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Abstract: We investigate why biologists fail to contribute to biological databases although almost all of them use these 
databases for research. We find, using evolutionary game theory and computer simulations, that (a) the initial distribution 
of contributors who are patient determines whether a culture of contribution will prevail or not (b) institutions (where 
institution means “a significant practice, relationship, or organization in a society or culture”) that incentivize patience and 
therefore limit free riding make contribution more likely and, (c) a stable institution, whether it incentivizes patience or 
not, will increase contribution. As a result we suggest there is a trade-off between the benefits of changing institutions to 
incentivize patience and the costs of the change itself. Moreover, even if it is possible to create institutions that incentivize 
patience among scientists such institutions may nevertheless fail. We create a computer simulation of a population of 
biologists based on our theory. These simulations suggest that institutions should focus more on rewards rather than 
penalties to incentivize a culture of contribution. Our approach therefore provides a methodology for developing a 
practical blueprint for organizing scientists to encourage cooperation and maximizing scientific output. 
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INTRODUCTION 

 Science is a cooperative process. Cooperation, is an 
action which incurs a cost c to the individual that performs it, 
and provides a benefit b to the recipient of that action [1]. 
Researchers build off the work of others. Thus, if researchers 
do not have access to the work of others, scientific progress 
slows. Such access is possible if, for example, biologists 
were to contribute annotations to public databases. This 
process of contributing annotations is also known as 
community annotation. Researchers can then access the 
databases and use annotations contributed by others. Thus, 
the level of contributions capture how much biologists are 
willing to cooperate with each other without any expectation 
of co-authorship. Of course each biologist reaps private 
benefits from using these databases. The question then is do 
biologists actually cooperate by contributing to these 
databases? Unfortunately, they do not [2]. 

 There have been several attempts to engage bench 
scientists in contributing annotations to scientific databases. 
Several articles describe the huge potential of such an 
approach [3-15]. In fact, the scientific community hardly 
ever contributes by providing annotations (such as 
protein/gene function) to scientific databases even though 
they use the biological data available in these databases quite  
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intensively [2]. Fewer than 1% of all possible contributors 
actually contribute [16]. Scientists have hypothesized that 
community annotation has not been successful because of 
technical barriers [17]. However, several databases provide 
simple mechanisms for contributing annotations. Thus, it 
appears that the problem of non-contribution is social rather 
than technological. 
 In the social sciences it is well known that patient people 
(people who are willing to contribute or act today and 
willing to wait to reap benefits later) cooperate while 
impatient people do not [18]. This idea is so well known that 
it is unclear who came up with it – hence its name, the folk 
theorem [19]. The folk theorem states that any feasible 
payoff profile that strictly dominates the minmax profile can 
be realized as a Nash equilibrium payoff profile, with 
sufficiently large discount factor. People with a high 
discount factor value future payoffs more. That is, they are 
willing to wait for the future. Thus, according to the folk 
theorem, patient biologists, i.e. biologists with a high 
discount factor,should cooperate by contributing to databases 
[20]. Why don’t biologists cooperate by contributing to these 
databases? The Folk theorem states that biologists (or 
anybody for that matter) do not cooperate because they are 
impatient. So more cooperation may be possible if biologists 
are patient. How might patience evolve? We suggest a 
theory. 
 The Merriam Webster dictionary defines culture as “the 
integrated pattern of human knowledge, belief, and behavior 
that depends upon the capacity for learning and transmitting 
knowledge to succeeding generations.” Research in 
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behavioral economics has established the psychological roots 
of patience [21]. Thus, patience – or the lack thereof – is 
ingrained in human behavior.Moreover, people differ in how 
patient they are [22]. Since human behavior can be culturally 
influenced and patience is part of human behavior, then it 
seems likely that patience can be culturally influenced as 
well [23]. Thus people can learn to be more or less patient 
from others when patience levels vary. In other words, there 
is diversity in the patient trait and a cultural transmission 
process for it. The mathematics of natural selection ensures 
that fitter cultural traits survive in the population while less 
fit traits perish. This process leads to a stable selection of 
traits. Thus an evolutionary game theory approach may help 
us understand whether a culture of patience can be 
evolutionarily stable in a population of biologists. In other 
words, we apply the mathematical tools that explain 
biological evolution to understand a process of cultural 
evolution. 
 We use a theoretical model [24] and extend it. In this 
model we assume that people in the patient culture cooperate 
with others while people in the impatient culture do not. 
Then, we hypothesize that a culture of patience is 
“infectious” in a way that is amenable to analysis with 
evolutionary game theory. This is a major departure from the 
theoretical and empirical literature on patience [25-27]. 
Indeed, in spite of evidence to the contrary [22], experiments 
that deal with the evolution of cooperation largely ignore the 
variability of patience in a population [25, 26]. Our 
innovation lies in proposing a model for the evolution of 
patience as a cultural trait. Recall that the Folk Theorem 
suggests that cooperation is possible if people are patient 
enough. Thus by establishing a process for the evolution of 
patience we can also address the evolution of cooperation. 
This approach also provides a new kind of framework for 
designing experiments with human subjects to test how 
cooperation may evolve in a population. 
 Our fundamental argument is as follows. Patient people 
tend to cooperate [18, 19]. People are heterogenous in patience 
[21, 22]. We assume that this heterogeneity is cultural [23]. 
These cultures are subject to selection pressures from the 
social environment and may therefore evolve [24]. The 
conditions that allow patience to evolve toward a stable 
equilibrium will also increase cooperation because of the folk 
theorem. In this paper we derive a theory for how different 
parameters influence the evolution of patience and therefore 
cooperation. We then run computer simulations of a 
population of agents, each programmed with different 
frequencies of contribution. The agents are distributed 
according to different probability distribution functions. These 
programmed agents are then allowed to interact with each 
other randomly. A generic replicator dynamic is applied to 
these interactions. Since agents in the simulation are not 
hardwired to follow the path directed in the model it is not 
clear a priori whether the population will behave in a way 
predicted by the model or not. We find that they do. 
 Our evolutionary approach suggests that even when the 
benefits of patience (cooperation) are obvious there are 
circumstances where impatience (and therefore non-
cooperation) can become a stable cultural norm – and 
therefore explain why biologists do not cooperate with each 
other by contributing annotations to databases. This study 

