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Abstract: Protein-Protein Interactions (PPIs) play a key role in many biological systems. Thus, identifying PPIs is critical 

for understanding cellular processes. Many experimental techniques were applied to predict PPIs. The data extracted using 

these techniques are incomplete and noisy. In this regard, a number of computational methods include machine learning 

classification techniques have been developed to reduce the noise data and predict new PPIs.  

Since, using regression methods to solve classification problems has good results in other applications. Therefore, in this 

paper, a regression view is applied to the PPI prediction classification problem, so a new approach is proposed using Prin-

cipal Component Analysis (PCA) and Support Vector Regression (SVR) which has been improved by a new Parallel Hi-

erarchical Cube Search (PHCS) method. Firstly, PCA algorithm is implemented to select an optimal subset of features 

which leads to reduce processing time and to lessen the effect of noise. Then, the PPIs would be predicted, by using SVR. 

To get a better performance of SVR, a new PHCS method has been applied to select the appropriate values of SVR pa-

rameters. The obtained classification accuracy of the proposed method is 74.505% on KUPS (The University of Kansas 

Proteomics Service) dataset which outperforms the other methods. 

Keywords: Protein-Protein Interaction prediction, Machine Learning approach, Support Vector Regression, Parallel Hierar-
chical Cube Search.  

1. INTRODUCTION  

Proteins have the major responsibility in cellular process, 
such as, signal transduction, gene regulation, cell-cell contact 
and many additional processes [1]. These responsibilities are 
performed by the interaction between proteins. Therefore, 
prediction of PPI improves the knowledge of the cell func-
tionality, protein functions [2-4], gene functions [5], signal-
ing pathway [6] and disease proteins finding [7].  

Several high-throughput experimental approaches have 
been introduced to predicting PPIs, including yeast two-
hybrid systems [8], mass Spectrometry [9], protein chip [10] 
and so on. Unfortunately, the data produced by these meth-
ods consist of a large amount of false positive and false neg-
ative. Moreover, these methods suffer from high computa-
tional time and they only seem able to identify small fraction 
of all interactions that exist in the cell [11].  

In recent years, great efforts have been done to develop 

some reliable computational methods for predicting PPIs. 

These methods are mostly classified based on the type of 

data sources used in the prediction procedure. For instance, 

some of them use gene data [12], including gene neighbor-

hood [13], gene fusion [1, 14], phylogenetic profile [15] and 

mirror-tree [16]. Some other methods employ structural in-

formation [17, 18], protein sequence [19-23] and domain  

 
 

*Address correspondence to this author at the Electrical and Computer 

Engineering Faculty, Tarbiat Modares University, Tehran, Iran;  

E-mail: charkari@modares.ac.ir 

 

information [24-26]. Since each of these datasets provides 
partial information about the interacting pairs, many re-
searchers have attempted to integrate several data source for 
predicting PPIs with more reliability [27-29]. Results have 
indicated that the integration of protein pairs information can 
improve the quality of protein interaction data [30, 31].  

Among the proposed machine learning methods for pre-
dicting protein-protein interactions, Support Vector Machine 
(SVM) has shown a better performance than other single 
classifiers such as: Decision Tree and K-Nearest Neighbor 
[30]. SVM constructs a hyperplane or set of hyperplanes in 
feature space which can be used for classification and regres-
sion and are capable of dealing with high dimensional input 
features [32]. A version of SVM for regression is called 
Support Vector Regression (SVR). SVR outperforms the 
SVM due to better generalization performance and more 
robustness against outliers [33]. Like SVM, SVR method 
requires tuning and setting its parameters properly to achieve 
better performance and minimize an estimate of the General-
ization error [34, 35].  

In this paper, a new method, consists of feature extraction 
and SVR improved by a new Parallel Hierarchical Cube 
Search (PHCS) method, is presented for solving PPI predic-
tion problem. Since the integration of various data sources 
produces a high dimensional feature vector, applying feature 
extraction algorithm would be necessary to reduce pro-
cessing time and to lessen noise effects. In this paper, at first 
PCA (Principal component analysis) algorithm is used for 
feature extraction, then SVR algorithm is carried out for 
classification. To improve the performance of the model, a  
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new Parallel Hierarchical Cube Search (PHCS) method is 
implemented for tuning SVR kernel parameters optimally. 
This method improves the performance of prediction system 
without increasing the overall learning time significantly. 

KUPS dataset [28] has been used to evaluate and com-
pare the performance of the proposed method. KUPS is 
freely available at http://www.ittc.ku.edu/chenlab. The 
result of the experiments indicates how the classification 
accuracy has been increased to 74.505% in comparison with 
other works. This paper is organized as follows: background 
of protein-protein interactions prediction and support vector 
regression are discussed in section 2. SVR based on Parallel 
Hierarchical Cube Search (SVR-PHCS) is presented in sec-
tion 3. Performance evaluation and experimental results are 
shown in section 4. Section 5 is conclusion.  

2. BACKGROUND  

2.1. Protein-Protein Interaction Prediction  

Many interesting machine learning methods such as Na-
ïve Bayes [36, 37], Support Vector Machine [20, 38, 39], 
Decision Tree [40, 41], Random Forest [42] and K-Nearest 
Neighbor [3,43] have been applied on protein-protein inter-
action prediction problem.  

