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Abstract: MicroRNAs (miRNAs) are single-stranded non-coding RNA susually of 22 nucleotidesin length that play an 
important post-transcriptional regulation role in many organisms. MicroRNAs bind a seed sequence to the 3´-untranslated 
region (UTR) region of the target messenger RNA (mRNA), inducing degradation or inhibition of translation and 
resulting in a reduction in the protein level. This regulatory mechanism is central to many biological processes and 
perturbation could lead to diseases such as cancer. Given the biological importance, of miRNAs, there is a great need to 
identify and study their targets and functions. However, miRNAs are very difficult to clone in the lab and this has 
hindered the identification of novel miRNAs. Next-generation sequencing coupled with new computational tools has 
recently evolved to help researchers efficiently identify large numbers of novel miRNAs. In this review, we describe 
recent miRNA prediction tools and discuss their priorities, advantages and disadvantages.  
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INTRODUCTION 

 MicroRNAs (miRNAs) are single-stranded non-coding 
RNAsthat are approximately 22 nucleotides in length. 
miRNAs are important post-transcriptional regulators that 
have been shown to play fundamentally important regulatory 
roles in animal and plant development and to be involved in 
diverse cellular and physiological events such as apoptosis, 
proliferation, tumorigenes is and genetic disorders. miRNAs in 
mammals bind a complementary base pair to the 3´-
untranslated region (3´ UTR) of the target mRNA, causing the 
inhibition of translation and/or degradation of that mRNA [1].  
 miRNA coding sequences can be found in introns or 
exons of protein-coding sequences or in intergenic regions 
[2]. miRNA genes are transcribed by RNA polymerase II to 
produce primary-miRNAs (pri-mRNA) [3]. pri-miRNAs are 
several kilo bases long and contain a local hairpin structure, 
which iscleaved by the nuclear RNase III Drosha that 
worksin complexes with dsRNA-binding proteins to form 
the Drosha-DGCR8 complex in the nucleus to release the 
stem-looped hairpin precursor miRNA (pre-miRNA). The 
resulting pre-miRNA is exported to the cytoplasm through 
nuclear pore complexes mediated by the nuclear transport 
receptor, Exporting-5, and is then further processed by 
another RNase III enzyme called Dicer to finally generate 
the 22-nucleotide mature miRNA-miRNA duplex [4]. Not all 
miRNAs need to be cleaved by Drosha, where a distinct 
class of miRNAs termed mirtrons are directly transcribed 
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into pre-miRNAs from introns of similar sizes and exported 
to the cytoplasm for Dicer processing [5]. At this stage, only 
one strand of the mature miRNA is retained and incorporated 
into the miRNA-induced silencing complex (miRISC) while 
the other is degraded. In addition to the single-stranded 
mature miRNA, the miRISC complex includes members of 
the Ago protein family. The Ago proteins contain two 
conserved RNA binding domains that bind the mature miRNA 
and orient it for the interaction with target mRNA and play a 
critical role in miRNA-induced silencing [6] (Fig. 1). 

 A recent study estimates the number of miRNAs in the 
human genome to be about 55,000 [7], which is much 
greater than the experimentally verified miRNAs published 
in the literature, and it is estimated that over 30% of protein 
coding genes in Homo sapiens are regulated by miRNA 
[8].Currently 1,527 Homo sapiens miRNAs are listed inmiR 
Base version 18.0 [9]. This comparatively small number of 
experimentally verified miRNAs is not surprising because 
miRNAs are difficult to clone and detect in the lab given 
their short lengths, low expression levels and selective 
expression patterns (e.g., they exhibit highly constrained 
tissue- and time-specific patterns) [10]. Discovery of new 
miRNAs and a better understanding of their biological 
functions in general and in oncology and disease-
development in particular will further enable scientists to use 
miRNAs as drug targets. Santaris Pharma is such a company 
that is focused on the study and development of RNA-
targeted therapies, has announced the development of the 
first micro RNA-targeted drug to enter clinical trials 
miravirsen, which is used to treat patients infected with 
Hepatitis C virus [11]. 