suggests ways to change the circumstances that make 
cooperation less likely. Our computer simulation tests 
whether cooperation can indeed become a cultural norm as 
these circumstances change. 
 Contributing to molecular biology databases has no 
immediate reward for the contributor, they have to wait for 
others to contribute to take advantage of new information. In 
fact, contributors may benefit only if others contribute as 
well. Thus, there are clear benefits from cooperating by 
contributing. This is certainly true for systems biology 
research where information on a large number of proteins 
from a proteome is necessary to develop any reasonable 
testable hypothesis. Currently, the majority of experimental 
data available in publications is not available in online 
databases. For example, only 10% of available publications 
on Bacillus subtilis(a well studied model organism) are cited 
in UniProtKB/Swiss-Prot (www.uniprot.org). Using the 
search term Bacillus subtilis [MeSH Terms] or "Bacillus 
subtilis" at pubmed.org retrieves 20,000 – 25,000 
publications. A UniProtKB/Swiss-Prot search of publications 
(including mapped pubmed IDs from non-UniProt databases 
such as Model Organism Databases) associated with Bacillus 
subtilis (including all sub-species) retrieves 4,286 Swiss-Prot 
entries with only 2,310 unique publications (UniProtKB 
relase 2010_05). If one also considers supplementary tables, 
it is clear that a large part of the knowledge available on 
Bacillus subtilis is not accessible in a structured format that 
would allow integrated analysis. This lack of information in 
molecular biology databases when compared to what is 
available in publications is true for all species and other 
databases. This happens because it takes an immense amount 
of time and effort to annotate a specific entry by a biocurator 
[28, 29]. It is true that the workflow of biocurators at 
UniProtKB does not include reading all papers or even citing 
all the papers that they read unless the paper has relevant 
information that can be curated, but it is clear that outside of 
the paid biocurators’ efforts there is very little information in 
UniProtKB annotations that has been submitted by the 
community, even though the community uses it heavily and 
there are easy to use submission forms on the website. 
Further, as mentioned above, the biological community may 
not be contributing because the benefits of such 
contributions in terms of hypothesis generation and research 
are uncertain. Moreover, the benefits may accrue to 
researchers other than the contributor. In addition, these 
benefits, given the lag time for research, may accrue well in 
the future. The social interaction among biologists thus has 
two connected elements. First, biologists can use the 
contributions of others in their own research without 
contributing to the databases – free rideoff the work of others 
in the parlance of the social sciences. Second, biologists 
have an incentive to get an immediate gain– getting 
publications in time for tenure decisions or writing a grant 
application to pay current salary for example – rather than 
wait to get benefits from longer term projects.In other words, 
impatient biologists would not contribute to databases while 
patient biologists will. 
 We model a society with two cultures, patient and 
impatient. Biologists “inherit” or choose to join one or the 
other culture. Biologists in either culture interact in repeated 
random pairings [30]. We then find the evolutionary stable 
strategies (ESS), i.e. the strategy or culture that, if adopted 
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by all members of a society, cannot be “invaded” by any 
alternative cultures [31]. Thus, we find the conditions under 
which impatience or patience can be stable cultures. We 
recognize that there may be many patterns of interactions – 
and simulate some of those in our computer model. 
However, our modeling approach, where random pairings 
lead to the transmission of cultural phenotypes, is simplest. 
We also recognize that patience heterogeneity need not be 
binary. However, assuming binary traits makes the 
mathematics much simpler without losing any of the 
fundamental features that we wish to focus on. 
 Institutions (where institution means “a significant 
practice, relationship, or organization in a society or 
culture”) that incentivize patience should be critical in 
making contribution to the dominant culture in biology. 
Further, the perceived longevity of an institutional 
mechanism should matter as well. Our theoretical model 
characterizes these sorts of dynamics. We find that our 
results are robust to a less restrictive distribution of 
contributory behaviors when we simulate this society of 
biologists in a computer generated “realistic” environment. 
Thus, we suggest that our methodological approach could 
provide the policy framework for funding agencies and 
academic institutions to organize scientific effort optimally. 