In 2005, Chen and Liu considered protein domain 
information to present a domain-based random forest 
for inferring protein interactions [24]. 

Ixia et al. in 2010 suggested a Moran autocorrelation de-
scriptor to translate the sequences of protein to numerical 
feature vector and then to predict PPI’s, applying rotation 
forest method [44]. Xing and Dunson In 2011, proposed a 
new Bayesian integration method called deemed Nonpara-
metric Bayes Ensemble Learning (NBEL) to predict PPI 
using the sequence of protein pairs [37]. 

In 2006 Nanni and Lumini attempted to combine multi-
ple K-local Hyperplane distance Nearest Neighbor (HKNN) 
classifiers with different physicochemical properties of pro-
tein sequence to obtain better classification result [45]. 

In 2007, Shen et al. proposed a new method based on 
SVM with a kernel function [38]. They applied conjoint triad 
composition method for constructing feature vectors from 
sequences of protein pairs. In 2010, Ixia et al. presented a 
meta approach for PPI prediction which predicts PPIs by 
combining six independent predictors based on SVM [19].  

It is necessary to mention that all the above methods em-
ployed one type of data source to predict PPIs. 

Qi et al. In 2005, used multiple high throughput 
biological data sources to construct their features vector, 
including: Y2H, Gene Expression, Protein Expression, Gene 
Neighborhood, Domain-Domain. Then, they presented a 
hybrid of random forests and weighted k-nearest neighbour 
for predicting PPI [29].  

They also employed a Mixture-of-Feature-Experts (MFE) 
method to improve the classification accuracy in this other 
study in 2007 [31]. The results of these methods show that 
integration of multiple data sources could improve the pre-
diction of PPI. 

Using an appropriate classification technique is crucial in 
all the mentioned methods for prediction of PPIs. Since, 
there are some attempts to use regression methods to solve 
the classification problem in the literature of machine learn-
ing [34]. In this work, Support Vector Regression (SVR) is 
applied as one of the powerful methods in the field of ma-
chine intelligence to proper classification of PPIs.  

Since the selection of optimal values for the parameters 
in the SVR model is important to improve the performance 
of model and minimize an estimate of the Generalization 
error [46], in this paper a new Parallel Hierarchical Cube 
Search (PHCS) method is introduced. PHCS selects the op-
timal value of SVR parameters by searching three dimen-
sional spaces in parallel and hierarchically. To evaluate the 
efficiency and validity of method, KUPS dataset [28] has 
been employed, which is the aggregation of different data 
sources related by PPIs.  

2.2. Support Vector Regression (SVR) 

The Support Vector Machine (SVM) is known as a popu-

lar and useful technique for data classification and regression 

in machine learning. Let be a set of n train-

ing samples, where xi is input sample and yi is the corre-

sponding class. Generally, while 
  
y

i
+1, 1{ }  in 

classification problem and 
 
y

i
R  in regression problem. 

The main idea is to find a linear separating hyperplane 

to maximize the distance between two classes;  

  (1) 

Where, w and b are the weight vector and bias, respec-
tively. In some cases, data in the original input space cannot 
be linearly separated, and therefore some nonlinear kernel 
functions should be used. Polynomial, sigmoid and Radial 
Basis Function (RBF) are the most well-known kernel func-
tions. These kernel functions implicitly map their inputs into 
high-dimensional feature spaces. 

The optimal hyperplane can be determined as follows; 

 With subject to   (2) 

Equation (2) is a nonlinear optimization problem with in-

equality constrains. This problem is solved by using La-

grange multipliers method that represents the following op-

timization problem (Some kernel tricks are used for nonline-

ar separating problem): 

 

 (3) 

In Equation (3),  and  are two parameters which are de-
termined experimentally. A linear decision function can be 
written as  where b is giv-
en by . In cases where the decision function is 
non-linear, the input space is mapped to another Euclidean 
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space by the kernel function in advance. This decision func-
tion is formulated as: 

  (4) 

In SVR the mathematical formulation has to consider the 

approximation errors. SVM solve the regression problem by 

introducing a  -insensitive loss function . 

  (5) 

Considering the above function, SVR is performed re-
gression by minimizing the following function: 

, 

 

 (6) 

Where slack variable i, represents the upper training er-
ror and i

* is the lower training error. In non-linear SVR, the 
following equation indicates kernel expansion of the deci-
sion function  which is defined as follows; 

  (7) 

The SVR parameters  directly effect on the classi-

fication performance and the complexity of regression. Tun-

ing and setting of these parameters to get a better decision 

function, is an open research problem. The main contribution 

of this study is on this problem. Therefore, a new PHCS 

method to optimally select these parameters is proposed. 

3. SVR BASED ON PARALLEL HIERARCHICAL 
CUBE SEARCH (SVR-PHCS)  

In this section, details of the proposed PCA and SVR-
PHCS method are introduced. Accordingly, the progress has 
been started with proper number of features which is extract-
ed by using PCA, and then attempt to obtain optimum pa-
rameters value of SVR which uses the RBF kernel function. 
The method consists of the following steps (Fig. 1): 

1. Feature selection 

2. Scaling data 

3. Parallel Hierarchical Cube Search (obtain the best 
 by cross validation scoring) 

In this section each of these steps is explained in details. 