 In silico miRNA prediction tools are being developed to 
overcome the limitations of identifying novel miRNAs in the 
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lab. Most of these tools seek to identify sequences that 
qualify as pre-miRNAs by focusing on their high 
conservation and unique biological and structural features. In 
silico miRNA prediction has gained traction as the first step 
towards identifying novel miRNAs and has helped scientists 
identify defined sets of candidates to test experimentally. 
Current miRNA prediction tools are able to predict novel 
miRNAs with reasonable success, yet there is a much room 
for improvement and it is expected that in silico miRNA 
predictiontools will continually improve. With the ever 

increasing number of in silico miRNA prediction and study 
tools, there is a strong need to classify and organize these 
tools into functional categories and compare their 
performances in an attempt to help researchers in selecting 
the tool most suitable for their study. Here, we review 
existing miRNA prediction tools and classify them into 
comparative and non-comparative tools based on their 
prediction methods (other sorts of classifications can be seen 
in [12, 13]) and cover the emerging field of identifying 
miRNAs via deep sequencing. 

 
Fig. (1). Biogenesis of miRNA from transcription to maturity (Kim 2005). 
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FEATURES OF A MIRNA 

 miRNAs possess unique characteristics in terms of 
sequence and structure that are functionally important in 
performing their tasks as post-transcriptional regulators. 
Accurate in silico miRNA prediction requires computational 
tools to identify these specific characteristics to distinguish 
real miRNAs from pseudo ones. The most important of these 
characteristics is that of the pre-miRNA, which should 
possess a statistically significant and evolutionarily 
conserved (a) symmetric RNA hairpin (Fig. 2). In addition, 
the adjusted minimum free energy level of the pre-miRNA 
stem-loop structure should be low in order for it to be stable 
[14]. This hairpin structure is important during mature 
miRNA biogenesis where it acts as a structural motif for 
Exportin-5 in nuclear-cytoplasm transportation and later as a 
substrate for Dicer (Fig. 1) [15]. The hairpin feature should 
be distinct from those of random inverted repeats that can 
fold into a dysfunctional hairpin (pseudo miRNAs) and from 
other non-coding (nc) RNAs that are capable of forming 
hairpin-like structures [16]. Another characteristic of most 
miRNAs is their profound conservation across closely 
related species [1]. In general, miRNA prediction tools rely 
on these characteristics and other sequence, structure, 
conservation and thermodynamical features, which they are 
able to extract from a set of already experimentally verified 
miRNAs to conduct their predictions and enhance their 
accuracy (Table 1). The discovery of new experimentally 
verified miRNAs will help miRNA prediction tools extract 
new miRNA-specific features and characteristics that can be 
used to improve the prediction accuracy of these tools. 

COMPUTATIONAL TOOLS FOR GENOMIC 
PREDICTION AND DISCOVERY OF MIRNAS 

Comparative Tools 

 Comparative tools rely on miRNA conservation 
acrossspecies to identify novel ones. The rationale behind 
comparative methods is to identify genome sequences that 
can fold into hairpin-like structures and become conserved 
among species as pre-miRNA candidates. Earlier attempts by 
Batuwita and Palade relied on identifying close homologs of 