METHODS 

 Evolutionary games study the evolution of strategies or 
behaviors in a population. Players receive payoffs that are 
interpreted as the “fitness” of their respective cultures 
(patience vs. impatience). Thus effectively cultures or 
strategies interact with each other and not players. In other 
words, in evolutionary game theory, strategies, and not 
players, are subject to selection pressures. The fitter culture’s 
proportion increases in a population.  
 We use the general version of the models introduced by 
Basuchoudhary, Allen and Siemers [24]. We model 
biologists as belonging to one of two possible cultures. In 
one culture biologists contribute to a database because they 
are willing to wait for greater future benefits. In the other 
culture biologists do not contribute because they seek 
immediate rewards. Biologists who contribute to the 
database are patient relative to biologists who do not 
contribute. Thus, patience is the source of cultural 
heterogeneity in our model. This binary cultural trait is 
represented by the discount rate r. The discount rate is an 
interest rate used to calculate the present value of future 
gains. Impatient people discount future gains more heavily 
than patient people. Thus, biologists in a patient culture have 
a lower discount rate (rL) than biologists in the impatient 
high discount rate (rH) culture. This sort of social interaction 
has the structure of a coordination game. Contributors in our 

stylized model only benefit if others contribute as well while 
non-contributors can free ride off the contributions of others.  

 In our model fitness depends on certain parameters. The 
total fitness when biologists from the contributing or patient 
culture interact, e, defines the efficient outcome for the 
society of biologists as a whole. Therefore e represents a 
“good” outcome with long term scientific innovation. We 
assume that biologists receive the full benefit of their 
cooperation in contributing to the database. This assumption 
allows us to abstract away from principal-agent problems 
that may arise. In addition,  tracks the proportion of 
the efficient outcome e appropriated by biologists in the non-
contributing culture. Thus α tracks the extent to which the 
non-contributing or impatient culture encourages “free 
riding” off the contributions of others. Social institutions 
reflect culture. Thus, α is a way of capturing the effect of 
social institutions on the incentive to free ride. Please note 
that we explicitly limit the range for α so as to limit the 
strategic interaction investigated in this paper to an assurance 

game. For example, for any   the game structure 
changes to a prisoners dilemma. We, however, believe that a 
contributary culture of biologists’ is best specified by 

  since there are increasing returns to contributions 
when everyone coordinates on contributing to a database 
[32]. 
 In addition to these parameters we add p – the probability 
the game continues. Again, recall that the standard definition 
of institutions includes the rules of the game. Thus p tracks 
the level of uncertainty in the institutional environment of 
research. Thus, a falling p might indicate an increased 
likelihood of an end to the current scientific funding regime; 
i.e. an increased likelihood of institutional change. For 
example, say National Science Foundation (NSF) funding is 
driven by a purely democratic process with no input from 
scientists.This process may change the kinds of projects that 
are funded.We assume that p is independent of history. 

