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Abstract: With the availability of high-density genomic data containing millions of single nucleotide polymorphisms and 
tens or hundreds of thousands of individuals, genetic association study is likely to identify the variants contributing to 
complex traits in a genome-wide scale. However, genome-wide association studies are confounded by some spurious 
associations due to not properly interpreting sample structure (containing population structure, family structure and 
cryptic relatedness). The absence of complete genealogy of population in the genome-wide association studies model 
greatly motivates the development of new methods to correct the inflation of false positive. In this process, linear mixed 
model based approaches with the advantage of capturing multilevel relatedness have gained large ground. We summarize 
current literatures dealing with sample structure, and our review focuses on the following four areas: (i) The approaches 
handling population structure in genome-wide association studies; (ii) The linear mixed model based approaches in 
genome-wide association studies; (iii) The performance of linear mixed model based approaches in genome-wide 
association studies and (iv) The unsolved issues and future work of linear mixed model based approaches. 
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1. INTRODUCTION 

 The recent breakthrough in genotyping technology 
induces the high density genome-wide collection, allowing 
researchers to access to an extraordinarily large number of 
single nucleotide polymorphisms (SNPs), even those newly 
identified markers in a fast and cost efficient way. The 
genome-wide association studies (GWAS), which 
traditionally tested the disease-causing genetic variants 
within some particular genes and regions, can be applied on 
a genomic scale. The success of the International HapMap 
Project [1] in cataloguing the genetic variation has brought 
the identification of over millions of SNPs for the large scale 
genome-wide association studies [2]. These studies have 
discovered numerous genetic variants contributing to major 
human diseases successfully [1, 3-5]. It is well known that 
GWAS may be confronted by the inflated false positive rates 
if the population structure, which is derived from individuals 
from different populations within one study, is not properly 
corrected in the model [6, 7]. The presence of related 
individual within either a case-control cohort or a population 
cohort is principally termed as the sample structure that 
includes family structure and cryptic relatedness as well as 
population structure [8]. In particular, the unknown genetic  
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relationship of any two individuals results in the family 
structure and cryptic relatedness. Specifying these three 
structures simultaneously in GWAS is more challenging, and 
a number of new methods have been developed due to this 
limitation. 
 The once dominant methods controlling the inflation rate 
in GWAS are Genomic Control (GC), which measures and 
adjusts the inflation of the test statistics due to the population 
structure, Structured Association (SA), Principal Comp-
onents Analysis (PCA) and Multidimensional Scaling 
(MDS) which describe the population structure in the GWAS 
model to correct the population stratification properly. These 
four methods are phenomenal at the control of population 
stratification, but fail to account for the complete genealogy 
of all the individuals. In particular, justifying family 
structure in GWAS with family-based data is essential, and 
the cryptic relatedness has been observed to occur frequently 
in the wide range of GWAS data. Somewhat differently, 
family-based association tests exploit both within and 
between family structures to improve the statistical power in 
GWAS. More recently, new approaches have been 
prevalently developed based on the linear mixed models 
(LMM), and the principle of this strategy makes the 
interpretation of sample structure possible in GWAS. It 
estimates the genetic similarity between a pair of individuals 
to account for the genealogy of population.  
 In this paper, we briefly review each of the above 
approaches to account for the sample structure in genome-
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wide association studies. These methods include once 
dominant approaches interpreting partial sample structure 
and new approaches using linear mixed models to capture 
the genealogy of population in GWAS. More importantly, 
primary challenges in spurious association tests due to 
partially or not correctly interpreting the familial relatedness 
of samples are discussed. For new approaches using the 
linear mixed model, the performances in applicability, 
computational speed and significance of calls are evaluated. 
Besides, a number of methods for estimating genetic 
similarity matrix are explored. A brief guideline about the 
efficacy of each LMM-based method is provided. Finally, 
the unsolved questions and future works of new LMM-based 
approaches are discussed. 