published pre-miRNA, e.g., let-7 [17]. This can be as 
straightforward as using BLAST search to identify the 
homology between sequences and then testing the candidates 
for their ability to fold into hairpin-like structures [16]. Tools 
in this category utilize machine-learning algorithms such as 
Support Vector Machines (SVM) to evaluate pre-miRNA 
characteristics in addition to relying on conservation and 
homology. The main advantage of such tools is their ability 
to discover well-conserved, genome-wide pre-miRNAs, 
although they clearly lack the ability to discover novel 
miRNAs that lack clear homologues. It is worth noting that 
the human genome contains a large number of sequences 
that can fold into hairpin-like structures, most of which are 
pseudo hairpins that have a variety of functions and are 
conserved among different species [18]. In addition to these 
conserved pseudo hairpins, other types of ncRNAs can have 
motifs capable of folding into hairpin-like structures [19]. 
Thus, for comparative prediction tools to work effectively, 
they should be able to distinguish between a real pre-
miRNA, a conserved pseudo hairpin and other types of 
ncRNAs that can fold into hairpin-like structures [20]. 
Among the available comparative tools, only RNA micro 
[21] and DIANA-microH [22] partially considered this issue. 
RNAmicro considers the classification of real pre-miRNAs 
from other types of ncRNAs that fold into hairpin-like 
structures, and DIANA-microH differentiates pre-miRNAs 
from pseudo hairpins. 
Non-Comparative Tools 
 Non-comparative tools use computational recognition 
techniques (e.g., machine learning) to distinguish between 
real pre-miRNAs and pseudo hairpins. They do notrely on 
phylogenetic conservation signals and are thus able to 
predict novel non-conserved/species-specific miRNAs [20]. 
Non-comparative tools are becoming the trend amongmi 
RNA prediction methods and the majority of the recently 
developed tools fall into this category. Most of the non-
comparative tools start by defining unique features (e.g., 
structure, sequence) of miRNAs to use as the basis for 
distinguishing between real pre-miRNAs and pseudo ones. 
Most of these tools rely on a set of positive and negative pre-
miRNAs from which to extract these features; these datasets 

 
Fig. (2). Human pre-miRNA has an mir-520b hairpin secondary structure predicted by the RNAfold program (Hofacker, Fontana . 1994). 

Table 1. Examples of Common miRNA Features Used for in silico miRNA Prediction 

Feature Type Characteristic Example 

Sequence G+C content; dinucleotide frequencies DIANA-microH; miPred 

Conservation Sequence alignment across species; arm conservation RNAmicro; DIANA-microH 

Thermodynamical Free energy of folding; minimum folding energy (MFE) RNAmicro; miPred 

Structure Number of nucleotides in symmetrical and asymmetrical loops; loop and stem sizes miR-abel; miRNA SVM 
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are termed training datasets. One of the most challenging 
tasks in constructing a non-comparative miRNA prediction 
model is in selecting high-quality training datasets. The 
positive dataset must be inclusive of all types of pre-
miRNAs in order to reduce false negatives as much as 
possible and the negative dataset must include pseudo 
miRNAs that are similar in characteristics to real miRNAs 
but different enough that the model will reduce false 
positives as much as possible. Over the past few years, 
different machine learning algorithms were used to predict 
novel miRNAs with high accuracy. SSC profiler, a Profile 
Hidden Markov Model(HMM)-based prediction model 
designed by Oulas et al., [23] used 249 human sequences of 
experimentally validated pre-miRNAs as a training set to 
extract sequence, structure and conservation feature 
characteristics of pre-miRNAs. These extracted features 
were then applied to genomic regions to identify novel 
miRNA precursors. Their negative dataset included 35,000 
sequences generated from 3´-UTR regions. The authors 
reasoned that since no experimentally verified miRNA 
hadnever been found in 3´-UTRs, they could generate a 
negative set of pseudo hairpins from these regions with high 
certainty of not including any real miRNA in the set while 
still sharing biological characteristics. To test their model, 
they screened 350MB of Cancer Associated Genomic 
Regions (CAGRs) for novel miRNAs. This screening 
resulted in identifying 20 pre-miRNA candidates that 
wereexpressed in the HeLa cell-line.  
 Support Vector Machine (SVM) is also being employed 
as a model for computational prediction tools. MiPred is 
anSVM-based prediction tool published by Ng and Mishra 
[16]. MiPred utilizes 23 global and intrinsic features of pre-
miRNA folding measures to distinguish true miRNA 
precursors from pseudo hairpins. The authors used 200 
experimentally verified human miRNA precursors and 400 
pseudo hairpins to train their model. However, they failed to 
include in their negative dataset other ncRNAs that can fold 
into a hairpin structure similar to that of pre-miRNAs. 
MicroPred another SVM-based miRNA prediction tool 
published by Batuwita and Palade [20], used the same 23 
features utilized by miPred but with improved training 
datasets. MicroPred training datasets included 691 
experimentally verified human miRNA precursors as the 
positive dataset and 8494 pseudo hairpins and 754 other 
ncRNA that can fold into hairpin-like structures as the 
negative dataset. The improved training dataset of microPred 
resulted in an improvement in performance, where 
microPred scored a higher average of sensitivity and 
specificity (93.58%) in comparison withthat of miPred 
(91.01%). miRD is another SVM-based prediction tool 
published by Yuanwei et al., [24]. miRD used two sets of 
features (one for multi-stem pre-miRNAs and one for single-