 The parameters described above, α, rH, rL, e, and p give 
us the stage game described in Table 1. The table represents 
the fitness of each strategy relative to each other [33, 34]. 
We assume that pairs of biologists from the patient and 
impatient cultures interact with each other for long periods 
of time. A cultural replicator dynamic process transmits 
behavior from biologist to biologist. We do not explicitly 
model this transmission process. However, mimicry is 
sufficient for evolutionary models to work [35]. This 
modeling approach simplifies the mathematics and is quite 
standard in evolutionary game theory [36]. If biologists from 
the patient culture interact the fitness of the patient cultureis 

Table 1. The Evolutionary Stage Game 

 Patient (rL) Impatient (rH) 

Patient (rL) 
  

Impatient (rH) 
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e/2in each period. However, over time the present value of 

this interaction is . Notice that appropriate discount 
factor is rL since we are calculating the fitness of the patient 
culture. If one biologist is from a patient culture and another 
biologist is from an impatient culture then the patient 
biologist receives a fitness of 0 while the impatient biologist 
gets a fitness of αe. In other words, the patient biologist does 
not reap the rewards of her contribution while the impatient 
biologist benefits from the patient biologists’ contribution. 
The present value of this interation is 0 for the patient 

biologist and  for the impatient biologist. Notice 
that the appropriate discount factor is rH since we are 
calculating the fitness of the impatient culture. If both 
biologists are from the impatient culture then neither 
contribute. Therefore, in this case both impatient biologists 
receive a fraction α/2 of the efficient output of science e. 
Thus the present value of the fitness of the impatient culture 
when it interacts with another impatient culture is 

. 
 Note that for any α that takes a value between 0 and 1/2 
the highest possible fitness arises when people from a patient 
(cooperative and therefore contributing) culture interact with 
other people from the patient culture. However, only a 
proportion x of the population has a culture of patience. 
Thus, there is a chance (1-x) that patient biologists may 
interact with impatient (non-cooperative and therefore non-
contributing) biologists. Note further that the parameter 
restrictions on α suggest that the overall fitness of a world 
where impatience (and therefore non-cooperation and non-
contribution) prevails is less than the overall fitness of a 
world where patience (and therefore cooperation and 
contribution) is the norm. This, perhaps, should not be 
surprising to the reader. However, overall, if a particular 
culture has an expected payoff above the average fitness of 
the entire population then the percentage of biologists 
belonging to that culture will increase. And of course, 
overall, if a particular culture has an expected fitness below 
the average fitness of the entire population then the 
percentage of biologists belonging to that culture will 
decrease. In other words, the mathematics of replicator 
dynamics drive the evolution of culture in our model. 
 We use a replicator dynamic approach to solve for the 
ESS. An ESS is stable in the sense that small changes, i.e. 
small proportions of a population playing the non-ESS 
strategy, cannot invade a population successfully. This is a 
static concept. A replicator dynamic approach suggests that an 
ESS is stable precisely because it arises out of the dynamics of 
a process that generates the fittest strategy [31]. We find that 
the success of a culture of patience depends on whether the 
actual proportion of the biologist population belonging to the 
patient culture exceeds some critical level x*. 
 This approach allows us to derive three propositions. The 
propositions and the derivations follow. We discuss these 
propositions in the Discussion section. 

 Proposition 1. [There are no stable equilibria where both 

cultures coexist.  is a tipping point. Thus, 

patience, the extent to which institutional structures 
incentivize free riding, the probability that these institutional 
structures persist, and the initial proportion of contributors 
in a population of biologists determine whether a culture of 
contribution will prevail or not]. 

PROOF OF PROPOSITION 1 

The expected payoff from the Patient (rL) strategy is  

 (1) 

and from Impatient (rH) strategy is  

  . (2) 

 The patient and impatient strategy provide the same 
expected payoff when E(

L
r ) = E(

H
r ), i.e., 

 
or 

 
or 

 (3) 

Define δL = p/(1 + 
L
r ) and δH = p/(1 + rH). Thus, 

 (4) 

and, 

 (5) 

Substituting (4) and (5) into (3) gives us 

 
or,  

 (6) 

 Thus for the patient strategy to be preferred over the 
impatient strategy 

 (7) 

 Proposition 2. [The likelihood that the culture of non-
contribution will spread through the population of biologists 
increases with the extent to which institutional structures 
incentivize free riding].  
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PROOF OF PROPOSITION 2 

 Notice in equation (6) that as α rises the denominator of 
x* becomes smaller. Thus, as α rises so does x*. 

 Proposition 3. [An increase in the likelihood that the 
current institutional structure will continue makes it easier 

for a culture of contribution to take root since 

 

]. 

