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Abstract:  The  genome  revolution  has  brought  about  a  complete  change  on  our  view  of  biological  systems.  The  quantitative
determination of changes in all the major molecular components of the living cells, the "omics" approach, opened whole new fields
for all health sciences, including toxicology. Endocrine disruption, i.e., the capacity of anthropogenic pollutants to alter the hormonal
balance of the organisms, is one of the fields of Ecotoxicology in which omics has a relevant role. In the first place, the discovery of
scores of potential targets in the genome of almost any Metazoan species studied so far, each of them being a putative candidate for
interaction with endocrine disruptors. In addition, the understanding that ligands, receptors, and their physiological functions suffered
fundamental  variations during animal evolution makes it  necessary to assess disruption effects separately for each major taxon.
Fortunately, the same deal of knowledge on genes and genomes powered the development of new high-throughput techniques and
holistic approaches.  Genomics,  transcriptomics,  proteomics,  metabolomics,  and others,  together with appropriate prediction and
modeling tools, will mark the future of endocrine disruption assessment both for wildlife and humans.
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INTRODUCTION - THE "OMICS" PERSPECTIVE

The completion of the Human Genome Project in 2001 represented a complete turning point in Biology. Together
with  the  complete  genomes  of  the  yeast  Saccharomyces  cerevisiae  (1996),  the  nematode  Caenorhabditis  elegans
(1998), the fruitfly Drosophila melanogaster  (2000), the cress Arabidopsis thaliana, and the fish Takifugu rubripes
(2002), it allowed for the first time the analysis of the genetic makeup of Eukaryotes in its complete extension and to
establish new functional, evolutive and physiological correlations between taxa, individuals, organs and cell types. The
development of new highly efficient analytical techniques has allowed similar holistic approaches for essentially all
components of the live cell. For example, following the biological flow of information, high throughput techniques of
specific RNA quantitation (microarrays) allowed the description of the mRNA complement of a given cell or tissue, i.e.,
the description of its transcriptome. A similar approach, but using completely different methods (2D electrophoresis,
advanced mass spectrometry techniques), has been applied to elucidate the protein composition (the "proteome") with
unprecedented precision, whereas several analytical methodologies (gas and liquid chromatography coupled to mass
spectrometry, capillary electrophoresis, and high resolution nuclear magnetic resonance (NMR) allow the description of
the chemical composition of the cell, that is, the nature and composition of its metabolites (the "metabolome"). Fig. (1)
summarizes the nature and challenges of each one of these "omic" analyses.

The application of “omics” tools/technologies is now widely employed in many research areas, from medicine to
environmental sciences, as they give information on some key regulators of various processes in living organisms. They
also  represent  a  tremendous  opportunity  to  improve  human  and  wildlife  health  by  the  characterization  of  the
environmental  elements   that  impact  public  and   wildlife   health  [1]. The   recognition   of   these   challenges   and
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opportunities, along with the fact that many of the most prevalent diseases are associated with the endocrine system, has
led to a focus on chemical exposures and especially endocrine disruptors. The term ecotoxicogenomics refers to the
integration  of  genomic-based  science  into  ecotoxicology  using  DNA  array-based  technologies,  proteome  and
metabolomic analyses [2]. The approach has been fundamental in several aspects of our current comprehension of the
effects of endocrine disruption: The elucidation of potential effects on different animal taxa, thanks to comparative
genomics, the comprehension of the multiple targets for exogenous ligands in the cell, and the development of new and
more precise methodologies to monitor endocrine disruption both in humans and in wildlife.

Fig.  (1).  Overview  on  the  generic  processes  that  characterize  the  differences  “omics”  technologies.  On  the  left,  schematic
representation of the Biological information flow from the genome to cellular phenotypes. From top to bottom, the information of
DNA (genome) is first transcribed to mRNA (transcriptome), which is afterwards translated into proteins (proteome). A subset of
proteins, the enzymes catalyse reactions that both consume and produce the different metabolites (metabolome). The main table
summarizes different characteristics of each omic technique.