3.1. Feature Selection 

Biological datasets are generally very large, dimensional 
and noisy. One of these datasets is KUPS. KUPS is a highly 
dimensional dataset created by aggregating of multiple data 
sources, but not all features are effective in the prediction. 
So, a set of feature extraction methods are usually employed 
for dimensionality reduction [47, 48]. In this way, the irrele-
vant and redundant features are put away from a dataset to 
reduce the data dimensionality. It cause low complexity of 
data, increases the search speed and consequently increases 
the performance of the classification. 

Among these, PCA is one of the most widely used algo-
rithms for dealing with this problem. PCA is a linear combi-
nation that changes the coordinate system of data (feature 
vector) to a new one, such that the new set of features are 
linear functions of the original features and uncorrelated. 
Here, the greatest variance by any projection of the data lies 
on the first coordinate, and the second greatest variance on 
the second coordinate, and so on. After applying PCA, the 
features which lead to a better accuracy were selected. 

Table 1 show the average and variance of accuracy when 
the numbers of feature change from 50 to 400 on KUPS da-
taset after ten runs. As it is found, when the numbers of fea-
tures are 250, the better accuracy would be obtained.  

3.2. Scaling Data 

Variables often have considerably different numerical 
ranges. When a variable be in a large range its variance be-

come large, and vice versa. Since PCA is a maximum vari-
ance method, it leads that a variable with a large variance is 
more likely to be expressed in a modeling. In this regard, all 

the data would be scaled in advance in order to provide the 
same contribution for them to the model. Another advantage 
is to avoid numerical di culties during the calculation. 

Since kernel values usually depend on the inner products of 
feature vectors, e.g. the linear kernel and the polynomial 
kernel, large attribute values might cause numerical prob-

lems [45]. For this purpose, Eq. (8) is used for linearly scal-
ing, where X indicates the original data, XNormalized is the nor-
malized data, Xmax 

and Xmin 
are the maximum and minimum 

values of X, respectively. 

X
Normalized

=
X X

min

X
max

X
min

 (8) 

 

Fig. (1). Steps of SVR-PHCS method. 
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3.3. From Regression to Classification 

While in the literature of machine learning, classification 
and regression problems are addressed as two different prob-
lems differentiated by categorical or continuous dependent 
variable, there have been some attempts to use regression 
methods to solve the classification problems and vice versa 
[34]. 

In this paper, the support vector machine regression 
method is used to solve the classification problem (PPI pre-
diction). Since in the regression problem, the class labels are 
real-valued rather than binary-valued, a solution is needed to 
map the real-valued class label to binary-valued for classify-
ing. Therefore, if a perfect mapping method is applied, the 
classification problem can be solved by regression methods. 
The most important aspect of rounding values is the selec-
tion of mapping point (MP). The following pseudo code pre-
sents the overall procedure for choosing MP.  

 

Algorithm 1 – steps of MP algorithm 

Train () { 

Best MP=0; 

Best accuracy=0; 

For each combination of c , and  

   Execute SVR algorithm (generate Output) 

   For step=0.1:0.1:1 

      MP=step; 

      For all output  

         If (Output < MP) 

            Output = 0; // non-interaction 

         Else 

            Output = 1; // interaction 

         End if 

      End for 

   Calculate accuracy 

   If (accuracy > best accuracy) 

      Best accuracy = accuracy; 

      Best MP = MP; 

      Best c = c; 

      Best = ; 

      Best  = ; 

   End if 

End for 

Test ( Best c , Best , Best  , Best MP) 

} 

 

Test ( c , ,  , MP) { 

Learn SVR with c , and  parameters 

Table 1. Average and variance of accuracy for different number of features extracted by PCA on KUPS. 

Principal Component Analysis (PCA) 

Accuracy 

Number of selected Features 

50 

Average 70.725 

Variance ±0.475 

100 

Average 72.537 

Variance ±0.12 

150 

Average 73.708 

Variance ±0.136 

200 

Average 73.152 

Variance ±0.21 

250 

Average 74.348 

Variance ±0.157 

300 

Average 73.546 

Variance ±0.142 

350 

Average 73.498 

Variance ±0.014 

400 

Average 72.125 

Variance ±0.11 



Protein-Protein Interaction prediction using PCA and SVR-PHCS The Open Bioinformatics Journal, 2015, Volume 9    5 

For all output line 

         If (Output line < MP) 

            Output line=0; 

         Else 

            Output line=1; 

         End if 

End for 

}    

3.3.1. Parallel Hierarchical Cube Search (PHCS) 

PHCS method is employed for tuning SVR kernel func-
tion parameters. It should be noted that the selection of the 
best values for kernel function parameters is an NP complete 
problem, so the selected parameter values are not necessarily 
the best overall calculation. 

There are some methods to find these parameters proper-

ly. They mostly differ in the way the search the parameter 

space. Among them, greedy search, pattern search and GA 

are mostly used in different applications. PHCS is the ex-

tended version of PHGS introduced in [50]. PHGS method is 

used for tuning SVM kernel function parameters . 

Therefore, it has a grid search space of two dimensions. 

While the PHCS is applied for tuning SVR kernel function 

parameters , with the three-dimensional search space. 