stem pre-miRNAs) to construct two independent SVM 
models. A boosting method was then applied to combine 
these models. miRD is used to give the probability of a 
candidate pre-miRNA to be a real one, or used to predict 
probable pre-miRNAs from a set of sequences resulting from 
deep sequencing data. Table 2 compares the performance of 
these non-comparative tools based on sensitivity, specificity 
and accuracy. 

 All previously mentioned miRNA prediction methods 
require a well-annotated genome of the organism 
understudy, a large sample of experimentally verified 
miRNAs as the positive dataset and a large number of 
pseudo miRNAs as the negative dataset. Although these 
requirements might not be considered a problem when 
predicting miRNAs for a well-studied organism like humans 
and Caenorhabditis elegans, they become serious problems 
when studying other less-studied organisms. The importance 
of miRNAs in post-transcriptional regulation, the lack of a 
sufficient number of known miRNAs and the significant 
number of poorly annotated genomes collectively call for 
novel methods that can overcome these hurdles [25]. 
MiRank [25], a novel method, is capable of overcoming 
these problems by implementing a random walk machine-
learning algorithm that does not require a large number of 
positive miRNAs, does not utilize data from annotated 
genomes and does not require any negative dataset. MiRank 
fragments the genome of study into smaller sequences, each 
capable of being an miRNA precursor and termed a putative 
miRNA. It then represents each putative miRNA and the 
miRNAs precursors of the positive set (query sample) as 
vertices on a weighted graph (G=V, E). Each vertex is 
represented by a set of 36 features that reflect unique 
characteristics of true miRNAs. An edge is introduced 
between each putative and real miRNA precursor if they are 
close to each other. The weight (W) of the edge will then 
quantify the relationship between these two vertices. Based 
on the similarity (closeness) of the putative miRNAs to the 
positive set, a relevancy value is given to each putative 
miRNA and the result is sorted in descending order with the 
most possible miRNA precursor candidates ranked at the 
top. To validate the performance of this tool, the authors 
applied their tool on the human genome, where it was 
separated into fragments of 90 nucleotides. Then, these 
fragments were tested for their ability to form hairpin 
secondary structures based on several fold ingthres holds. 
Finally, from the fragments that passed the folding test,1000 
fragments were randomly selected and a number of true 
human pre-miRNAs were added to the pool of sequences. To 
assess the performance of their tool, they used two 
performance measures defined as follows: 

Table 2. Performance Comparison Between Different Non-Comparative Tools 

Tool Name Classifier Sensitivity Specificity Accuracy 

SSCprofiler [23] Profile HMM 88.95% 84.16% 72.15% 

miPred [16] SVM 84.55% 97.97% 93.50% 

microPred [20] SVM 90.20% 97.28% NA 

miRD [24] SVM;Boosting NA NA 94.0% 
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Recall = TP/(TP + FN) (1) 

Precision = TP/(TP + FP) (2) 

where TP, FP, FN are numbers of true positive predictions, 
false positive predictions and false negative predictions, 
respectively. The authors calculated each of these measures 
for different numbers of query samples (positive dataset) 
including 1, 5, 10, 15, 20 and 50.The best results were 
obtained when they used 50 query samples, where miRank 
was able to distinguish 0.682 of the true pre-miRNAs from 
the pool of putative pre-miRNAs with a precision of 0.939. 
Predicting miRNA precursors is the first step in studying 
miRNAs. It is important after predicting a miRNA precursor 
to validate it experimentally and identify its gene targets and 
functions. It is also important to understand the impact of 
this miRNA on certain diseases and biological pathways.  
 Computational tools are also being developed to help 
scientists analyze novel miRNA precurs or sand discover 
their biological/medical implications [26]. Table 3 provides a 
general comparison between comparative and non-
comparative tools. 