2. THE APPROACHES HANDLING POPULATION 
STRUCTURE IN GWAS 

 Genomic Control has widely been applied in GWAS to 
adjust the extendibility of confounding risk due to population 
stratification. It defines the confounding factor, λ, which is 
calculated by the ratio of the observed median of test 
statistics to its theoretical median, to measure the inflation 
rate [9-11]. Ideally, there is no population stratification when 
λ is equal to 1. Once λ is above 1, some confounders 
(stratification, or family structure, or cryptic relatedness) 
may occur in GWAS. The practical experiments reveal λ < 
1.03-1.05 to be the sound inflation rate that interprets the 
individuals’ relatedness sufficiently. Regarding the 
subpopulation differences (stratification) due to recent 
genetic divergence, the confounding factor can correct the 
stratification adequately. However, the genetic divergence 
starting from ancestral population [12] may result in the 
unexpected current SNPs and markers with unusual allele 
frequency, which makes the stratification more severe, and 
then the uniform confounding factor is not enough to adjust 
this inflation. Moreover, as for other confounders, such as 
family or cryptic relatedness, GC has limited application. 
 Structured Association and Principal Component 
Analysis are other prevalent approaches, which account for 
genetic ancestry explicitly in GWAS model, to correct the 
inflation due to stratification. Before computing association 
statistics, SA applies a clustering program [13, 14] to assign 
all individuals to different population groups to estimate the 
effect of stratification. In fact, incorporating the fractional 
cluster information brings large pressure on computation. A 
faster cluster program (ADMIXTURE [15]) has recently 
been proposed in SA which makes the genomic scale 
association test with inferring genetic ancestry practically. 
Compared with SA, PCA is implemented simply in GWAS 
[16-19], where PCA selects top components to capture the 
broad relatedness across individuals, and these principal 
components are fitted as covariates correcting the inflation 
due to stratification [20, 21]. In particular, EIGENSTRAT 
[20] is an improved PCA method to explicitly explore 
ancestry differences and treatment difference in laboratory. 
Additionally, both approaches provide a great correction to 
markers having large allele frequency differences across 
ancestral population. However, these two methods assume 
that there are only a small number of ancestral populations 
and admixture, and this assumption indicates that multiple 
levels of sample relatedness are partially captured [22-24]. 
Eventually, both approaches are limited to control family 

structure or cryptic relatedness in GWAS data. More 
recently, people tempt to combine these strategies, which 
removes closely related samples using SA, corrects the broad 
sample structure using PCA and adjusts the residual inflation 
using GC [1, 25, 26]. 
 In real experiment, Principal Component Analysis is very 
sensitive to outliers that may result in the bias of detection 
and reduce power. An alternative approach, Multid-
imensional Scaling, is applied to visualize substructure and 
to explicitly explore the ancestry of samples [27, 28]. The 
classical MDS has the data reduction technique via 
measuring substructure by a k-dimensional representation. 
When MDS is built on an Euclidean distance metric, it 
becomes identical to PCA and can be widely applied in other 
methods [20]. Spectral-GEM [28] has been proved to 
outperform PCA in separating the effect of outliers from 
population stratification. This method connects MDS and 
spectral graph theory to efficiently capture the stratification. 
But, MDS is limited to account for the multilevel relatedness 
of samples, especially when family structure and cryptic 
relatedness cannot be ignored in the data. 

3. THE LINEAR MIXED MODEL BASED APPRO-
ACHES IN GWAS 

3.1. The Linear Mixed Model 

 The linear mixed model has widely been applied in 
human linkage analysis [29, 30]. Variance components 
model partitions genetic effects as additive and polygene 
effects whereby each one is treated as random. Each marker 
is tested to see whether the variance of a genetic effect at this 
locus is significantly deviated from zero. This variance 
component model can be expressed as: 

                                                             (1)y a g eµ= + + +   (1) 