Moreover, it is able to find Mapping Point (MP). So that for 

mapping the real-valued class label would be mapped in to 

binary-valued one. In this work, Cross Validation Score 

(CVS) has been used to validate the hierarchical cube search 

effectively. A  is considered support vector machine regres-

sion learning algorithm where  is a vector of SVR parame-

ters with RBF kernel function. A  is employed on dataset D, 

A  (D); the result will be a classifier. Given a set , assess-

ment of CVS of the best accessible classifier A *(D) is de-

sired, where  
*  is the best assignment for D. 

In order to calculate the CVS, the following k-fold cross 

validation procedure is applied, which returns the cross vali-

dation score of k different classifier that are learned by the 

algorithm on different folds of dataset. The cross validation 

procedure consists of the following steps: 

1. Data permutation and split. Randomly permute the 
whole data and then split it into k non-overlapping 
equally sized subsets Di which is called folds. Each 
times k-1 folds are assumed as train and one fold for 
validation. 

2. Train classifiers over folds. Algorithm repeats k times 
while in each iteration; one subset is tested using the 
classifier trained on the remaining k-1 subsets. Final-
ly, each instance of the whole training set is predict-
ed. 

3. Calculate cross validation score. CVS is obtained by 
Equation. (9).  

    (9) 

 

K-fold cross validation minimizes the bias associated 

with the random sampling of the training. Because of this 

property, it is widely used among researchers. Now, the pro-

posed PHCS method would be described in details. There are 

three main parameters for SVR kernel function: and . 

The c parameter trades off misclassification of training ex-

amples against simplicity of the decision surface. A low val-

ue of c  makes the decision surface smooth, while a high 

value of c  aims at classifying all training examples correct-

ly. As a result, Parameter c  controls the balance between the 

complexity of the machine and the number of separable 

points. The parameter defines how far the influence of a 

single training example reaches. Low values are meant as 

‘far’ and high values as ‘close’. On the other hand, the value 

of parameter  is very crucial in support vector condition and 

hence in the model performance. Choosing some large val-

ues for , the number of support vectors is decreased, in this 

way  bond becomes wider and the range of accepa error 

increases. In addition, very small values of  makes more 

support vectors and increases the risk of over-training. 

The best values of these parameters depend on the nature 
of the problem. Selecting the best values for parameters is a 
vital step that has a direct effect on the performance and 
overall capability of SVR learning algorithm. Grid search is 
one of the popular techniques for finding the optimal values 
for SVM kernel function parameters. This method is very 
popular and reliable for selecting the best value on parameter 
ranges. However, this approach suffers from dimensionality, 
grid granularity and high computational time [49, 51]. 

In SVR with RBF kernel function, there are three param-
eters that should be found out in 3D search space. In order to 
find the best parameter values, a hierarchical cube search 
method is used. Although this method saves time, but it is 
still time consuming. Since all points on the cube are inde-
pendent from each other, hierarchical cube search can be 
implemented in parallel. With parallel implementation of a 
hierarchical cube search, the required time to find the best 
parameters will be significantly reduced. 

In this paper, exponentially growing sequences of 

 and search the optimal values of these parameters 

are considered in the space of

. 

In order to find the best values for  in user de-

fined boundaries, the whole search space must be searched. 

N is assumed the number of available CPUs, consequently c , 

and  values divided into N interval. Then, each interval is 

assigned to one CPU. Interval division task and assigning 

each interval to one CPU are managed by one CPU as mas-

ter. Each CPU performs the cube search on the total space 

that belongs to it. For each triple  in an interval, the 

CPU calculates the CVS for all them. Then, based on the 

maximum value of CVS, the best  is selected as the 

best local optimum for each CPU. Fig. (2) presents all i 

CPUs that find the best local  values in parallel and 

in independent manner. As it is shown, all triple of   
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that have the maximum CVS in each CPU, have been 

marked. 

When the candidate values of  are found for each 

CPU, all the N candidate values are compared and the best 

one is chosen. So the local search procedure will be contin-

ued for the chosen candidate point. In this regard, the local 

search is done in the neighborhood of the selected candidates 

with smaller steps to find the best possible result. 

In the next iteration, in order to find the best values 

of , a virtual cube around the best local optimum 

point of the last iteration is defined. This virtual cube de-

notes new search space which is divided in to N new inter-

vals. Each CPU begins to search the new determined search 

space to find a better triple of . Then, the best CVS in 

the new space will be searched to find the optimum values 

again. Fig. (3) represents the hierarchical constructing virtual 

cube and finding the best new local . As it is shown, 

the new best local  is marked as star. 

By increasing the iterations of parallel hierarchical cube 
search, the accuracy will be increased. However, it leads to 
more processing time. Therefore, a trade-off between accu-
racy and processing time should be considered to solve the 
problem. 

Finally, all the best i local values of CVS will be com-

pared to select the best  as global optimum. Then, 

SVR algorithm is performed on train and test dataset using 

the best global values. 

The overall process of the proposed SVR-PHCS method 
is illustrated in Fig. (4). 

4. PERFORMANCE EVALUATION 

4.1. Metrics 

Confusion matrix contains information about the actual 
and predicted class of samples that are classified by the clas-
sification method.  

The performance of supervised machine learning tech-
niques can be evaluated by confusion matrix. Parameters 
used in the confusion matrix are: 

TP: The number of interacting proteins that are correctly 
classified. 