PROOF OF PROPOSITION 3 

 Proposition 3 states that x* is decreasing in p. To 
demonstrate this, we must show that the derivatives of x* 
with respect to rH and p are always negative. Recall from (7) 
that after substituting δH and δL, 

 

 We take the term  from the denominator and take 
the first derivative with respect to p to find that  

Notice,  

by definition. Also, > 0. Thus,  

>0 In other words, the denominator of x* rises 
with p. Thus x* itself falls as p rises. 
 This concludes the proofs for our propositions. 
 Propositions 1, 2, and 3 above, show how changes in the 
parameters that affect the fitness of cultures in a population 
of biologists affect the likelihood of a culture of contribution 
taking root. In fact, α, p, and rH– the variables of interest in 
those three propositions – affect the rewards and penalties 
from pursuing a culture of contribution (the patient culture) 
relative to the rewards and penalties from pursuing a culture 
of non-contribution (the impatient culture). However, this 
process may take a long time. Thus, finding evidence for this 
process requires us to follow large groups of people for long 
periods of time or design expensive experiments with human 
subjects. Therefore, as an initial attempt to check whether 
our results are robust, we use a computer model to simulate a 
society of biologists in order to both test the robustness of 
our mathematical results as well as get a sense of the 
sensitivity of our predictions to changes in the rewards and 
penalties of contributing. In this simulation, we specify a 
replicator dynamic process based on various distributions of 
several species or cultures of biologists. The frequency of 
contribution is the source of heterogeneity among cultures in 
our simulation. Thus, our computer simulations do not 
“hardwire” patience in any way. We prefer instead to see if 
the predictions of our theoretical model are borne out when 
the level of contribution is the only choice made by 
“biologists” in our simulation. We do this to avoid the 
possibility of a simulation that gets our results because our 
results are already pre-programmed in the simulation. 
However, as biologists with different levels of contribution 

interact, the order of the fitness of these interactions follows 
the payoff structure in Table 1. We therefore suggest that if 
biologists in the simulation behave predictably like 
biologists in our theoretical model then the simulation 
provides evidence in favor of our theory. 

 Our computer models simulate population dynamics to 
test our results. To perform these population dynamics 
simulations we have adopted a basic Metropolis technique to 
devise an efficient Monte-Carlo scheme for a sampling 
controlled by a generic continuous replicator dynamics 
equation . Here i is the index of 
the sub species of the population and fi denotes the fitness of 
the ithsub species while  is the average fitness of 
the population. This method, therefore, first constructs a 
population with m members by randomly assigning 
frequency of contributions cm from a given distribution. In 
reality, and unlike our theoretical model, people will not be 
either contributors or non-contributors. They are more likely 
to contribute along a spectrum of frequencies. Thus, some 
members of our simulated population contribute more 
frequently. These members of the simulated population are 
distributed according to a probability distribution. We report 
the results from two initial distributions, a uniform 
distribution, and a normal distribution. These distributions 
represent assumptions about how often biologists contribute 
(see Fig. 1). The broad results reported below are robust to 
the choice of distribution.  
 The method then attempts Monte-Carlo procedure of 
creation, deletion, and mutation (displacement) during large 
number of generations. One of two methods subsequently 
determines the randomized probability of acceptance for a 
certain operation: species derivative by replicator dynamics 

 (8) 

and normalized cumulative distribution function of the mean 
centered payoff,  

 (9) 

 It is important to note that both equations yield the same 
equilibrium for binary systems, but the second equation 
allows for ESS distributions with more than two multiple 
quasi-species concurrently existing.  
 Analytical evaluation of continuous mode replicator 
dynamics leads to the following equation 

 

 (10) 

where CC, CD, DC, DD are the coefficients in payoff matrix 
(for the simulations we started from CC=3, CD/DC=0/2, 
DD=1). M is the total momentum of frequency distribution 
function 

  (11) 



14     The Open Bioinformatics Journal, 2013, Volume 7 Basuchoudhary et al. 

 We performed multiple simulations to analyze 
implications of different strategies applied towards 
population. These simulations included variations with and 
without members changing strategies over multiple 
generations. Members changed in continuous distribution 
modes and optimized their contributing frequency during 
displacement operations. To model birth, maturation and 
death of a trait (contributing culture vs. non-contributing) the 
frequency, the step of displacement, and the deletion events 
were correlated with the age of the trait (how long the trait 
has been in place).  

RESULTS AND DISCUSSION 

 We propose that differences in the level of patience in a 
population, as defined above, is a key factor in determining 
whether a culture of contribution will evolve, or not. 
Whether people are patient or not may depend on the 
institutional rules that govern collaboration relative to 
individual effort. Thus, institutions that incentivize 
individual effort play a large role in determining whether 
biologists contribute to community annotations – mainly by 
affecting the patience of biologists. Our methodology 
generates three propositions. We then use computer 
simulations to test these propositions for robustness and 
validity. We state and discuss our results below. 