HORMONES AND PHYSIOLOGICAL PROCESSES

Hormone are endogenous molecules secreted by endocrine glands that travel through the blood stream and induce
physiological effects on distant cells and tissues [3]. The mechanism by which hormones exert their actions on target
cells remained obscure for decades, although the concept of the existence of an endogenous receptor responsible for the
recognition of the hormone (the "ligand") and the triggering of the physiological changes derived from its presence
dates from the early 70's [4]. The isolation and cloning of the first hormone receptors in the 80's opened the Molecular
Endocrinology  era  [5,  6].  However,  the  recognition  of  the  amazing  complexity  and  implication  of  the  hormonal
signaling  did  not  appear  until  the  advancement  of  whole  genome  sequencing  techniques  and  its  extension  to
evolutionary distant species [6, 7]. Analysis of complete genomes of different species revealed the presence of dozens,
if not hundreds, of evolutionary related proteins for which no ligand or function was known. These so-called "orphan"
receptors  are  widespread  across  Metazoa  and  their  functional  characterization  implicated  a  major  progress  on  the
understanding of cell regulation, development and even evolutionary links between animal taxa [6 - 8]. An overview of
the different  receptor  families,  their  physiological  ligands and their  distribution among the major  Metazoan taxa is
shown in Table 1.
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ENDOCRINE DISRUPTION

Environmental  pollutants  in  the  various  ecosystems  are  a  major  concern  worldwide.  Our  understanding  of  the
potential adverse effects of anthropogenic contaminants has driven to an increasing public awareness on their influence
on health and well-being of both humans and wildlife [3, 9]. The primary observed effects of those pollutants are related
to  several  developmental  and  reproductive  disorders  in  wildlife  species,  which  have  been  clearly  linked  to
environmental  compounds  that  act  as  endocrine  disrupting  chemicals  (EDCs)  [3].

By definition “An endocrine disruptor is an exogenous substance or mixture that alters function(s) of the endocrine
system and consequently causes adverse health effects in an intact organism, or its progeny, or (sub) populations" [10].
Reports  of  adverse  effects  by  EDCs  in  the  last  decades  include  reproductive  impairment  (decrease  fertility,
hermafroditism and sex reversal, altered sex ratios, hatching success), metabolic defects (Thyroid dysfunction, body
weight and fat tissue control alteration), and alteration of immunological and behavioural functions have been observed
in wild populations of mammals, birds, reptiles, amphibians, fish and mollusks; epidemiological evidences indicate that
at least part of these or similar effects may be already occurring in human populations [3, 10 - 14].

Table 1. Nuclear receptors and their known ligands. Linkage between the nuclear receptors and their existence in animal
taxa.

Common Name Abbreviation Unified Name Ligands (Mammalian) Taxonomic
Distribution

Dosage-sensitive sex reversal-adrenal hypoplasia
congenital critical region on the X chromosome, gene 1

DAX-1 NR0B1 V, Ar

Short heterodimeric partner SHP NR0B2 V, Ar
Thyroid hormone receptor α TRα NR1A1 thyroid hormones V, UC, Mol, Ann
Thyroid hormone receptor β TRβ NR1A2 thyroid hormones V, UC, Mol, Ann

Retinoic acid receptor α RARα NR1B1 retinoic acids V, UC
Retinoic acid receptor β RARβ NR1B2 retinoic acids V, UC
Retinoic acid receptor γ RARγ NR1B3 retinoic acids V, UC

Peroxisome proliferator-activated receptor α PPARα NR1C1 fatty acids V, UC
Peroxisome proliferator-activated receptor β /d PPARβ/δ NR1C2 fatty acids V, UC

Peroxisome proliferator-activated receptor γ PPARg NR1C3 fatty acids V, UC
Reverse-Erb α REV-ERBα NR1D1 [heme] V, UC, Ar
Reverse-Erb β REV-ERBβ NR1D2 [heme] V, UC, Ar

RAR-related orphan receptor α RORα NR1F1 [sterols] V, UC, Ar
RAR-related orphan receptor β RORβ NR1F2 [sterols] V, UC, Ar
RAR-related orphan receptor γ RORγ NR1F3 [sterols] V, UC, Ar

Liver X receptor β LXRβ NR1H2 oxysterols V, UC, Ar
Liver X receptor α LXRα NR1H3 oxysterols V, UC, Ar

Farnesoid X receptor α FXRα NR1H4 bile acids V, UC, Ar
Farnesoid X receptor βα FXRβ NR1H5 V, UC, Ar

Ecdisone receptor EcR NR1H Ecdysone Ar, Nem*
Vitamin D receptor VDR NR1I1 1a,25-dihydroxyvitamin D3 and

lithocholic acid
V, UC, Ar, Nem

Pregnane X receptor PXR NR1I2 endobiotics and xenobiotics V, UC, Ar, Nem
Constitutive androstane receptor CAR NR1I3 xenobiotics V, UC, Ar, Nem