 Here, µ as the fixed effect denotes the overall mean; a 
measures the additive genetic effect; g denotes the polygene 
effect, and e denotes the random residual effect. In case of 
some more complex data, the fixed effects may include 
covariates in addition to overall mean (µ), such as: gender 
and age, then the fixed effect could be replaced by Xβ where 
β is a coefficient vector of fixed effects and X is an incidence 
matrix. Compared to simple regression models [31-34], 
variance component model shows notable merits in mapping 
significant loci related to phenotypic traits. The superiority 
of this strategy benefits from the mapping principle that 
sibpairs with similar phenotypes should have higher  
expected sharing of genetic material near genes. Thus sample 
structure resulting from the sharing genealogy could be 
captured by variance component models which could 
explicitly account for genetic relationships between two 
individuals. Even when the relatedness information is 
unknown, people could empirically estimate sample 
structure across individuals using high density marker 
genotypes. However, variance components models cannot be 
applied to the genomic data with millions of SNPs and 
thousands of individuals owing to the heavy burden on 
estimating random parameters. Motivated by this limitation 
of variance components model, some efficient LMM-based 
approaches in GWAS have been proposed (Yu’s model [23], 
compressed MLM with P3D [35], EMMAX [36], FaST-



Linear Mixed Models in GWAS The Open Bioinformatics Journal, 2013, Volume 7    29 

LMM [37] and GRAMMAR-Gamma [38]) recently. The 
model of linear mixed model based methods is set as, 

                                                                                 (2)y X g e!= + +  (2) 

 Here, X is the matrix of fixed effects including overall 
mean, covariates and the testing SNP; the vector β denotes 
the coefficients of fixed effects; g is a random effect 
reflecting polygene background, and its variance is 
dependent on the kinship matrix (Var(g) = 

  
K!

g

2  where K is 
the kinship matrix that measures the genetic similarity across 
individuals). Indeed, the structure of this kinship matrix 
reflects population structure, family structure and cryptic 
relatedness. In particular, Fig. (1) displays the model setting 
of linear mixed model based approaches in GWAS. 
Consequently, this new linear mixed model is widely applied 
to GWAS to correct the inflation of false positive. 

3.2. The Development of LMM-Based Approaches 

 The classical linear mixed models capturing family 
structure and cryptic relatedness in addition to stratification 
were initially developed from the animal models [23, 24, 
39]. A unified mixed-model method [23] in GWAS has been 
proposed recently based on this strategy. Because of 
complex characteristics of GWAS data, this new method 
builds Q+K model, K model and Q model to adjust the 
inflation due to multilevel relatedness including population 
stratification and familial relatedness. In this process, Q as 
the fixed effect measures population structure that is 
calculated by package Structure [11], K as the random effect 
detects the relative kinship matrix that empirically measures 
the genetical similarity across individuals from markers or 
SNPs and computed by SPAGeDi [40]. It is known that K is 

superior to the co-ancestry matrix (G) in absence of pedigree 
information or under biases from genetic drift [41, 42]. 
Additionally, this unified linear mixed-model is flexible to 
be adopted in population data including both stratification 
and familial relatedness and family based data containing 
family structure alone [23]. Compared with previous 
strategies (GC, QTDT and simple regression model), this 
unified linear mixed-model method is good at estimating 
genetic effect and the control of errors simultaneously. This 
method has been implemented in Package TASSEL [43]. 
 In the case of more complex traits, the small effect of 
genetic variants is important to be detected in GWAS, so a 
large GWAS data with millions of SNPs and tens of 
thousands individuals is available. But the previous Yu’s 
model is computationally intractable when estimating 
random parameters for each of high density SNPs. 
Consequently, the compressed mixed linear model 
(compressed MLM) and population parameters previously 
determined (P3D) approach [35] are developed to overcome 
this limitation, and these two methods can be used separately 
or jointly. Specifically, the compressed MLM extends the 
animal breeding sir model [44-47] to reduce the size of 
random effects from the individual level (n3) to the group 
level (u3) where (u ≤ n), and the compression level, the 
average number of individuals within one group, is 
optimized by clustering individuals into groups. P3D is a 
two-step approach where the first step focuses on estimating 
population parameters (controlling sample structure) once 
using compressed MLM without testing SNP effect, and the 
second step continues to estimate the testing SNP effect and 
the random genetic effect with priors of population 
parameters determined in the first step. When jointly using 
these two methods, the compressed MLM can be applied in 

