groups 

Module Statistic Scer-like Ncra-like Afum-like Calb-like 

Module score = = = = 

Occurrences/gene - = = + 

Median distance + - - + 

Coverage + - + - 

Median position = = - + 

ABC score + - = = 

 “+” means that most species in this group have a value of the statistic which is higher than median. “-“ means that most species in this group have a value of 
the statistic which is lower than median. “=” means that equal number of species in this group has a value that is higher or lower than median. Group designa-
tions refer to shortened names of their representative members: Scer - Saccharomyces cerevisiae, Ncra – Neurospora crassa, Afum – Aspergillus fumigatus, 
Calb – Candida albicans. 
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Fig. (4). Distribution of the best MBF STAMP matches for fungal phylogeny. 
Sequence logos represent the best SCOPE matches to SGD MBF sequence for each species. 
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Fig. (5). Distribution of the best MBF STAMP matches for fungal phylogeny. 
Sequence logos represent the best SCOPE matches to SGD MBF sequence for each species. 
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subset of genes without modules was enriched only in meio-
sis. We obtained similar results in several other fungi: sub-
sets with modules were enriched in DNA-related processes 
and subsets without modules were enriched in a variety of 
functional terms including several processes related to pro-
tein metabolism (Table S8). 

 For SBF-regulated genes and their orthologs, we were 
unable to determine a specific relationship between module 
presence or absence and a set of functional terms for the cor-
responding subset. While for S. cerevisiae genes having 
modules did not show any functional enrichment, for Usti-
lago maydis genes with and without modules showed asso-
ciation with very different functional annotations (Table S9). 

DISCUSSION 

 We have studied the conservation of transcriptionally 
regulated gene sets of two important S. cerevisiae transcrip-
tion factors, MBF and SBF, responsible for the G1-S transi-
tion during the cell cycle. We have analyzed S. cerevisiae 
genes and their orthologs in 37 other fungal species. We 
have specifically examined significant upstream motifs, their 
position distribution, evolutionary conservation and func-
tional enrichments.  

 We believe that these analyses enhance current under-
standing of the regulation of transcription by MBF and SBF. 
While the results indicate the existence of a certain similarity 
and overlap between the two sets of regulated genes, there 
are also important differences.  

 Both MBF and SBF datasets displayed enrichment in 
CGCG-containing motifs, although on average MBF motifs 
were more overrepresented in the upstream regions and 
much more similar to the known MBF binding site than their 
SBF counterparts. While the presence of the CGCG core 
seems to be important for the regulation of transcription of 
SBF gene targets or their orthologs, multiple STAMP 
matches did not have this particular submotif but instead 
contained a GAA core thus being more similar to the second 
part of the known SBF binding site, CRCSAAA. Despite 

relatively low significance and sequence alignment scores, 
upstream regions of SBF-regulated genes displayed numer-
ous instances of multiple motifs similar to the known SBF 
regulatory sequence. 

In terms of the positional analysis of the motifs, both MBF- 
and SBF-regulated gene sets showed preferential enrichment 
in the first (0-200) and second (201-400) upstream quartiles. 
However, the relative proportions were distinct: the clear 
majority of MBF motifs appeared in the first quartile, 
whereas the relative majority of SBF motifs were found in 
the second quartile. Additionally, for MBF the overwhelm-
ing majority of species had most motif sequences in the first 
quartile, whereas almost the same number of species had a 
majority of SBF occurrences in any one of three quartiles. It 
is likely that the position distributions of the MBF and SBF 
target sites are a distinguishing factor in gene regulation. 

 It is possible that the presence of multiple occurrences of 
the same motif within a relatively fixed distance from each 
other might be important for the successful regulation of the 
transcription. In Neurospora crassa, a motif that is necessary 
for mediating light induction of the clock gene has been 
shown to occur in numerous instances separated by a relative 
conserved distance in upstream regions of early light-
responsive genes [28]. In our study, these combinations of 
the same motif generally displayed higher module scores for 
MBF than for SBF, which could be explained by simpler 
sequence composition of a typical MBF motif compared to 
its SBF counterpart. The modules displayed a particular be-
havior across different fungal groups, resulting in specific 
regulatory patterns different for each set of closely related 
fungi and different between MBF and SBF. 