MIRNA DEEP SEQUENCING IDENTIFICATION 
TOOLS 

 Deep sequencing has allowed for the identification of 
novel miRNAs with great sensitivity and led to sharp 
increase in their discovery rate. A key difficulty in deep 
sequencing lies in separating miRNAs from other RNA 
species during sample preparation. After sample preparation 
ligands are attached to both ends and cDNAs are produced 
by reverse transcription. Depending on the sequencing 
technology, millions of reads can be generated resulting in a 
need for extensive bioinformatics analysis. A typical 
bioinformatics analysis of deep-sequencing miRNAs 
generated from Next Generation Sequencing (NGS) 
platforms involves filtering out other small RNAs, mapping 
to a reference genome and/or mapping to miRNA databases 
for the identification of known miRNAs and prediction of 
novel miRNAs. 
 In an attempt to study the importance and function of 
miRNAs in peanut Wang et al., performed deep sequencing 
of all miRNAs in peanut using high-throughput Solexa 
sequencing technology [27]. Their study led to the discovery 
of 14 novel and 22 conserved miRNA families from peanut, 
which was verified using qRT-PCR analysis. Their 
bioinformatics analysis involved filtering out all rRNA, 
tRNA, snRNA, and snoRNA, as well as reads containing the 
polyA tail and then comparing the remaining reads against 
rice and Arabidopsis ncRNAs deposited in the NCBI 
Genbank database and Rfam8.0 database. Then, the unique 
small RNA sequences were used to do a Blastn search 
against the miRNA database, miRBase 13.0, in order to 

identify conserved miRNAs in peanuts. The remaining of the 
small RNA sequences were used to perform Blastn searches 
against peanut ESTs in order to obtain precursor sequences 
for novel potential miRNAs. Only precursor matches that 
were capable of forming a perfect stem-loop structure in 
addition to adhering to other criteria were considered as 
novel peanut miRNAs. In their attempt to discover novel 
miRNAs expressed in peanuts they mostly relied on known 
peanut ESTs without using any machine-learning tool to 
predict miRNAs de novo.  

 Several tools were developed to aid in predicting and 
validating miRNAs produced from deep sequencing and data 
generated from NGS. miRDeep [28] one of the first tools 
developed for deep-sequencing dataemploys a probabilistic 
model of miRNA biogenesis to score compatibility of the 
position and frequency of sequenced RNA with the 
secondary structure of the miRNA precursor. miRDeep 
assigns a likelihood score that a predicted miRNA is a true 
mature miRNA and the authors used C. elegans data and 
data they generated by deep sequencing human and dog 
RNAs to validate the accuracy of the results. Using this tool 
they were able to predict ~230 novel miRNAs of which 4 C. 
elegansmi RNAs were validated by northern blot. A newer 
version of miR Deep termed miRDeep2 [29] was recently 
developed, which offers significant improvements in 
resources consumption and accuracy. miR analyzer [30] is a 
web-based tool that takes a file containing sequence reads 
and its respective copy numbers to perform the following; i). 
Identifies all known miRNAs annotated in the miRBase, ii). 
Finds all perfect matches against other libraries of 
transcribed sequences and iii). Predicts new miRNA with 
high accuracy using a machine learning approach based on 
random forests after filtering out sequences from the first 
two steps to reduce the numbers of false positives. DSAP 
[31] is a popular tool for analyzing deep-sequencing miRNA 
data generated by Solexa. DSAP doesn’t require a target 
genome and instead clusters the reads into groups that are 
mapped against existing RNA/miRNA databases. DSAP is 
used for the identification of known miRNAs and RNAs 
from deep-sequencing and doesn’t perform any sort of 
miRNA prediction thus it is not suitable for the discovery of 
novel miRNAs. Tool selection for deep sequencing miRNA 
data analysis can lead to significantly different results, a 
careful examination of available tools and their purposes is 
required before carrying on any bioinformatics analysis. 
Vladimirov et al., [32] and Shen et al., [33] each carried a 
performance evaluation of popular tools for deep sequencing 
miRNA data analysis using available and their own 
generated datasets. Computational time, accuracy, sensitivity 
and species-specific performance are amongst the most 
important criteria for tool selection. 