 
Fig. (1). The model setting of the linear mixed model based approaches in GWAs. 
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the first step of P3D to further reduce the computing time. 
Additionally, the gradual improvement in statistical power is 
achieved on optimizing the compression level in genome-
wide association tests. The compressed MLM with P3D has 
also been built in package TASSEL [43]. 
 Because of the heavy computational burden from the 
previous Yu’s model [23] in GWAS, another efficient 
mixed-model association eXpedited (EMMAX [36]) which 
is an extension of previous linear mixed model EMMA [48], 
has been proposed. It is also a two-step approach where the 
first step estimates population parameters measuring sample 
structure and tests the significance of these parameters to the 
phenotypic variance once, and the second step uses an F-test 
(generalized least square (GLS)) [49] or a score test [50] for 
each SNP with population parameters as dependent variable. 
The practicability of this approach is based on one 
assumption that the effect of each marker on the trait is small 
for a large GWAS data, and then it is not necessary to 
estimate random variances for each marker in the second 
step which greatly reduces the computing time from years to 
hours. In the comparison of P value distribution in GWAS, 
this approach performs better than GC and PCA in both the 
population cohort [25, 51] and case-control cohort [1]. 

 More recently, the cost of high density SNPs for each 
subject is gradually acceptable, making the super data with 
hundreds of thousands of individuals available for genome-
wide association study. But, the cohort size of this super 
GWAS data is beyond the upper bound of the sample size 
allowed by EMMAX and compressed MLM with P3D [37]. 
Besides, the applicability of these two methods is based on 
the assumption that random variances are same across SNPs 
[35, 36]. A more flexible method, factored spectrally 
transformed linear mixed model (FaST-LMM [37]), without 
needing this assumption is developed for the super GWAS 
data. The dramatic improvement in computing time and 
memory is achieved through the dimension reduction on 
both SNPs and kinship matrix. FaST-LMM is implemented 
in two steps. The first step is to estimate the realized 
relationship matrix (RRM) [52-54], which measures the 
genetic similarity between a pair of individuals, using partial 
SNPs uniformly sampled from the whole SNPs pool. It is 
shown that different SNP sets have almost the identical 
effect on association tests (Fig. (2) in paper [37]). In the 
second step, maximizing the complex log likelihood function 
for each SNP is mainly reduced to optimize one dimensional 

parameter δ (δ =
!

g

2

!
e

2
) as well as the fixed effect (β) and 

  
!

g

2  

after transforming phenotype, SNP and covariates using the 
spectral decomposition of RRM. At that time, FaST-LMM is 
named as FaST – LMMfull. In particular, k-spectral decom-
position of RRM is applied, and then the procedure goes 
with further reducing the size of kinship matrix to optimize 
the log likelihood function. Now FaST-LMM is defined as 
FaST – LMMlow. If δ under null is fixed, running time is 
greatly improved. 
 All previous LMM-based methods (Yu’s model, 
compressed MLM with P3D, EMMAX and FaST-LMM) are 
likelihood ratio test (LRT) based approaches that are 
computationally demanding for large GWAS data. The 

pressure on computation leads to the development of the 
score test based variance components methods (Fast 
association score test based analysis (FASTA [50]) and 
genome-wide rapid association mixed model and regression 
with GRAMMAR Gamma factor (GRAMMAR-Gamma 
[38])). FASTA is a two-stage approach where the population 
parameters and genetic similarity matrix are estimated once 
in the first step, and the score test with the previously 
computed population parameters and kinship matrix are 
applied to each marker to detect its effect, moreover, the 
likelihood ratio test is applied again to few candidate 
markers from previous score test to achieve more accurate 
significance in the second step. GRAMMAR-Gamma is a 
more advanced approach built on FASTA and GRAMMAR 
[55], jointly borrowing these two methods’ merits. In fact, it 
is not a typical LMM-based approach, and two steps are also 
involved in GWAS analysis. In the first step, the null model 
of GRAMMAR-Gamma is similar as those of previous LRT-
based methods under null. The population parameters 
measuring sample relatedness and GRAMMAR-Gamma 
factor that is a function of kinship matrix to correct the 
inflation are estimated, and transformed phenotypic traits by 
the kinship matrix are achieved. In the second step, a new 
score test adjusted by the previous GRAMMAR-Gamma 
factor is applied to each marker, and its computation 
complexity is close to the theoretical minimum [38] 
compared with LRT based approaches. 