FN: The number of interacting proteins that are wrongly 
classified non-interactive. 

TN: The number of non-interacting protein pairs that are 
correctly classified. 

FP: The number of non-interacting protein pairs that are 
incorrectly classified as interactive. 

In the following, a series of evaluation metrics that have 
been used in this work is presented: 

Accuracy =
TP + TN

TP + FP + TN + FN
 (10) 

 

Fig. (2). Parallel selection of the best triple of . 

 

Fig. (3). Construct hierarchical virtual window at parallel. 
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precision =
TP

TP + FP  
 (11) 

  

Recall =
TP

TP + FN  
 (12) 

F Measure =
2.Pr ecision.Recall

(Pr ecision + Recall)
 
 (13) 

 

4.2. Experimental Result 

Table 2 shows the 10 best combinations of and  val-
ues that have been obtained from SVR-PHCS. 

The results of performance evaluation metrics by using 

SVR and the extension of SVR (SVR-PHCS) are presented 

in Tables 3 and 4, respectively. As it is indicated, the per-

formance of SVR-PHCS is better than the classical SVR. 

Various performance evaluation metrics can be considered as  

  

Fig. (4). SVR-PHCS integration. 

Table 2. The ten highest combination of c , and  values from SVR-PHCS. 

c Value  Value  Value The Accuracy Rate of Classification (%) 

2 0.125 0.0002441406 74.7 

1 0.125 0.25 74.472 

1 0.25 0.0002441406 74.434 

2 0.125 0.03125 74.377 

2 0.125 0.0004882812 74.348 

2 0.125 0.0000610352 74.32 

2 0.125 0.0625 74.282 

4 0.25 0.0000305176 74.263 

4 0.25 0.0004882812 74.225 

4 0.25 0.00390625 74.196 
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Table 3. Performance metrics for SVR on KUPS dataset. 

Predicted 

Actual 

Negative Positive 

Positive 1651 3297 

Negative 3607 1961 

Precision 66.632 

Recall 62.704 

F-Measure 64.608 

Classification Accuracy 65.652 

Selected C 1 

Selected  0.004 

Selected  0.1 

 

Table 4. Performance metrics for SVR-PHCS on KUPS dataset. 

Predicted 

Actual 

Negative Positive 

Positive 790 3367 

Negative 4468 1891 

Precision 80.995 

Recall 64.035 

F-Measure 71.523 

Classification Accuracy 74.505 

Selected C 2 

Selected  0.125 

Selected  0.0002441406 

 

 

 

Fig. (5). Cross Validation Score (CVS) changes for all combination of and  on the best c value (c=2). 
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Fig. (6). Cross Validation Score (CVS) changes for all combination of c and  on the best  value ( =0.125). 

 

Fig. (7). Cross Validation Score (CVS) changes for all combination of c and  on the best  value ( =0.0002441406). 

 

CVS. In this paper, the CVS is used as accuracy. The results 

of the search space for the best and  are presented in 

Fig. (5-7), respectively. In Fig. (5), the combination of 

and  for the best c value have been shown; all the combina-

tion of c and  for the best  value have been indicated in 

Fig. (6). Moreover, in Fig. (7), all the combination of c and  

for the best  value has been plotted. 

In order to find out the effect of the MP value on perfor-
mance evaluation metrics, the predicted outputs of test sam-
ples are mapped into two binary classes using various MP. 
Fig. (8) shows Accuracy, Precision, Recall and F-Measure 
value while MP changes from 0.1 to 1 with interval 0.1.  

4.3. Comparison with other Works 

The proposed method is compared with other well-
known prediction methods based on KUPS (The University 
of Kansas Proteomics Service) dataset. This dataset contains 
PPI of various organisms which is aggregated from seven 
data sets including, MINT, IntAct, HPRD, Gene Ontology, 
Uniprot, AAindex and PSSM [28]. The dataset is composed 
of training and testing sets, where training set has 10518 
protein pairs and testing set has 10516 protein pairs.  
 

Each protein pair in KUPS is composed of 400 features. To 
compare the results, accuracy and F-Measure have been used 
as a proper metric. The results of the proposed method and 
other classification methods on KUPS dataset are showed in 
Table 5. 

Precision measures the exactness of a classifier, Where-
as, Recall measures the completeness, or sensitivity of a 
classifier. Improving Recall often decreases precision and 
vice versa. Precision and Recall are combined to produce a 
single metric known as F-measure, which is the weighted 
harmonic average of Precision and Recall. In this paper, the 
results are compared with other results by accuracy and f-
measure metrics.  

CONCLUSION  

There are many classification techniques to predict Pro-
tein-Protein Interactions in literature. Using regression 
methods is a new approach to solve classification prob-
lems. In this paper, a new approach is proposed using PCA 
and Support Vector Regression (SVR) which has been im-
proved by a new Parallel Hierarchical Cube Search (PHCS) 
method. The major challenge of applying SVR is how to  
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tune and set the parameters (to achieve the best performance) 
for a given dataset and how to map the regression output to 
classification label. In this regard, the PHCS is applied to 
tune SVR parameters ( and ) and select the mapping 
point. The proposed method has been employed on KUPS 
dataset that is an aggregating of multiple data source and 
highly dimensional. Some features of the dataset may have 
no effect at all, or contain a high level of noise. Deletion of 
such features increases the search speed and the accuracy 
rate, therefore PCA has been used to select the appropriate 
features.  

