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Abstract:

Background:

Cholesterol oxidases are bacterial oxidases widely used commercially for their application in the detection of cholesterol in blood
serum, clinical or food samples. Additionally, these enzymes find potential applications as an insecticide, synthesis of anti-fungal
antibiotics and a biocatalyst to transform a number of sterol and non-sterol compounds. However, the soluble form of cholesterol
oxidases  are  found  to  be  less  stable  when  applied  at  higher  temperatures,  broader  pH  range,  and  incur  higher  costs.  These
disadvantages can be overcome by immobilization on carrier matrices.

Methods:

This review focuses on the immobilization of cholesterol oxidases on various macro/micro matrices as well as nanoparticles and their
potential  applications.  Selection  of  appropriate  support  matrix  in  enzyme  immobilization  is  of  extreme  importance.  Recently,
nanomaterials have been used as a matrix for immobilization of enzyme due to their large surface area and small size. The bio-
compatible  length  scales  and  surface  chemistry  of  nanoparticles  provide  reusability,  stability  and  enhanced  performance
characteristics  for  the  enzyme-nanoconjugates.

Conclusion:

In  this  review,  immobilization  of  cholesterol  oxidase  on  nanomaterials  and  other  matrices  are  discussed.  Immobilization  on
nanomatrices has been observed to increase the stability and activity of enzymes. This enhances the applicability of cholesterol
oxidases for various industrial and clinical applications such as in biosensors.
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1. INTRODUCTION

Enzymes  are  macromolecular  biocatalysts,  which  accelerate  biochemical  reactions  with  high  specificity  and
efficiency [1 - 3]. In recent years, enzymes have found immense applications in industrial bioprocesses, environmental
remediation,  biofuel  production,  pharmaceuticals  and  diagnostics  [4].  However,  many  such  applications  of  free
enzymes face the drawback of poor stability, high cost and difficulty in reuse. The activity and stability of enzymes for
the above applications have been improved by various methods [5]. Immobilization is one of the important techniques
which have been exploited to improve enzyme characteristics. The macro/micro surfaces used in immobilization play
significant  role  in  enabling  the  use  of  enzymes  in  non-native  applications  such  as  in  environmental  remediation,
biosensors, bioreactors and other applied biotechnology fields [6, 7]. The interaction of enzymes with material surfaces
are  of  concern  for  many  applications  such  as  biosensors,  biotransformations,  in  food  industry,  pharmaceutical
transformations, imaging and drug delivery technologies. After  immobilization  on  the  matrix  surfaces,  the  observed
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activity and specificity of the enzyme may undergo changes. Mostly, the enzyme properties are found to be enhanced in
nature.  However  in  some  cases,  enzymes  lose  their  activity  or  undergo  distortion  in  structure  due  to  the
physicochemical  properties  of  the  enzyme,  nature  of  the  material  support  and  their  mutual  interactions  [8,  9].  The
multiple factors responsible for the limited functioning of the enzymes after attachment to the support include alteration
of the native protein configuration, slower diffusion rates of the substrate towards the bulk-attached enzyme and steric
hindrance [9 - 12]. Recently, many researchers have utilized Nanoparticles (NPs) as enzyme carriers for eliminating
these negative effects of enzyme immobilization on macro/micro carriers.

Nanomaterials  (particles  with  length  scales  <  100  nm),  due  to  their  high  surface  area  to  volume  ratios  possess
unique characteristics that enhance biocatalysis. They also exhibit surface chemistry well-suited for bioconjugation, and
length scales that integrate well with metabolic processes and gene expression [13]. These inherent capabilities make
nanomaterials  valuable  for  a  wide  variety  of  biotechnological  applications  including  biosensing,  drug  delivery,
bioremediation,  biofuel  production,  antibacterial  activity and disease diagnostics [14 -  24].  Nanomaterials  have the
ability to enhance the performance and activity of the immobilized enzyme [25, 26], as they influence the factors that
determine the efficiency of  biocatalyst,  such as surface area to volume ratio,  mass transfer  resistance and effective
enzyme loading [3, 27 - 35].