Hepatocyte nuclear factor 4 α HNF4a NR2A1 [fatty acids] V, UC, Ar, Nem
Hepatocyte nuclear factor 4 γ HNF4g NR2A2 [fatty acids] V, UC, Ar, Nem

Retinoid X receptor α RXRα NR2B1 9-cis retinoic acid and
docosahexanoic acid

V, UC, Ar, Mol

Retinoid X receptor β RXRβ NR2B2 9-cis retinoic acid and
docosahexanoic acid

V, UC, Ar, Mol

Retinoid X receptor γ RXRγ NR2B3 9-cis retinoic acid and
docosahexanoic acid

V, UC, Ar, Mol

Testicular orphan receptor 2 TR2 NR2C1 V, UC, Ar, Nem
Tailless homolog orphan receptor TLX NR2E1 V, UC, Ar, Nem

Photoreceptor-cell-specific nuclear receptor PNR NR2E3 V, UC, Ar, Nem
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Common Name Abbreviation Unified Name Ligands (Mammalian) Taxonomic
Distribution

Chicken ovalbumin upstream promoter-transcription
factor α

COUP-TFα NR2F1 V, UC, Ar, Nem

Chicken ovalbumin upstream promoter-transcription
factor b

COUP-TFβ NR2F2 V, UC, Ar, Nem

Chicken ovalbumin upstream promoter-transcription
factor γ

COUP-TFγ NR2F6 V, UC, Ar, Nem

Estrogen receptor α ERα NR3A1 estrogens V, UC*, Mol*, Ann
Estrogen receptor β ERβ NR3A2 estrogens V, UC*, Mol*, Ann

Estrogen related receptor α ERRα NR3B1 V, UC, Ar
Estrogen related receptor β ERRβ NR3B2 V, UC, Ar
Estrogen related receptor γ ERRg NR3B3 V, UC, Ar

Glucocorticoid receptor GR NR3C1 glucocorticoids V
Mineralocorticoid receptor MR NR3C2 mineralocorticoids and

glucocorticoids
V

Progesterone receptor PR NR3C3 progesterone V
Androgen receptor AR NR3C4 androgens V

Nerve-growth-factor-induced gene B NGF1-B NR4A1 V, UC, Ar
Nur-related factor 1 NURR1 NR4A2 V, UC, Ar

Testicular orphan receptor 4 TR4 NR4A2 V, UC, Ar
Neuron-derived orphan receptor 1 NOR-1 NR4A3 V, UC, Ar

Steroidogenic factor 1 SF-1 NR5A1 [phospholipids] V, UC, Ar
Liver receptor homolog-1 LRH-1 NR5A2 [phospholipids] V, UC, Ar
Germ cell nuclear factor GCNF NR6A1 V, UC, Ar, Nem

Ann- Annelida, Ar- Arthropoda, Mol- Mollusca, Nem- Nematode, UC- Urochordata/Cephalochordata, V- vertebrata
* No evidence for ligand binding. * Hypotetical
Ligands in brackets appear to be constitutively bound to their receptors
Data from reference [6], with modifications

There are varied sources of environmental contaminants that may disrupt the endocrine system (Fig. 2). The human
exposure typically occurs with the environmental contamination of the food chain, especially fresh water fish and meat,
contact with contaminated household dust, and occupational exposure [9]. Some chemicals were banned or removed
from production years ago but persist in the environment. On the other hand other EDCs are high production volume
chemicals found in a many household products. Bisphenol A (BPA), for example, is present in polycarbonate plastics,
including beverage and food storage containers; epoxy resins that line the interior of metal cans, and in the ink used for
thermal paper receipts. Many textiles contain contaminants, such as flame-retardants, including tetrabromobisphenol A
and polybrominated diphenyl ethers. Some individuals have also been exposed to contaminants with adverse effects as a
result  of  medical  (diethylstilbestrol;  DES),  dental  (diglycidyl  methacrylate;  GMA)  or  dietary  (phytoestrogens)
interventions. Urban wastewaters are important pollutant sources of natural and synthetic estrogens and other hormones
that are subsequently found in surface waters [15, 16]. Thus, exposure to EDCs is ubiquitous and inevitable and there is
growing concern that living in an EDC contaminated world may be contributing to adverse health trends, such as early
puberty and infertility, because of growing evidence that a number of EDCs can produce varied effects [3, 17], (Fig. 2).