4. THE PERFORMANCE OF LMM-BASED APPROA-
CHES IN GWAS 

 The notable advantage of LMM-based methods in 
GWAS is that this strategy empirically estimates the genetic 
similarity across individuals from SNP genotype information 
to efficiently control the inflation of false positive. In fact, 
the genetic similarity matrix has the capability of accounting 
for a wide range of sample relatedness which is sure to win 
out over the non-mixed model based methods (GC, SA, PCA 
and MDS) only capturing partial genealogy of population 
[23, 35-38]. Another superiority of LMM-based approaches 
is that this strategy can be flexibly applied to population-
based GWAS data and family-based GWAS data as well as 
both population cohort and case-control cohort GWAS. 
 Additionally, we summarize and compare the 
performance of primary LMM-based approaches in testing, 
applicability, dimension reduction and time complexity in 
GWAS study (Table 1). It is clearly seen that Yu’s model 
[23], which is one step procedure, is applicable to a small 
data set because it needs to estimate population and non-
population parameters for each marker, and is 
computationally demanding. Other mixed model based 
approaches (compressed MLM with P3D, EMMAX, FaST-
LMM and GRAMMAR-Gamma) are two-step procedures 
which estimate random variances accounting for familial 
relatedness once in the first step, and then optimize the log-
likelihood function to test genetic effect of each marker 
incorporating random variances as dependent variables. 
Besides, the compressed MLM with P3D further reduces the 
running time by clustering individuals into few groups to 
estimate population parameters in the first step. FaST-LMM 
randomly samples a subset of SNPs to estimate sample 
structure and lowers the rank of genetic similarity matrix to 
additionally reduce computing time. Overall, the 
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effectiveness of the compressed MLM with P3D and 
EMMAX is similar and can be applied to a relative large 
GWAS with tens of thousands of individuals. In the case of 
the super GWAS data, FaST-LMM is more appropriate 
approach which greatly improves both time and space 
complexity in computation. Finally, GRAMMAR-Gamma is 
the score test based approach which deeply reduces the time 
complexity in the second step, but the significance of calls is 
gently weaker than that of likelihood ratio test based 
methods.  

5. THE UNSOLVED ISSUES AND FUTURE WORK OF 
LMM-BASED APPROACHES 

 How to account for population structure in LMM-based 
approaches is still an open question. In most cases, 
population structure collecting with family structure and 
cryptic relatedness is modeled as a random effect in the 
linear mixed models. Using the random effect to capture the 
complete genealogy of population will greatly simplify the 
model structure. A large number of real data analysis have 
shown that population stratification could be sufficiently 
corrected by the random effect. Alternatively, population 
structure could be separated from the familial relatedness 
and fitted as a fixed effect, and this fixed effect is estimated 
by PCA. In fundamental respects, population structure 
measuring the differences of samples from different 
subpopulations has identical effect for all individuals. Once 
the allele frequency of some markers is abnormally beyond 
the range of allele frequency of ancestral populations, the 
marker based kinship matrix may fail to capture the 
stratification in GWAS. On the other hand, fitting population 
structure in the fixed effect is not an appropriate way to 
control the stratification when samples possess more 
complex relationship including family structure as well as 
population structure, a few number of spurious principal 
components are fitted in fixed effects [18]. To avoid the 
spurious components, the components from the unrelated 
samples [56] are calculated, but it may lead to a new 
problem that some biased principal components may be 
produced due to some noise in SNP selection from unrelated 
samples [12]. This motivates the further improvement of the 
marker based random effect and efforts on PCA calculated 
from related samples. 