 First of all, we note that the replicator dynamic approach 
to solving this game allows us to find evolutionary stable 
strategies. We find that the impatient culture is an 

evolutionary stable strategy (ESS) if  where 

 and . This implies that small changes 

around  will shift the equilibrium towards a 

culture where either contribution prevails or non-
contributionprevails. Thus even if, for example, a small ε 
proportion of the patient population changes and becomes 
impatient the culture of the entire population cascades 
towards the point where only a culture of impatience 
prevails. The opposite happens if a small ε proportion of the 
population mutates and becomes patient. This proposition 
therefore suggests that the patient culture can prevail only if 
the proportion x of patient people in a population satisfies x 
> x*. Since there is no a priori reason to believe that x will 
always exceed x* , we cannot predict that the culture of 
patience will succeed. For example if x* is 8% while the 
actual proportion of patient biologists in a population is 7.9% 
then this society of biologists will be doomed to be plagued 
by non-contribution. But all will be well if the actual 
proportion of patient biologists happens to be 8.1%. In the 
context of this paper, this result suggests that a culture that 
incentivizes non-contribution may well become the dominant 
culture among biologists even though it is clearly not 
optimal for the system. Proposition 1 therefore suggests that 
the populations of biologists will either converge on an 
equilibrium where everyone is a contributor or where 
everyone (almost everyone) is a non-contributor because 
there is no evolutionarily stable equilibrium where both 
types can coexist. Realistically, both cultures may coexist at 
any point in time. However, as a dynamic matter one culture 
will die out. In addition, whether the system reaches the 
equilibrium where everyone is either a contributor or a non-
contributor depends on the initial distribution of contributors 
relative to non-contributors. 
 In our computer simulations, biologists have uniform or 
normally distributed frequencies of contribution. A normal 
distribution mimics a system where some cultures are more 
common than others are and around some average frequency 

le

frequency of contribution

Fig. (1). Series of expression profile snapshots taken during population dynamics simulations for normal (top diagrams) and uniform (bottom 
diagrams) distributions. Abscissa (x-axis) shows the frequency of contribution by a subspecies and ordinate (y-axis) show the scaled 
probability of finding a member with such characteristics. Both panels show that starting from non-biased normal (extreme top left panel 
figure) or uniform (extreme bottom left panel figure) distributions result in completely non-contributing populations. Top panel shows that a 
population that has a preferred culture of non-contribution converges quicker to a total non-contributing population while the bottom panel 
(without any preferred culture of contribution) shows a much more gradual defection (twice as long) to non-cooperation.  
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of contribution. A uniform distribution mimics a system 
where none of the culture is over or underrepresented. Fig. 
(1) is a representative graph of the replicator dynamic 
process. We further note here that the biologists in our 
computer simulation differ only in the frequency of 
contribution. Recall that we do not explicitly program 
differences in patience in these simulated biologists. Thus, 
the results are not an artifact of the simulation program. 
However, the fitness of the biologist cultures as they interact 
with each other follows the rank ordering suggested by our 
theory. Thus, changes in the distribution of biologists in the 
simulation that matches our theoretical predictions may be 
evidence in favor of our patience-based theory. 
 First, we note from Fig. (1) that the simulated population 
of biologists moves towards an equilibrium with only one 
culture. This result is sensitive to the choice of initial 
parameters – the mean of the distribution of the frequency of 
contribution in the case of the normal distribution or the 
number of members in each culture in the case of the 
uniform distribution. This provides evidence in support of 
our claim that even when the benefits of cooperation by 
increasing contributions are clear, whether actual 
cooperation happens or not critically depends on the initial 
mass of contributors. Thus, formal policies that incentivize 
contributions (short of actual coercion) might fail if the 
numbers of biologists who cooperate frequently are not high 
enough to begin with. We also find that the choice of the 
normal distribution results in much quicker collapse of the 
system into one of the extremes relative to the uniform 
distribution (Fig. 2). Thus, one may conclude that 
populations with one predominant culture or frequency of 
contribution are more difficult to sway towards one direction 
than populations where no culture is predominant. This has 
important implications for policy implementation. Whether a 
policy will potentially increase contribution or not depends 
on the distribution of cooperative biologists in the 
population. 
 Of course, rH, rL, α and p determine x*. This suggests that 
the ESS are sensitive to changes in patience, the extent to 
which institutional structures incentivize free riding, and the 
probability that these institutional structures persist. We 
therefore ask the following question -- how does x* respond 
to changes in some of the parameters in our model? Recall 
that x* represents a sort of tipping point for whether one 
culture will prevail over the other or not. Thus if x* rises 
then for the patient culture to succeed a larger proportion of 
the population needs to be patient. Changes to the actual 
proportion of a population would be rare and small. We 
therefore suggest that a rising x* makes it harder for the 
patient culture to succeed. With this outcome in mind we 
state and discuss our results from propositions 2 and 3 to 
show how x* responds to changes in α and p.  