EVOLUTIONARY PERSPECTIVE OF ENDOCRINE DISRUPTION: EDCS IN INVERTEBRATES

From its very first origins, the concept of endocrine disruption has been deeply associated to terrestrial vertebrate
wildlife (birds, reptiles) and humans. However, environmental and laboratory research indicate that fish species are
particularly sensitive to many forms of endocrine disruption, particularly to estrogens [18]. Finally, the discovery that
the presence of TBT in coastal waters is linked to imposex in marine gastropods brought the same concept to mollusks
and invertebrates in general [19, 20]. The more recent deleterious effects of neonicotinoid insecticides on bee colonies
around the world is probably a further example of the importance of recognizing and controlling environmental EDCs
than can effect non-vertebrate species [21]. Nevertheless, information on EDCs in invertebrate species is still limited
[22 - 30].

(Table 1) contd.....
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Fig. (2). Summary of the common sources and mechanisms of endocrine disruptors in humans and how they may influence some key
developmental processes, in particular through their actions during critical periods of development.

Difficulties in performing invertebrate studies are largely due to the limited knowledge on the endocrine physiology
of  many  invertebrate  groups  that  represent  important  components  of  ecosystems.  In  the  first  place,  the  concept
"invertebrate" is essentially instrumental, as it covers species from widely different Metazoans. Only among animals
with bilateral symmetry (Bilateria), three major taxonomic clades appear: Deuterostomata (which includes Vertebrates
and Echinoderms, among others), Ecdisozoa (Nematodes and Arthropods) and Spiralia/Lophotrochozoa (Mollusks and
Annelids), the two later forming the group of Protostomata [31, 32] (Fig. 3). These major groups of animals, as well as
the  ancestral  groups  of  Porifera  and  Ctenophora,  are  characterized  by  their  distinct  embryonic  developments.  Last
advances on biochemistry, genome sequences and regulatory studies showed that they exhibit fundamental differences
in their complements of nuclear receptors, in their ability to synthesize and metabolize molecules with ligand activity,
and, most probably, in the physiological roles of these molecules (Fig. 3, Table 1) [8, 31 - 34].

Despite the great invertebrate genetic and taxonomic diversity, ecotoxicological studies are limited to few worms,
mollusks and arthropod species that are easy to maintain and rear in the lab. Furthermore, in regard of their endocrine
system, invertebrates have been relatively far less studied than vertebrates, with most of the literature published on
invertebrate  endocrinology  referring  to  mollusks,  insects  and  crustaceans  [19,  34,  35].  When  dealing  with
transcriptomic or proteomic analyses the situation is even worse, because of the relatively low number of invertebrate
genomes at least partially sequenced and more or less correctly annotated [36, 37]. For these reasons there is a high
degree  of  uncertainty  to  relate  an  adverse  effect  on  invertebrate  growth  or  reproduction  to  specific  changes  of  its
endocrine  system.  For  example,  despite  the  abundance  of  literature  dealing  with  the  development,  growth  and
reproductive  effects  of  EDC  in  invertebrates,  only  few  studies  have  assessed  unambiguously  a  truly  endocrine
disrupting  effect  [38].  Several  studies  tested  the  wrong  premise  that  mammalian  or  vertebrate  EDC  should  act  as
endocrine  disruptors  in  invertebrates  through  identical  or  at  least  homologous  mechanisms  of  action.  This  was
especially  evident  for  estrogenic/androgenic  compounds  tested  against  different  arthropod  species,  which  lack
functional estrogenic/androgenic receptors (Table 1).  In many cases, the detrimental effects of EDC on growth and
reproduction reported, were related to egg mortality or feeding inhibition rather than to effects on endocrine disruption.
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Fig. (3). Presence of the different types of hormones among animals. Principal taxonomic groups are indicated. Signs ‘‘+’’ indicate
that a given class of hormones has been demonstrated to be involved in life history transitions (LHT) for a particular taxon, ‘‘?’’
indicates that such a role has not been demonstrated, and ‘‘+?’’ indicates preliminary evidence for such a roles (modified from [84]).
The current model for evolutionary relationships among animal taxa is shown on the left (from [32]).

Research conducted in the crustacean species Daphnia provides conclusive evidence that juvenile hormone agonists
enhanced male production disrupting the ultraspiracle receptor signaling pathway during the initial phases of embryo
development [39]. There is also evidence that juvenile hormone agonists modulate ecdysteroid activity causing embryo
arrest  or  abnormalities  throughout  the  ultraspiracle-  and ecdysone-receptor  complex [40].  Studies  on  the  effects  of
antidepressants  show  that  molluscan  and  crustacean  reproductive  and  locomotion  systems  are  affected  by
antidepressants  at  environmentally  relevant  concentrations  [35].