According to the experimental results, SVR-PHCS pre-
diction system obtains very promising results in classifying 
the protein pairs. The results indicate 74.705% accuracy, 
which is one of the best results reported for this dataset. 

 

CONFLICT OF INTEREST 

The authors confirm that this article content has no con-
flicts of interest. 

ACKNOWLEDGEMENTS 

Declared none. 

REFERENCE 

[1] R. Roslan, R.M. Othman, Z.A. Shah, S. Kasim, H. Asmuni, J. 
Taliba, R. Hassan, and Z. Zakaria, "Utilizing shared interacting 
domain patterns and Gene Ontology information to improve 
protein–protein interaction prediction," Comput. Biol. Med., vol. 
40, pp. 555-564, 2010. 

 

Fig. (8). Various values of Accuracy, Precision, Recall and F-Measure for different MP, X axis indicates as MP. 

Table 5. Classification accuracy of SVR-PHCS and other methods on KUPS dataset. 

Accuracy Precision Recall F-Measure 

Naive Bayes [28] 57.6% 55.7% 73.7% 63.45% 

Decision tree (c4.5) [28] 58.9% 58.8% 59.4% 59.1% 

SVM [28] 70.8% 73.1% 65.8% 69.26% 

Random Forest [28] 71.5% 72.7% 69.0% 70.8% 

STRING [52] NA 59% 59% 59% 

PPI Finder [52] NA 65% 47% 55% 

Domainm1 [52] NA 88% 29% 43% 

Domainm2 [52] NA 81% 43% 57% 

ATRP [52] NA 93% 49% 64% 

SVR-PHCS 74.505% 77.062% 70.349% 73.552% 

 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Accuracy (%) 53.2847.9461.6467.2171.9574.3974.5171.8967.8862.1556.83

Precision (%) 51.7348.71 57.2 62.1868.3675.04 81 85.9790.6293.2394.76

Recall (%) 97.8377.9692.4787.89 81.7 73.0964.0452.3239.8826.2114.45

F‐Measure (%) 67.6859.9670.6872.8374.4474.0571.5265.0555.3940.9125.09

0

20

40

60

80

100

120



Protein-Protein Interaction prediction using PCA and SVR-PHCS The Open Bioinformatics Journal, 2015, Volume 9    11 

[2] A.J. Enright, I. Iliopoulos, N.C. Kyrpides, and C.A. Ouzounis, 
"Protein interaction maps for complete genomes based on gene 
fusion events," Nature, vol. 402, pp. 86-90, 1999. 

[3] L. Liu, Y. Cai, W. Lu, K. Feng, C. Peng, and B. Niu, "Prediction of 
protein–protein interactions based on PseAA composition and 
hybrid feature selection," Biochem. Biophys. Res. Commun., vol. 
380, pp. 318-322, 2009. 

[4] L. Hu, T. Huang, X. Shi, and W.C. Lu, "Predicting functions of 
proteins in mouse based on weighted protein-protein interaction 
network and protein hybrid properties," PLoS ONE, vol. 6, p. 
e14556, 2011. 

[5] B.Q. Li, T. Huang, and L. Liu, "Identification of colorectal cancer 
related genes with mRMR and shortest path in protein-protein in-
teraction network," PLoS ONE, vol. 7, p. e33393, 2012. 

[6] A. Gitter, J. Klein-Seetharaman, A. Gupta, and Z. Bar-Joseph, 
"Discovering pathways by orienting edges in protein interaction 
networks," Nucleic Acids Res., vol. 39, pp. e22-e22, 2011. 

[7] T.-P. Nguyen, W.-c. Liu, and F. Jordán, "Inferring pleiotropy by 
network analysis: linked diseases in the human PPI network," BMC 
Syst. Biol., vol. 5, p. 179, 2011. 

[8] L. Giot, J.S. Bader, C. Brouwer, A. Chaudhuri, B. Kuang, Y. Li, 
Y.L. Hao, C.E. Ooi, B. Godwin, E. Vitols, G. Vijayadamodar, P. 
Pochart, H. Machineni, M. Welsh, Y. Kong, B. Zerhusen, R. 
Malcolm, Z.Varrone, A. Collis, M. minto, S. Burgess, L. 
McDaniel, E. Stimpson, F. Spriggs, J. Williams, K. Neurath, N. 
Liome, M. Agee, E. Voss, K. Furtak, R. Renzulli, N. Aanensen, S. 
Carrolla, E. Bickelhaupt, Y. Lanzovatsky, A. DaSilva, J. Zhong, 
C.A. Stanyon, R.L. Finley Jr, K.P. White, M. Braverman, T. Jarvie, 
S. Gold, M. Leach, J. Knight, R.A. Shimkets, M.P. McKenna, J. 
Chany, and J.M. Rothberg, "A protein interaction map of 
Drosophila melanogaster," Science, vol. 302, no. 5651, pp. 1727-
1736, 2003. 

[9] A.C. Gingras, R. Aebersold, and B. Raught, "Advances in protein 
complex analysis using mass spectrometry," J. Physiol., vol. 563, 
pp. 11-21, 2005. 