Table 3. A general Comparison Between Comparative and Non-Comparative Tools 

Tool Type Homology Training/Test Datasets Recommended Use 

Comparative  Uses homology and sequence alignment at 
some point during prediction process 

Independent-weakly dependent To discover highly conserved miRNAs 
in selected species 

Non-Comparative  Doesn’t consider homology and 
conservation during prediction 

Strongly dependent To discover species-specific miRNAs 
and novel miRNAs 
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 Deep sequencing of miRNA not only can be used to 
discover novel miRNAs but can also be applied to quantify 
the expression-level of detected miRNAs. A recent study by 
Croce et al., identified a nine-micro RNA signature that 
differentiated invasive from in situ carcinoma in breast 
cancer [34]. Martelli et al., utilized deep sequencing of 
miRNAs on SOLiD platform to comprehensively and 
accurately profile the entire miRNA population expressed by 
endothelial cells exposed to hypoxia [35]. Their 
bioinformatics pipeline identified more than 400 annotated 
miRNAs/miRNAs* with miR-21 and miR-126 totaling 
almost 40% of all miRNA abundance. Their bioinformatics 
analysis and validation using qPCR resulted in the discovery 
of 18 high-confidence novel miRNAs, two of which were 
significantly down-modulated by hypoxia. In another study 
that utilized deep sequencing on SOLiD, Guo et al., 
characterized the cellular microRNA profile involved in the 
development of congenital heart malformation, through the 
investigation of single ventricle (SV) defects [36]. They 
discovered 38 down-regulated and 10 up-regulated miRNAs 
in differentiated SV cardiac tissue, compared to control 
cardiac tissue. 
 To keep up with the vast amount of deep-sequencing 
miRNA data Griffiths-Jones et al., mapped reads from short 
RNA deep-sequencing experiments to microRNAs in 
miRBase (the primary online repository for all microRNA 
sequences and annotation) and developed web interfaces to 
view these mappings [37].The user can view all read data 
associated with a given microRNA annotation, filter reads by 
experiment and count, and search for microRNAs by tissue- 
and stage-specific expression. These data can be used as a 
proxy for relative expression levels of microRNA sequences, 
provide detailed evidence for microRNA annotations and 
alternative isoforms of mature microRNAs, and allow us to 
revisit previous annotations. 

COMPUTATIONAL RESOURCES BEYOND MIRNA 
PREDICTION 

 Computational resources for miRNA study go beyond 
just miRNA prediction and discovery. Many tools are being 
developed to help researchers better store/retrieve, validate, 
predict target sites and functionally study the newly 
discovered miRNAs. 

MIRNA DATABASES 

 MiR Base 18.0 [9] and miRGen 3.0 [38] are two 
commonly used databases for miRNAs. The former is a 
repository where newly discovered micro RNAs are 
deposited with their genomic locations, sequences and 
references. The latter is a database that provides information 
on the genomic position of miRNAs (e.g., chromosome 
number and genes containing the miRNA sequence) and 
nearby features suchas transcription starting sites and 
transcription factor binding sites. MiRNA databases are 
witnesses to thegreat increase in the number of discovered 
miRNAs as a result of the use of computational tools in the 
field of miRNA study, where the number of submitted 
miRNAs to the miR Base has doubled manytimes since its 
first release (Fig. 3). 
 Another type of miRNA database isthe miRNA-target 
interaction database. Such databases contain information 
about experimentally validated miRNA-target interactions. 
MiRecords [39] is a good example of such a database, where 
it lists for each stored miRNA all its validated targets and 
manually curated results under the Validated-Targets 
component. It also lists predicted targets based on 11 
established miRNA target prediction tools under the 
Predicted-Targets component. The validated targets 
component of the database contains 2286 interactions 
between 548 miRNAs and 1579 target genes in nine species 