Cholesterol  oxidase  is  a  bacterial  flavo-enzyme  which  finds  great  commercial  value  in  the  determination  of
cholesterol in food and clinical samples, as a catalyst for bioconversion of sterol compounds and as an insecticide [36].
The current review summarizes the different matrices and techniques for nanoimmobilisation, followed by discussion
on some typical macro/micro and nanocarriers used for conjugating cholesterol oxidase and describes the applicability
of such nano-preparations.

2. CHOLESTEROL OXIDASE

Cholesterol oxidase (EC 1.1.3.6) is a monomeric FAD-dependent oxido-reductase which catalyzes steroid substrates
having a hydroxyl group at the 3-β position of the steroid ring. These enzymes are strictly of bacterial origin, and not
found in plant or animal systems. First reported in Rhodococcus sp. [37, 38], cholesterol oxidase has been found to be
produced by Pseudomonas sp. [39, 40], Burkholderia sp. [41], Mycobacterium sp. [42], Chromobacterium DS-1 [43]
and  Streptomyces  sp.  [44,  45].  among  others.  In  fact,  actinomycetes  are  the  largest  class  of  cholesterol  oxidase
producers. The enzyme exists both as membrane-bound and extra-cellular forms in bacteria. Based on their bonding to
the cofactor FAD, cholesterol oxidases can be broadly divided into two classes:

Class-I  cholesterol  oxidases  have  non  covalently-bound  FAD,  the  covalent  attachment  found  to  consist  of  the
imidazole ND1 atom of a histidine residue (His121) [46]. Rhodococcus and Brevibacterium cholesterol oxidase belong
to this kind.

Class–II cholesterol oxidases have covalently bound FAD. The attachment to the protein, occurs through a bond
linking  the  polypeptide  chain  to  the  8-methyl  group  of  the  isoalloxazine  moiety  [47].  Cholesterol  oxidase  from
Burkholderia and Chromobacterium belong to this kind.

2.1. Structure of Cholesterol Oxidase

The general structure of cholesterol oxidase consists of a substrate-binding domain and a FAD-binding domain,
with the single protein chain meandering back and forth between the regions that provide the binding features for the
cofactor and the substrate [47]. In most cholesterol oxidases, eight-stranded mixed beta-pleated sheet and six alpha-
helices form the substrate binding domain. This domain is positioned over the isoalloxazine ring system of the FAD
cofactor  allowing oxidation of  cholesterol  and subsequent  isomerisation to  cholest-4-en-3-one [48].  The active site
contains a hydrophobic pocket, sealed off from the outer environment by flexible loops [47].

In most flavin-containing enzymes, there exists a consensus sequence of repeating glycine residues (GXGXXG)
followed by an Asp/Glu 20 residues further in the primary sequence, this motif forming the nucleotide binding domain
[49]. The amino acid sequence, structure and redox properties vary a lot between the two different classes of enzymes.
The noncovalent form of cholesterol oxidase exhibits a consensus sequence of glycines (G17-X-G19-X-G21-G⁄ A22)
followed by a glutamate Glu40, indicating a nucleotide-binding fold. In the case of the covalently bound cholesterol
oxidase,  this  consensus  is  notably  absent  [47].  In  the  non-covalent  form,  the  FAD is  bound to  the  protein  by  non-
covalent interactions, which can be released only under denaturing conditions such as heating at 90°C.
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2.2. Biological Functions of Cholesterol Oxidase

Cholesterol oxidase is found to play myriad roles in the bacterial metabolism. In cholesterol assimilating bacteria, it
is involved in the first step of cholesterol metabolism, converting cholesterol to 4-cholesten-3-one [50, 51]. Bacteria
such as Mycobacterium and Rhodococcus equi secrete cholesterol oxidase enzyme to damage the cell-membrane of the
hosts, hence considered responsible for the pathogenticity of these bacteria [42, 52]. Additionally, product of the gene
pimE  coding  for  cholesterol  oxidase  in  Streptomyces  Natalensis,  acts  as  a  signaling  protein  for  the  production  of
pimaricin [53].