 One advantage of the linear mixed model based methods 
is to use the marker based genetic similarity matrix to 
account for a wide range of relatedness among individuals. 
In different populations, this genetic sharing matrix plays an 
important role in quantitative inheritance studies, but 
accurately estimating kinship matrix is challenging. One 
primary estimation method for kinship matrix is to compute 
identity by descent (IBD) between two individuals by 
adjusting with the identity by state (IBS) between random 
individuals. Regarding interpreting as much information of 
sample structure as possible, this marker based kinship 
matrix is superior to the pedigree based co-ancestry matrix 
especially when pedigree information is unknown [23]. The 
IBS or Balding Nichols matrix [57] is an alternative option 
that more accurately captures the long distance relationship 
due to stratification compared with IBD matrix which is 
phenomenal to account for short distance relatedness. In the 
case of GWAS data with admixture population, SNP bias in 
estimating sample structure may occur due to the probe 
error. We could weight each SNP to estimate IBS genetic 
similarity matrix [48]. To further improve the computational 
efficacy, FaST-LMM uses the realized relationship matrix 
(RRM) [52-54] to lower the rank of genetic sharing matrix 
instead of IBS or IBD matrix. However, there is no unified 
estimation method for genetic similarity matrix. 
 Extending the above linear mixed model based 
approaches to next generation sequencing studies requires a 
lot of research. These mixed model based approaches are 
developed for typical GWAS where common SNPs with 
medium and high minor allele frequency are widespread 
across whole genome. Since a large proportion of genetic 
heritability [58] is unexplained, we have to investigate an 
amount of variants with low minor allele frequency (MAF, 
MAF < 5%). As for whole exome or genome sequencing 
studies, variants with low minor allele frequency account for 
a large proportion across the whole genome. The use of these 
variants to estimate the genetic similarity matrix may lose 
some information and the greater precision of estimation for 
complete genealogy of population is difficult to maintain. 
Finding a more efficient estimation method is urgently 
demanding. 

6. DISCUSSIONS 

 Recently, the linear mixed model based approaches are 
newly developed models that efficiently account for the 

Table 1. Comparisons of each LMM-based Approaches 

Time Complexity 
Method Testing Applicability Reduction 

Step I Step II 

TASSEL LRT Pop & CC  O(pn3c) NA 

TASSEL+P3D LRT Pop & CC Sample O(u3 + uc) O(pn2) 

EMMAX LRT Pop  O(n3 + nc) O(pn2) 

FaST – LMMfull LRT Pop & CC  O(n3 + nc) O(pn2) 

FaST – LMMlow LRT Pop & CC SNP & kinship matrix O(ns3 + nc) O(pnk) 

GRAMMAR-Gamma ST Pop  O(n3 + nc) O(pn) 

(TASSEL: is Yu’s model (yu’s model); TASSEL+P3D: is compressed MLM with P3D (p3d); LRT: is the likelihood ratio test taken in GWAS; ST: is the score test in GWAS; Pop: 
population cohort; CC: case-control cohort; n: the number of individual within one study; u: the number of group; s: the number of randomly selected SNPs; c: the average number of 
iteration; p: the number of testing SNPs; k: the number of eigenvectors deviating from zero. ) 
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complete genealogy of population (including population 
stratification, family structure and cryptic relatedness) in 
GWAS. Compared with once dominant methods (GC, SA, 
PCA and MDS), the linear mixed model based methods are 
shown to be a comprehensive approach to correct the 
inflation of false positive due to not completely interpreting 
complex sample structure. Additionally, LMM-based 
approaches perform favorably in both population and case-
control cohort.  
 The applicability of the linear mixed models is highly 
related to the relatedness property of GWAS data. As for 
GWAS data containing only population stratification, the 
once dominant methods (GC, SA, PCA and MDS) are 
adequate. As for GWAS data containing strong familial 
relatedness and weak population stratification, the linear 
mixed model based methods are sufficient to capture sample 
structure via the genetic similarity matrix in the random 
effect. As for GWAS data having strong population 
stratification and familial relatedness, a linear mixed model 
based approach plus PCA separately accounting for 
stratification in the fixed effect is sufficient. As for GWAS 
data with normal sample size, EMMAX and compressed 
MLM with P3D are appropriate methods. As for GWAS data 
with extremely large sample size, FaST – LMMlow is the best 
method at present. 
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