 Proposition 2 follows from the proof that . 
Clearly the formula for the tipping point in Proposition 1 
indicates that as α rises so does x*. This happens because as 
the incentive to be impatient grows, so does the need for 
more patient people in society to achieve the efficient 
outcome. In other words, a rising x* implies that a higher 
proportion of the population needs to be part of a patient 
culture for a patient culture to prevail. This makes it harder 

for the patient culture to prevail. For example, say 10% of a 
society is patient. Further, assume that x* is 8%. According 
to Proposition 1 a patient culture will prevail in this society. 
Now say that an institutional change incentivizes impatience, 
e.g., a fall in the contributing standards required by the NSF 
or National institutes of Health (NIH) makes α rise. As a 
result say x* rises to 12%. Now suddenly our society, where 
the proportion of patient biologists is at 10%, finds itself on 
the wrong side of x* and begins to move towards the 
impatient equilibrium. In this scenario more and more 
biologists succumb to non-contribution at the expense of 
those who do not – effectively crowding out patient 
biologists. Thus, designing institutional mechanisms to 
induce biologists to wait are important. 
 Proposition 3 basically states that as p falls the present 
value of future payoffs to both cultures diminish. However, 
the payoff to the impatient culture falls relatively less than 
that for the patient culture since the impatient culture places 
less value on the future anyway. Thus as p falls the impatient 
culture becomes fitter (has a relatively higher payoff) than 
the patient culture. This leads to an increase in the proportion 
of impatient biologists in the population. Thus, as p falls, 
more patient biologists are needed for the patient culture to 
prevail. 
 We interpret p as the probability that a particular 
institution continues. Thus any change in the rules of the 
game -- signifying an end to the game itself -- indicates the 
end of an institution. This proposition then essentially means 
that if any institutional arrangement becomes more likely to 
change then it becomes harder for the patient culture to 
prevail. Say the government is contemplating a change in the 
regulatory structure that will reduce free riding –as suggested 
in Proposition 2 above. Then, paradoxically, even if the 
purpose of the regulation is to reduce non-contribution and 
improve efficiency its effect will be to make it harder for 
biologist’s incentives to be patient contributors. This 
strengthens cultural path dependency – for good or for bad. 
Moreover, Propositions 2 and 3, taken together suggests that 
there is a trade off between the expected benefits of any 
attempt to change the institutional incentive to free ride and 
the act of the change itself. This sort of trade-off deserves 
further attention in future research. 
 Propositions 2 and 3 above show how changes in the 
parameters that affect the fitness of cultures in a population 
of biologists affect the likelihood of a culture of contribution 
taking root. In fact, α, and p– the variables of interest in 
those propositions – affect the rewards and penalties from 
pursuing a culture of contribution (the patient culture) 
relative to the rewards and penalties from pursuing a culture 
of non-contribution (the impatient culture). For example, 
notice from Table 1 that, an increase in α rewards an 
impatient person when she interacts with a patient person. 
On the other hand, an increase in p penalizes an impatient 
person when she interacts with a patient person.  
 It is clear from equation (10) that the weighted 
momentum of the distribution plays an important role in the 
stability of species. Increases in the payoff and penalty ratios 
essentially shift the momentum of c(x) thus changing the 
behavior of the population. This particular treatment of the 
population of biologists in our simulated environment 
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captures the effects of Propositions 2 and 3 above – all of 
which show the impact of changes in the benefits of 
defection (and therefore the penalties from not contributing) 
relative to cooperation. Thus, a decrease in α or an increase 
in p will increase the benefit of cooperation relative to the 
net benefit from defection. 
 We find, based on reasonable assumptions about initial 
conditions and fitness (Fig. 3), that an increase in the 
benefits of contribution, through some reward mechanism, 

for example, are more likely to lead to equilibriums where 
the culture of contribution predominates. We find this result 
is more likely when benefits from contribution rise rather 
than when penalties from not contributing (through a 
decrease in the fitness of defection) are increased (Fig. 3 and 
4). Our theoretical model predicts that a decrease in α or an 
increase in p, i.e., an increase the benefit of cooperation 
relative to the net benefit from defection; all make it easier 
for a culture of patience to take root. Further, given a 

!

Fig. (2). The speed by which the population collapses into one of the critical states depends on initial and new member generation 
distributions. The positive values of the speed signify the convergence to all contributing population and negative values demonstrate the 
collapse to all defecting population. The actual shape of the saddle depends not only on the means of the distributions but also on standard 
deviations and matrix parameters describing rewards, penalties, generation change frequencies and lifespan of the members. The figure 
shows that when selection favors new members for their more contributing traits then the population has a higher chance of eventually 
moving to the contributing culture (green, yellow, and orange represent increased level of contribution). The shape of the plateau shows a 
diminishing cultural effect of each generation on the next. !