2.3. Applications of Cholesterol Oxidase

An important application of cholesterol oxidases is as a diagnostic tool to determine cholesterol levels in serum
[54],  HDL,  LDL  [55],  on  the  cell  membrane  of  erythrocytes  [56],  in  human  bile  and  in  gall  stones  [57],  in
atherosclerotic diseases and other lipid disorders. In most cases, the enzyme is accompanied by cholesterol esterase, EC
3.1.1.13 (which frees esterified cholesterol  present  in blood serum) and peroxidase EC 1.11.1.7 (which reacts  with
hydrogen peroxide and a dye to give a colored end product) to aid in detection. This reaction forms the primary basis
for most cholesterol biosensors having immobilized forms of cholesterol oxidase.

Cholesterol  oxidase  proves  to  be  an  effective  biocatalyst  for  the  transformation  of  cholesterol  and  other  sterol
compounds  to  form  pharmaceutically  important  products  such  as  4-cholesten-3-one,  androst-4-ene-3,17-dione  and
androsta-1,4-diene-3,17-dione [58].  It  could also be used in  the bioconversion of  cholesterol  into bile  acids,  where
cholesterol oxidase is used to convert 3β, 7α-cholest-5-ene-3,7-diol to 7α-hydroxycholest-4-en-3-one [59]. Cholesterol
oxidase  from Rhodococcus  erythropolis  was  employed  for  the  preparative  oxidation  of  cyclic  allylic,  bicyclic  and
tricyclic  alcohols  [60].  These enzyme mediated processes  are  eco-friendly,  cost  effective  and operate  under  milder
reaction conditions.

In the early 1990s, Monsanto Co. (St Louis, MO, USA) discovered a highly efficient insecticidal protein effective
against the boll weevil (Anthonomus grandis Boheman) larvae and other lepidopterans [61]. This was later found to be
cholesterol oxidase with an insecticidal activity at 50% concentration (LC50). When cholesterol oxidase is included in
the  diet  of  the  larvae,  it  induces  lysis  in  the  midgut  epithelium.  However,  adult  boll  weevils  are  insensitive  to
cholesterol oxidase. Transgenic leaf tissues expressing ChOx have also been found to exert insecticidal activity against
boll weevil larvae [62].

Cholesterol oxidase provides an interesting target for bacterial infections from species such as Rhodococcus equi,
which resides in the macrophages of hosts and acts as an opportunistic pathogen in immune-compromised individuals.
Mycobacterium tuberculosis and Mycobacterium leprae have also been found to produce cholesterol oxidase [63]. The
bacteria are found to induce membrane lysis facilitated by the induction of extracellular cholesterol oxidase, thus can be
used to target the virulence [52].

3. IMMOBILIZATION OF ENZYMES

3.1. Immobilization Methods

Generally,  immobilization of  enzymes can be carried out  by physical  as  well  as  chemical  methods.  In  physical
methods, the enzyme is bound to the matrix by weak interactions, while in chemical methods, covalent bond is formed
between the matrix and the enzyme. Recently, the advances in organic chemistry and molecular biology for protein
immobilization to support resulted in the development of some very potent, efficient and site-specific applications such
as functional protein microarrays, biosensors, and continuous flow reactor systems [2, 30, 64 - 66]. Broadly, enzyme
immobilization methods can be divided into three categories, direct binding to a support, entrapment and cross-linking
as summarized in Fig. (1). In each case, researchers try to maintain the catalytic activity while achieving the expected
technological  advantages  through  immobilization  protocols.  However,  the  stress  developed  by  the  immobilization
procedures may induce conformational changes and partial loss of the enzyme activity [67].
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Fig. (1). Schematic diagram of immobilization of enzymes.