 Finally, while sets of MBF- and SBF-regulated genes 
shared enrichment in cell cycle-related processes, they also 
displayed the presence of unique functional terms: DNA-
related processes for MBF targets and cell wall and cellular 
component-related processes for SBF targets. Thus, the two 
transcription factors might have distinguishable roles in G1-
S. In terms of the relationship between moduleness and func-
tional annotation, subsets of MBF-regulated genes with 

Table 7. Relationship between MBF Modules and Gene Function in S. cerevisiae 

Gene Set Unique and Enriched Categories  Note p-value Fold Change 

cell cycle vs. no modules 3.70E+00 

cell cycle and DNA processing vs. no modules 7.20E+03 

DNA binding unique   

DNA damage response unique   

DNA processing vs. all 1.20E+01 

DNA recombination and repair vs. all 6.70E+00 

DNA repair vs. all 8.20E+00 

DNA synthesis and replication vs. all 1.00E+01 

With modules 

extension/polymerization activity vs. all 1.80E+01 

No modules meiosis vs. all 1.90E+00 

P-value fold change means the improvement of p-value either compared to second subset with no modules or to the starting gene set. 
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modules were clearly enriched in DNA-related processes as 
opposed to gene subsets without modules. The pattern of 
these similarities and differences creates a coherent picture 
of transcriptional regulation for MBF and SBF targets.  

 On the basis of this study, MBF gene targets are enriched 
in ACGCG-like motifs mostly occurring in the 0-200 bps 
upstream region across the entire fungal tree, suggesting that 
MBF regulation is evolutionarily more ancient. This pres-
ence of an ACGCG-like motif seems to be correlated with 
functionalities related to cell cycle processes. These motifs 
tend to occur in numerous instances next to each other in the 
upstream regions of putative MBF gene targets. They tend to 
occur in genes specifically enriched in cell cycle and DNA-
related biological processes. 

 SBF gene targets are enriched in sequences having a 
G(A)n core mostly found in the 201-400 bps upstream re-
gion. More specifically, the Saccharomyces genus is en-
riched in CRCGAAA motifs possibly indicating that the cur-
rent mode of SBF transcriptional regulation is a relatively 
recent phenomenon in fungal evolution. These sequences are 
also often found in modules. Partial functional overlap with 
MBF gene targets in terms of cell cycle-related processes is 
probably caused by a large number of CGCG-like sequences 
in the upstream regions of the SBF-regulated genes. How-
ever, enrichment in CRCGAAA/GAA-core sequences seems 
to be associated with functional roles in cell wall and cellular 
component biogenesis. It is interesting to hypothesize that a 
combination of CGCG tetrad and GAA core, both of which 
are found separately in more ancient fungi, allowed Sac-
charomyces species and their close relatives to fine-tune the 
transcriptional program and be able to respond simultane-
ously to divergent signals. It is possible that the presence of 
both sequence cores combined into a single DNA motif en-
abled Saccharomyces to simultaneously regulate cell cycle 
transition and cell wall biosynthesis thus optimizing the tran-
scriptional regulation of cell cycle. 

CONCLUSION 

 MBF and SBF are transcription factors important for the 
progression of the cell cycle in S. cerevisiae. We have 
analyzed their gene targets and that of orthologous genes in 
other fungal species. We were able to associate each set of 
gene targets with specific significant motifs in their upstream 
region and their combinations, their unique positional distri-
butions, particular patterns of the evolutionary conservation 
and divergence of the regulatory motifs and unique func-
tional processes. We believe that our approach of comple-
menting gene functional information with upstream motif 
positional analysis and its evolutionary pattern has a great 
potential of elucidating otherwise hidden relationships within 
phylogenies in terms of interplay between regulatory seq-
uence, biological function for which it is responsible and a 
history of species in which it occurs. 
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