Fig. (3). Dependency of the speed by which positive shift in the population occurs from the magnitude of the changes in penalties and 
rewards. Note that the rewards affect population behavior (contribution) more than the same amount of penalty (compare the left and right 
corners of the diagram). 
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growing culture of patience, people should cooperate more 
by contributing more. Our simulation directly links an 
increase in the benefit of cooperation relative to the net 
benefit from defection to an increase in the number of 
biologists who contribute more. While we do not program 
patience in biologists in our simulation, we do order the 
fitness of the culture they belong to according to our 
patience-based theory (Table 1). This suggests that our 
theoretical pathway linking α and p to increased 
contributions by biologists because of their increased desire 
to cooperate operates through patience. This result is robust 
to many different specifications for initial conditions and 
parameters. Moreover, from a policy standpoint this result 
suggests that funding agencies should reward contributors 
rather than penalize non-contributors to establish a culture of 
patience and contribution. 
 Our theory and simulations suggest that there are no 
guarantees that a culture of contribution will prevail in a 
society of biologists – even with the “right” sort of 
institutions. However, the likelihood that a contributory 
culture will prevail is enhanced if there is an increase in the 
rewards from contribution relative to the penalty from not 
contributing. In particular we point toward the three 
lynchpins of any policy to make a culture of contribution the 
predomninant culture in this society – the stability of rules, 
the patience of individuals and the rewards from contributing 
relative to not contributing. 

 Our model and simulations have implications for 
experimental design as well. In cooperation experiments 
with human subjects patience is usually modeled using 
experiment termination rules [25]. In these experiments, 
games have some probability of ending. Mathematically, of 
course, the probability a game continues is equivalent to a 
discount rate. Thus, using game termination rules to model 
discount rates may be mathematically justified. Further, 
presumably, if the subjects know that a game is very likely to 
end they will behave more impatiently than if they knew that 
the game is more likely to continue. But this psychological 
justification is muddy at best. If people come into the 
experiment with a culturally predetermined patience level 
then it is unclear what sort of behavior is being captured in 
an experiment where the patience level is forced on the 

subject as a part of the experimental treatment. Thus, if one 
accepts that patience is culturally determined, as appears to 
be the broad consensus among behavioral economists and 
psychologists [18, 21], then experiments that force specific 
patience levels on subjects may be capturing behavior whose 
interpretation is at best unclear [27]. We have developed a 
framework that allows patience and cooperation to co-evolve 
in an experimental setting. When patience is not allowed to 
evolve by experimental design neither can cooperation. This 
may be why cooperation is so hard to replicate in the lab[25, 
26]. Thus, for example, in order to get human subjects to 
cooperate in experimental settings all subjects should be 
faced with the same experiment termination rules. Further, 
some sort of mechanism could sort subjects according to 
their patience levels prior to the experiment. Now one could 
test if patience evolves in settings where our theory and 
simulations suggests it should. If patience evolves so should 
cooperation according to the Folk Theorem. After all biology 
and human life is replete with examples of cooperation [37]! 
Our theory provides the levers to engineer this cooperation 
in the lab and, if experimentally justified, in the real world. 

CONCLUSION 

 Our theory and simulations suggest the there are no 
guarantees that a culture of contribution will prevail in a 
society of biologists – even with the “right” sort of 
institutions. However, a culture of contribution is more likely 
if contributors are rewarded rather than by punishing non-
contributors. This can be done by manipulating the stability 
of rules, the patience of individuals, and the rewards from 
contributing relative to not contributing. Thus our theory 
suggests several testable hypotheses and is a first attempt at 
developing a systematic methodology for organizing 
scientiststo maximize scientific cooperation.  
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Fig. (4). Series of expression profile snapshots taken during population dynamics simulations for two different settings of game matrix 
elements. We model the initial distribution (shown in black on the leftmost diagram) with a non-biased Gaussian with median at the center 
0.5 thus giving equal chances for the population to collapse in either one of the states. Comparison of blue series collapsing into all 
contributing state in contrast with red series collapsing to all defecting to non-contribution clearly demonstrates that an increase in rewarding 
(CC) by 30% led to significant changes in the future. For this particular simulation the CD has not been changed but decrease in asymmetry 
of CD<->DC elements has the same effect at a lesser scale. The figure shows that reward (blue line) results in a contributing culture while 
penalizing (red line) is not enough to push the population to a culture of contribution (please compare this to Fig. 1). 
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