 
Fig. (3). The number of published miRNAs available at MiRBase is increasing very rapidly ever since the online repository started in 2002. (9) 
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(update 25 November 2010). miR2 Disease [40] is a 
manually curated database that aims to provide information 
regarding miRNA-related pathologies. TarBase 6.0 [41] is 
the most recent version of DIANA’s Lab TarBase first 
released in 2005. The sixth version of TarBase aims at 
providing a significant increase of available miRNA targets 
derived from all contemporary experimental techniques (gene 
specific and high-throughput), while incorporating a powerful 
set of tools in a user-friendly interface. The authors developed 
a text mining-assisted literature curation tool in order to 
reduce the necessary time for manuscript curation and 
introduced a new relational database schema to accommodate 
present and future updates to the database. The new database 
includes 65,814 experimentally validated miRNA–gene 
interactions which is a 50-fold increase of entries from the 
latest TarBase version and a 16.5- to 175-fold increase from 
all the other available manually curated databases. 

miRNA TARGET PREDICTION AND FUNCTION 
ANALYSIS 

 miRNA target prediction is a very important step towards 
understanding the regulatory function of thousands of recently 
discovered miRNAs. Experimental methods for miRNA target 
identification are often not feasible and difficult; thus 
computational methods for miRNA target prediction are 
expected to remain important for miRNA target studies and as 
a means for directing related wet-lab experiments.  
 There are several target prediction tools available online, 
where the user inputs the sequence ofthe miRNA understudy 
and the tool outputs a list of predicted targeted genes based 
on its computational algorithm. DIANAmicroT3.0 [42], 
miRanda-mirSVR [43], PITA [44] and others are among the 
most popular miRNA target prediction tools available online. 
 Finally, many researchers are interested in finding out 
whether miRNAs they have identified are associated with 
any disease or biological process. Online tools like DIANA-
mirPath [45] are being used to address in silico miRNA 
function analysis. DIANA-mirPath takes all combinations of 
all of the predicted targets of the miRNA understudy and 
searches for enrichment against all known KEGG pathways. 
The authors argue that by knowing the biological pathways 
of the miRNA targets, the user can infer the functional 
importance of the miRNA. 

CONCLUSION 

 MiRNAs are important post-transcriptional regulators that 
are involved in many cellular processes, such as 
differentiation, proliferation and apoptosis and are linked to 
many diseases such as on cogenesis. Given their biological 
importance, miRNAs are emerging therapeutic targets in a 
broad range of diseases and are expected to develop into a 
novel armada of more powerful and mechanism-oriented the 
rapeutics. Discovering novel miRNAs is needed to further our 
understanding of their biological functions and relation to 
disease, and given the limited abilities to discover them using 
classical wet-lab experimental methods there is a need for in 
silico miRNA prediction methods. In silico miRNA prediction 
benefited from the few number of already experimentally 
discovered miRNAs at the time, and relied on their profound 
conservation across species to discover novel ones, this gave 
rise to the Comparative miRNA prediction tools which rely on 

miRNA conservation for novel miRNA discovery. 
Comparative tools are unable to predict species-specific 
miRNAs (non-conserved miRNAs) and this led to the 
introduction of Non-Comparative miRNA prediction tools, 
which utilize machine-learning algorithms and miRNA 
specific features derived from experimentally verified 
miRNAs for novel miRNA prediction. With the advancement 
in sequencing technologies and wide availability of NGS, 
discovery of novel miRNAs via deep sequencing became the 
method of choice. Deep sequencing of miRNAs provides 
means of studying the complete profile of miRNAs at a certain 
condition or cell type and has resulted in steep increase in the 
discovery rate of novel miRNAs. In Silico miRNA prediction 
must be followed by wet-lab experimental validation of the 
top miRNA candidates to confirm their expression. MiRNA 
discovery is only the first step of miRNA study that must be 
followed by target and function analysis for a complete 
understanding of its biological importance. miRNAs will 
continue to garner significant attention from the scientific 
community and computational tools will be expected to 
continue to deliver better results. 

LIST OF ABBREVIATIONS 

miRNA = MicroRNA 
ncRNA = non-coding RNA 
pri-miRNA = preliminary MicroRNA 
pre-miRNA = precursor MicroRNA 
miRISC = miRNA-induced silencing complex 
SVM = Support Vector Machine 
UTR = untranslated region 
HMM = Hidden Markov Model 
CAGR = Cancer Associated Genomic Regions 
NGS = Next Generation Sequencing 
RNA = Ribonucleic acid 
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