[10] H. Zhu, M. Bilgin, R. Bangham, D. Hall, A. Casamayor, P. 
Bertone, N. lan, R. Jansen, S. Bidlingmaier, T. Houfek, T. Mitchell, 
P. Miller, R.A. Dean, M. Gerstein, and M. Snyder, "Global analysis 
of protein activities using proteome chips," Science, vol. 293, pp. 
2101-2105, 2001. 

[11] T. Mohamed, J. Carbonell, and M. Ganapathiraju, "Active learning 
for human protein-protein interaction prediction," BMC 
Bioinformatics, vol. 11, p. S57, 2010. 

[12] J. Yu, and F. Fotouhi, "Computational approaches for predicting 
protein–protein interactions: a survey,"  J. Med. Syst., vol. 30, pp. 
39-44, 2006. 

[13] T. Dandekar, B. Snel, M. Huynen, and P. Bork, "Conservation of 
gene order: a fingerprint of proteins that physically interact," 
Trends Pharmacol. Sci., vol. 23, pp. 324-328, 1998. 

[14] E.M. Marcotte, M. Pellegrini, H.-L. Ng, D.W. Rice, T.O. Yeates, 
and D. Eisenberg, "Detecting protein function and protein-protein 
interactions from genome sequences," Science, vol. 285, pp. 751-
753, 1999. 

[15] M. Pellegrini, E.M. Marcotte, M.J. Thompson, D. Eisenberg, and 
T.O. Yeates, "Assigning protein functions by comparative genome 
analysis: protein phylogenetic profiles," Proc. Natl. Acad. Sci. 
USA, vol. 96, pp. 4285-4288, 1999. 

[16] F. Pazos, and A. Valencia, "Similarity of phylogenetic trees as 
indicator of protein–protein interaction," Protein Eng., vol. 14, pp. 
609-614, 2001. 

[17] L. Licamele, and L. Getoor, "Predicting protein-protein 
interactions using relational features," University of Maryland 
Institute for Advanced Computer Studies, 2007. 

[18] U. Ogmen, O. Keskin, A.S. Aytuna, R. Nussinov, and A. Gursoy, 
"PRISM: protein interactions by structural matching," Nucleic 
Acids Res., vol. 33, pp. W331-W336, 2005. 

[19] J.-F. Xia, X.-M. Zhao, and D.-S. Huang, "Predicting protein–
protein interactions from protein sequences using meta predictor," 
Amino Acids, vol. 39, pp. 1595-1599, 2010. 

[20] M.-G. Shi, J.-F. Xia, X.-L. Li, and D.-S. Huang, "Predicting 
protein–protein interactions from sequence using correlation 
coefficient and high-quality interaction dataset," Amino Acids, vol. 
38, pp. 891-899, 2010. 

[21] C.-Y. Yu, L.-C. Chou, and D.T. Chang, "Predicting protein-protein 
interactions in unbalanced data using the primary structure of 
proteins," BMC Bioinformatics, vol. 11, p. 167, 2010. 

[22] D.T. Chang, Y.-T. Syu, and P.-C. Lin, "Predicting the protein-
protein interactions using primary structures with predicted protein 
surface," BMC Bioinformatics, vol. 11, p. S3, 2010. 

[23] K.C. Chou, and Y.D. Cai, "Predicting protein-protein interactions 
from sequences in a hybridization space," J. Proteome Res., vol. 5, 
pp. 316-322, 2006. 

[24] X.-W. Chen, and M. Liu, "Prediction of protein–protein 
interactions using random decision forest framework," 
Bioinformatics, vol. 21, pp. 4394-4400, 2005. 

[25] J.L. Morrison, R. Breitling, D.J. Higham, and D.R. Gilbert, "A 
lock-and-key model for protein–protein interactions," 
Bioinformatics, vol. 22, pp. 2012-2019, 2006. 

[26] M. Singhal, and H. Resat, "A domain-based approach to predict 
protein-protein interactions," BMC Bioinformatics, vol. 8, p. 199, 
2007. 

[27] M.S. Scott, and G.J. Barton, "Probabilistic prediction and ranking 
of human protein-protein interactions," BMC Bioinformatics, vol. 
8, p. 239, 2007. 

[28] X.-w. Chen, J.C. Jeong, and P. Dermyer, "KUPS: constructing 
datasets of interacting and non-interacting protein pairs with 
associated attributions," Nucleic Acids Res., vol. 39, pp. D750-
D754, 2010. 

[29] Y. Qi, J. Klein-Seetharaman, Z. Bar-Joseph, Y. Qi, and Z. Bar-
joseph, "Random Forest Similarity for Protein-Protein Interaction 
Prediction," Pac. Symp. Biocomput., pp. 531-42, 2005. 

[30] Y. Qi, Z. Bar‐Joseph, and J. Klein‐Seetharaman, "Evaluation of 
different biological data and computational classification methods 
for use in protein interaction prediction," Proteins, vol. 63, pp. 490-
500, 2006. 

[31] Y. Qi, J. Klein-Seetharaman, and Z. Bar-Joseph, "A mixture of 
feature experts approach for protein-protein interaction prediction," 
BMC Bioinformatics, vol. 8, p. S6, 2007. 