In  particular,  antidepressants  affect  spawning  and  larval  release  in  bivalves  and  disrupt  locomotion  and  reduce
fecundity in snails. In crustaceans, antidepressants affect freshwater amphipod activity patterns, marine amphipod photo
and  geotactic  behavior,  crayfish  aggression,  and  daphnid  reproduction  and  development  [34,  35,  41].  The  above
reported  effects  are  likely  to  be  related  through  out  disruption  of  neuroendocrine  signaling  pathways.  Like  in
vertebrates, the endocrine control of growth, reproduction and behavior in invertebrates are initiated by neurohormones
[34,  35,  41].  Serotonin  and  antidepressants  targeting  these  neurohormones  induce  spawning  in  bivalves,  alter
locomotion and foraging behavior in gastropods and alter mimetic and predatory behavior and memory in cephalopods
[42 - 49].
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Fig.  (4).  (De)regulation of  haemoglobin-related genes  by juvenile  hormone (JH) or  its  analogs  (Methoprene,  Methylfarnesoate,
Fenoxycarb, and Epofenonene) in Daphnia magna. (A), Putative pathways of JH disruption (modified from [51]). (B) Example of
the hemoglobin deregulated phenotype in D. magna by ectopic activation of the JH pathway.

Neurohormones  control  a  wide  variety  of  biological  systems  in  crustaceans,  including  reproduction,  growth,
maturation,  larval  development,  immune function,  metabolism, behavior  and colour physiology.  For example,  both
serotonin and dopamine have been found to stimulate the release of multiple other crustacean neuropeptide hormones
including  hyperglycaemic  hormone,  red  and  black  pigment  dispersing/concentrating  hormone,  neurodepressing
hormone, molt-inhibiting hormone and gonad-stimulating hormone [34, 41, 50, 51] (Fig. 4). Although neurohormonal
disruption  in  molluscan  and  crustacean  species  have  been  mostly  limited  to  antidepressants,  there  are  other
pharmaceutical drugs targeting neuronal receptors or other enzymes that may also alter neuroendocrinological pathways
that  regulate  key  physiological  function.  One  of  those  are  non-steroidal  anti-inflammatory  drugs  (NSAIDs)  that
interrupt crustacean eicosanoid metabolism, which appears to disrupt signal transduction affecting juvenile hormone
metabolism and oogenesis [52].

The implementation of omics approaches to invertebrates is limited to only few model species and studies that have
addressed omics and EDCs are scarce [36, 37, 53 - 56]. Probably the best characterized and solidly established mode of
action (MoA) of "canonical" (i.e., active in vertebrates) EDCs is the disruption of the enzymatic pathways for steroid
synthesis, which are very well conserved within Metazoans [19, 57, 58]. However, several studies [53, 54, 56, 59 - 63]
reported disruption on regulatory mechanisms in addition to the effects on the steroidogenic pathway. Transcriptomic
patterns of intersex specimens of clams Scrobicularia plana showed a deregulation of the androgen receptor signaling
pathway  [53],  an  effect  also  described  for  Mya arenaria  males  exposed  to  TBT [64].  Metabolomic  and  proteomic
analyses revealed different cases of neuroendocrine disruption in crustaceans and mollusks. For example, atrazine and
its metabolites affected eicosanoids in the isopode Hyalella azteca suggesting possible perturbations in neuropeptide
hormonal  systems [55].  Similarly,  ibuprofen inhibits  reproduction in the crustacean Daphnia magna  due to the de-
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regulation of the ecosanoid signaling pathway, and hence of prostaglandins, which in crustaceans control reproduction
[62, 65]. A typical vertebrate estrogenic EDC, ethinylestradiol, alters metabolite pathways related to energy reserves,
signal transduction, immune response, and neuromodulation in the unionid mussel Lampsilis fasciola. These effects
result in physiological changes, as altered siphon and mantle [54], both in male and females. Conversely, the poly-
bromo-diphenyl  ether  congener  (BDE  47)  affects  differentially  male  and  female  specimens  of  the  marine  mussel
Mytilus galloprovincialis: males show effects in energy metabolism, whereas, in females, BDE 47 disrupts both osmotic
regulation and energy metabolism [56].

Very  likely,  we  are  just  beginning  to  understand  the  phenomenon  of  EDC  in  invertebrates,  and  many  of  the
chemicals that are contaminating terrestrial, freshwater and marine ecosystem may have endocrine disrupting effects on
invertebrate species. Given the vast genetic diversity of Metazoans, the MoA already defined for vertebrates may or
may not apply to any particular taxon. Therefore, EDC toxic effects may have unanticipated, and many times unnoticed
until they reach global scale, deleterious effects in the ecosystems that depend upon invertebrate populations.

OMICS’ APPLICATION ON EDCS ASSESSMENT

Transcriptomics and EDCs

The availability of studies that report the transcriptomic changes of different EDCs on several organisms, including
human cells is reported in Table S1. One of the goals of the transcriptomic analysis is to discover mechanistically based
molecular  biomarkers  with  utility  for  risk  assessment  and  develop  modeling  approaches  for  predicting  adverse
outcomes. The understanding of population-level impacts of EDCs in biological systems is, however, dependent on an
enhanced knowledge of their MoA, and development of mechanism-based indicators suitable for application on field
work that enable linkage of exposure to adverse effects at both individual and population levels.

The  elucidation  of  the  signaling  pathways  and  transcription  factors  (TF)  networks  affected  by  EDCs  could  be
successfully addressed by examining the transcriptomic responses in model species such as the zebrafish (Danio rerio).
Among the several fish species with a sequenced genome, zebrafish is one of the best model systems for omics, which
is addressed by considerable high number of studies, reporting the effects of EDCs in different tissues and in differential
stages of development. In addition, it has relatively abundant genomic resources such as genetic maps, mutants, and
markers available [66].

The  biological  responses  to  external  stressors,  including  toxicants,  involve  changes  in  normal  patterns  of  gene
expression [67, 68]. Many responses are a direct result of the chemical, such as alterations in gene expression caused by
the  binding  of  a  steroid  hormone  (or  analogue)  to  a  specific  steroid  hormone  receptor,  which  acts  as  a  TF  and
subsequently modulates (activates or represses) the transcription of its target genes. Importantly, however, different
mechanisms of toxicity can generate specific patterns of gene expression that can potentially provide us with molecular
biomarkers of disruption of a biological process and be reflective of mechanism or mode of action [67].

The  search  for  networks,  enabling  new hypotheses  to  be  formulated  and  tested  for  the  mechanisms  underlying
specific toxic effects are one of the best challenges that transcriptomic is facing. From systems biology perspective,
signaling pathways and TF networks are at the center of a complex biological system. As such, signal transducers and
TFs  provide  critical  links  between  chemical  exposures  and  resultant  toxic  effects  manifested  at  various  levels  of
biological hierarchy, from molecular to organismic [69].

Mechanistically based molecular indicators would also allow for improved extrapolation of effects across species,
biological  levels  of  organization,  and  diverse  chemical  structures.  Finally,  given  the  pleiotropic  nature  of  signal
transducers and TFs, organismic endpoints explicitly mapped to specific toxicity mechanisms may be developed by
generating gene knockout mutants in targeted pathways. An ensuing greater efficiency and accuracy in the assessment
of both EDC exposure and hazard would improve the overall risk assessment process [69].

It  should  be  emphasized,  that  changes  in  gene  expression  are  generally  rapid  and  thus  potentially  provide  a
capability of a rapid diagnosis of chemical effect. However, the transcription of messenger ribonucleic acid (mRNA) is
only  an  intermediate  step  in  conversion  of  genetic  information  into  proteins,  the  biochemical  bases  of  biological
function and gene expression and concentration of functional proteins are not necessarily always directly related.

Proteomics and EDCs

Proteomics has gained popularity in the field of ecotoxicology as a holistic tool for unraveling novel mechanisms of
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toxicity  and  elucidating  subtle  effects  of  contaminant  exposure.  Proteomic  analysis  has  been  used  in  the  field  of
ecotoxicology to identify new candidate biomarkers for environmental contaminants and stressors such as heavy metals,
flame  retardants,  polyaromatic  hydrocarbons,  polychlorinated  biphenyls,  herbicides,  pesticides,  and  anoxia  [55].
Although several proteomic studies have included invertebrate species such as mollusks or crustacean; other studies
focus on several vertebrates such as fish or even cell lines.