[32] Y. Zhan, and H. Cheng, "A robust support vector algorithm for 
harmonic and interharmonic analysis of electric power system," 
Electr. Power Syst. Res., vol. 73, pp. 393-400, 2005. 

[33] G. Nalbantov, P.J. Groenen, and J.C. Bioch, "Support Vector 
Regression Basics," Medium Econometrische Toepassingen, vol. 
13, pp. 16-19, 2005.  

[34] M.H. Zangooei, and S. Jalili, "Protein secondary structure 
prediction using DWKF based on SVR-NSGAII," 
Neurocomputing, vol. 94, pp. 87-101, 2012. 

[35] A.L. Oliveira, P.L. Braga, R.M. Lima, and M.L. Cornélio, "GA-
based method for feature selection and parameters optimization for 
machine learning regression applied to software effort estimation," 
Inform. Softw Tech., vol. 52, pp. 1155-1166, 2010. 

[36] R. Jansen, H. Yu, D. Greenbaum, Y. Kluger, N.J. Krogan, S. 
Chung, A. Emili, M. Snyder, J.F. Greenblatt, and M. Gerstein, "A 
Bayesian networks approach for predicting protein-protein 
interactions from genomic data," Science, vol. 302, no. 5644, pp. 
449-453, 2003. 

[37] C. Xing, and D.B. Dunson, "Bayesian inference for genomic data 
integration reduces misclassification rate in predicting protein-
protein interactions," PLoS  Comput. Biol., vol. 7, p. e1002110, 
2011. 

[38] J. Shen, J. Zhang, X. Luo, W. Zhu, K. Yu, K. Chen, Y. Li, and H. 
Jiang, "Predicting protein–protein interactions based only on 
sequences information," Proc. Natl. Acad. Sci. USA, vol. 104, no. 
11, pp. 4337-4341, 2007. 

[39] Y. Guo, L. Yu, Z. Wen, and M. Li, "Using support vector machine 
combined with auto covariance to predict protein–protein 
interactions from protein sequences," Nucleic Acids Res., vol. 36, 
pp. 3025-3030, 2008. 

[40] L.V. Zhang, S.L. Wong, O.D. King, and F.P. Roth, "Predicting co-
complexed protein pairs using genomic and proteomic data 
integration," BMC Bioinformatics, vol. 5, p. 38, 2004. 

[41] J. Wang, C. Li, E. Wang, and X. Wang, "Uncovering the rules for 
protein–protein interactions from yeast genomic data," Proc. Natl. 
Acad. Sci. USA, vol. 106, no. 10, pp. 3752-3757, 2009. 

[42] N. Lin, B. Wu, R. Jansen, M. Gerstein, and H. Zhao, "Information 
assessment on predicting protein-protein interactions," BMC 
Bioinformatics, vol. 5, p. 154, 2004. 

[43] T. Huang, L. Chen, and Y.D. Cai, "Classification and analysis 
of regulatory pathways using graph property, biochemical and 
physicochemical property, and functional property," PLoS ONE, 
vol. 6, p. e25297, 2011. 



12   The Open Bioinformatics Journal, 2015, Volume 9 Mahmoudian et al. 

[44] J.-F. Xia, K. Han, and D.-S. Huang, "Sequence-based prediction of 
protein-protein interactions by means of rotation forest and 
autocorrelation descriptor,"  Protein Pept. Lett., vol. 17, pp. 137-
145, 2010. 

[45] L. Nanni, and A. Lumini, "An ensemble of K-local hyperplanes for 
predicting protein–protein interactions," Bioinformatics, vol. 22, 
pp. 1207-1210, 2006. 

[46] K. Smets, B. Verdonk, and E.M. Jordaan, "Evaluation of 
performance measures for SVR hyperparameter selection," in 
Neural Networks, 2007. IJCNN 2007. International Joint 
Conference , 2007, pp. 637-642. 

[47] M.-G. Shi, D.-S. Huang, and X.-L. Li, "A protein interaction 
network analysis for yeast integral membrane protein," 
Protein Pept. Lett., vol. 15, pp. 692-699, 2008. 

[48] S. Asur, D. Ucar, and S. Parthasarathy, "An ensemble framework 
for clustering protein–protein interaction networks," 
Bioinformatics, vol. 23, pp. i29-i40, 2007. 

[49] C.-W. Hsu, C.-C. Chang, and C.-J. Lin, "A practical guide to 
support vector classification," 2003. 

[50] M.H. Zangooei, and S. Jalili, "PSSP with dynamic weighted kernel 
fusion based on SVM-PHGS," Knowl. Based Syst., vol. 27, pp. 
424-442, 2012. 

[51] J. Wang, X. Wu, and C. Zhang, "Support vector machines based on 
K-means clustering for real-time business intelligence systems," 
Int. J. Business Intell. Data Mining, vol. 1, pp. 54-64, 2005. 

[52] Y.-T. Tang and H.-Y. Kao, "Augmented transitive relationships 
with high impact protein distillation in protein interaction 
prediction," Biochim Biophys. Acta (BBA)-Proteins and 
Proteomics, vol. 1824, pp. 1468-1475, 2012. 

 

Received: February 13, 2014 Revised: February 28, 2014 Accepted: October 28, 2014 

© Mahmoudian et al.; Licensee Bentham Open. 

This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License 

(http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the 

work is properly cited. 