The  subject  of  proteomics  offers  a  potentially  powerful  approach  to  ecotoxicology,  particularly  with  respect  to
providing  biomarkers  of  environmental  contamination.  The  challenges  in  measuring  molecular  changes  include
choosing the appropriate timing of sampling. Cost and logistical considerations often force experimental designs to
trade-off between sufficient biological replicates and sampling at different time points. Multiple pathways and modes of
action and limited temporal  windows necessitate  the evaluation of  multiple  levels  of  organization to  better  capture
biological  effects  and  to  enhance  predictive  and  diagnostic  power.  Tissue  samples  from  test  animals  can  be
simultaneously collected from amenable tissues such as liver or tail fin for transcriptomic, proteomic, and metabolomic
analyses.  Initial  proteomic  studies  utilized  two-dimensional  gel  electrophoresis  (2DGE)  to  identify  changes  in  the
patterns of protein expression under chemical stress, later on, other more sophisticated techniques has been applied.
Liquid chromatography (LC) and mass spectrometry (MS) methodologies, along with the growth of available genome
sequence information and powerful bioinformatics tools, facilitated protein separation and identification, and enhanced
the knowledge from those studies. The number of publications recognized by “Scopus” document search, with the key
words terms “endocrine disruption” plus “proteomics” showed only a total of 23 results in May 2014. The summary of
the publications and their associated results are shown in Table S2.

Metabolomics and EDCs

As  of  May  2014,  only  17  articles  that  combine  metabolomic  and  endocrine  disruption  words  appeared  in  the
bibliographic database. This omic technology is advancing at a rapid pace and the resulting knowledge of biological
responses has the potential to improve understanding of the molecular pathways that control physiological processes.
The  metabolome  analysis  is  a  method  to  detect  changes  in  endogenous  metabolites  originating  from  biochemical
pathways, such as amino acids, lipids, carbohydrates, hormones etc.  It  has been shown that changes to endogenous
metabolites do reflect changes in the physiology and the phenotype of animals treated with test compounds. Therefore,
elucidating how organisms respond to stressors, could aid regulatory policy and decision-making processes in chemical
risk assessment. Although there are several challenges ahead in view of using such data for regulatory purposes (such as
information interpretation and linking to adverse outcomes) the value of metabolomic platforms in the unraveling of the
molecular  processes  involved  in  chemical  toxicity,  including  endocrine  disruption,  is  generally  recognized.  For
example, metabolomics based technologies was applied to investigate EDCs toxicity (Table S3) in human cell lines,
fish and mussels [54, 70 - 72].

A Practical Approach: Predictive Endocrine Disruption

Most international regulators posed as a major objective to stop the continuous deterioration of the environment by
the thousands of new products entering into the marked each year. This objective demands multi-level, multi-tiered
approaches,  combining  chemical  analytical  and  biological  methods  [73].  Whereas  the  chemical  identification  of
pollutants has advanced notoriously in recent years, allowing quantification of a wide array of potential pollutants in the
environment at sub-ppb levels, the biological characterization of their putative effects on ecosystems and human health
is  clearly  lagging  behind  in  terms  of  defining  new  risks  ("emerging  pollutants"),  identifying  emerging  effects  of
classical pollutants (behaviour, neurological, immunological or metabolic disorders, for example) or characterizing the
mechanism of toxicity [74]. This is a most serious impediment for both the correct evaluation of environmental impacts
and for the assessment of risks associated to new substances.

Toxicologists (including Ecotoxicologists) have developed different methods to evaluate the toxicity of new and
well-known substances in order to evaluate their possible environmental and human health hazards either before they
enter the marked or before their impact in human populations and wildlife exceeds their proved or assumed economic
benefits. Classic toxicology relies heavily on the use of standard animal models to evaluate toxic effects, including
rodents  and  dogs  as  surrogate  for  human  populations,  and  fish,  crustaceans,  and  algae  to  evaluate  environmental
hazards. This approach has two major limitations. First, they are slow and costly, taking several months and thousands
of dollars to evaluate a single substance. And second, there is a quasi-universal claim to reduce animal suffering to the
absolutely unavoidable minimum, by applying what is known as the 3Rs rules: replacement, reduction and refinement
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of  animal  experiments,  [75].  Cell  cultures,  non-animal  or  non-vertebrate  models  (yeasts,  crustaceans,  annelida,
nematodes), and free embryos before their autonomous stage have been proposed as valid alternatives to conventional
animal testing for both toxicology and food and drug safety studies [76].

Within the general context of toxicology, endocrine disruption presents a further difficulty in their characterization
in non-vertebrate models. For one thing, different animal taxa may encompass different complements of receptors, and
therefore  their  susceptibility  to  a  particular  substance  may  differ  wildly.  In  addition,  the  analysis  of  binding  to  a
particular receptor, even accounting for species specificity, may not suffice to characterize an endocrine disruptor as
such. Many estrogenic compounds do interact with the ER and, therefore, they are recognizable by single-cell or even in
vitro  or QSAR approaches. But this does not apply to those that affect steroid metabolism or others, like HCB, for
which a suitable model of action has not been demonstrated [77]. And these problems increase when more "metabolic"
signaling pathways, like thyroid, PPAR, retinoids, and others, in which the so-called non-genomic effects (effects on
hormone metabolism, transport or degradation, neuroendocrine control, etc.) may easily shadow the more "classic",
receptor-binding linked effects [57, 77 - 80].

Fig. (5). Schematic representation of the proposed prediction model for the identification of mode of action and apical endpoints
according to the adverse outcome pathway, which provides a causal linkage from a direct molecular initiating event and adverse
outcomes (pink) at all levels of biological organization (red) used in risk assessment. Omics and other techniques relevant for each
level of organization are also indicated (green).

Genomic  and  other  omic  techniques  can  be  used  to  infer  complex  toxic  effects,  affecting  higher  levels  of
organization, from the analysis of a reduced number of well-controlled model species. The basic idea underlying this
approach is that the signaling pathways are well conserved during evolution, so the determination of the effect of a
given  substance  on  a  specific  pathway  on  a  model  species  is  transferrable  to  humans  or  environmentally  relevant
species as long as the modes of action are known and the pathways from the molecular initiating effects and the final
adverse effects are conserved. This translation of toxic effects through the different levels of biological organization is
known as Adverse outcome pathway (AOP) analysis. In this approach, the different organization levels are analyzed,
ranking  the  corresponding  data  according  to  their  ecological  relevance  and  its  predictive  capacity  and  mechanistic
utility  (Fig.  5)  [69,  81].  Once  identified,  AOPs  can  be  used  to  develop  high  throughput  omic  technology-based
predictive assays, providing valuable information for human and environmental risk assessment. By comparing AOPs
across species is possible to identify specific and shared mechanisms of toxicity, and hence use this information in
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understanding and managing environmental risks. Fig. (6) shows an example of the AOP approach and of its application
in  two  cases  of  endocrine  disruption,  one  in  fish  and  a  second  in  Daphnia  [82,  83].  Note  the  central  part  of  omic
technologies in the process of ellucidating the mechanisms of toxicity for each type of disruption (ectopic expression of
female proteins in males, disruption of carbohydrate metabolism).

Concluding Remarks: The Need for a Synthetic Approach

The  "genome  revolution"  has  modified  forever  the  fundamentals  of  Biology.  For  the  first  time,  quantitative
approaches  can  be  applied  and  modeled,  using  truly  holistic  points  of  view.  In  the  field  of  Ecotoxicology,  and
particularly  in  the  study  of  endocrine  disruption,  the  knowledge  of  complete  genomes  from  very  different  taxa
discovered  not  only  scores  of  new  potential  targets  in  the  already  know  organisms,  but  also  to  predict  or  explain
unsuspected effects in non-targeted, less known species of ecological significance.

Fig. (6). Conceptual linkages across biological levels of organization. AOPs analyses integrated the different levels of organization,
from molecular to population, for effects of endocrine disruptors, either "classical" (xenoestrogens in fish, green boxes) or "non-
classical" ones (neuroendocrine disruption in Daphnia, brown boxes). ER, estrogen receptors; SSRI selective serotonin reuptake
inhibitors; SERT, serotonine transporter. Data from [82, 83].

The ever-increasing importance of the omic technologies in Ecotoxicology resulted in an overflow of data from
multiple techniques and approaches that need to be analyzed, integrated and presented in a useful way to understand the
implications at individual, population and ecosystem levels. AOP analyses are useful to tell apart, as well to correlate
one  which  other,  the  initial  (or  "key")  events  of  the  toxic  effects  (i.e.,  endocrine  disruption)  and  the  truly  adverse
effects, those that compromise the health of the individuals, populations, and finally the ecosystems.
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2DGE = Two-dimensional gel electrophoresis

AoP = Adverse outcome pathways

BPA = Bisphenol A

DES = Diethylstilbestrol

EDCs = Endocrine disrupting chemicals

GMA = Glycidyl Methacrylate
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LC = Liquid chromatography

MoA = Mode of action

mRNA = Messenger ribonucleic acid

MS = Mass spectrometry

NMR = Nuclear magnetic resonance

TF = Transcription factor
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