Binding to a carrier can occur through adsorption or covalent attachment processes [66]. The adsorption through the
physical method generally involves multipoint protein adsorption between the protein molecule and binding sites on the
immobilization  surface through  ionic and  hydrogen bonding,  van der  Waals forces  and hydrophobic  interactions
[68, 69]. In these methods, the enzyme is easily desorbed from the immobilization surfaces by fluctuations of pH and
temperature  [70].  A few advantages  of  the  adsorption  methods  are  that  they  are  easy  to  carry  out,  no  reagents  are
involved, minimum activation step is required, are comparatively cheap, and are less disruptive to protein structure than
most chemical methods. Covalent coupling is the most frequently used approach to immobilization in which covalent
bonds are formed between surface amino acids of the enzyme and the matrix. The advantages of the covalent bonding
method  include  strong  linkage  of  enzyme  to  the  support  (due  to  which  no  leakage  or  desorption  occurs),  a
comparatively  simple  operation,  availability  of  a  variety  of  supports  with  different  functional  groups,  and  wide
applicability. The disadvantages of the covalent bonding method include chemical modification of the enzyme leading
to functional conformational loss and enzyme inactivation by a change in the conformation of the active site. This can
be overcome through immobilization with the substrate or a competitive inhibitor of the enzyme.

Entrapment  of  enzymes  involves  the  inclusion  of  the  protein  in  a  polymer  matrix,  such  as  silica  sol–gel  and
polyacrylamide or artificial membranes like microcapsule and hollow fiber. However, the enzyme leakage cannot be
entirely prevented due the weak nature of the physical bonds, therefore implicating additional covalent attachment. For
efficient entrapment,  the synthesis of the polymeric matrix must take place in the presence of the enzyme. Thermo
reverse polymerization has been used to entrap enzymes in natural polymers such as agar, agarose and gelatin, while
ionotropic  gelation  has  been  used  for  alginate  and carrageenan matrices  [71].  Additionally  synthetic  polymers  like
polyvinyl  alcohol  hydrogel  [72],  polyacrylamide  [73]  have  also  been  explored  for  their  application  in  enzyme
entrapment. The advantages of the entrapment method are that it is fast, inexpensive, milder conditions are required,
and there is less chance of conformational change in the enzyme. The disadvantages include leakage of the enzyme,
pore diffusion limitation, and chance of microbial contamination. Immobilization of cholesterol oxidase by entrapment
methods have been done by many researchers [74, 75].

Cross-linking  of  enzyme aggregates  is  obtained  by  binding  of  enzymes  to  each  other  by  bi-  or  multifunctional
reagents or ligands to prepare carrierless macroparticles [71]. Cross-linking is a simple immobilization process as it
does not involve any support matrix. In this method, covalent bond is formed between the biocatalyst, because of which
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the biocatalyst may undergo conformational changes, resulting in activity loss. Glutaraldehyde is a bifunctional agent
generally used for cross-linking. It has aldehyde groups at both ends to react with the free amino groups of enzymes.
Thus, carrier-free immobilized enzymes, such as Cross-Linked Enzyme Crystals (CLECs), and Cross-Linked Enzyme
Aggregates  (CLEAs)  are  finding  increasing  interest  in  the  industries  [76,  77].  The  advantage  of  the  cross-linking
method is that it is issued mostly as a means of stabilizing the adsorbed enzyme and also for preventing leakage. The
disadvantage of this method is that it may cause significant change in the active site of the enzyme which may lead to a
loss of activity.

The factors that determine the category of immobilization to be employed depend on the type of enzyme and the
matrix used. Whenever a new immobilization protocol is developed, importance should be given to enzyme recovery
percentage, selectivity, operational stability, and reduction in inhibition by the products or any other component of the
media. The interaction between the matrix and the enzyme should be controlled and its catalytic properties maintained
by  proper  orientation  of  the  protein.  Most  importantly,  use  of  toxic  and  highly  unstable  reagents  during  the
immobilization  processes  should  be  kept  to  a  minimum,  making  it  eco-friendly  as  compared  to  other  established
technologies.

3.2. Choice of Support for Immobilization

Support material is one of the major components for the immobilization of enzymes. Thus, it should be possessed
with some important characteristics like large surface area, suitable shape and particle size, high rigidity, hydrophilic
character,  permeability,  insolubility,  chemical,  mechanical and thermal stability,  resistance to microbial  attack, and
regenerability [78]. Support materials can be classified based on morphology (porous and nonporous support) and their
chemical  nature  (organic  and  inorganic).  Organic  support  materials  are  further  classified  as  natural  and  synthetic.
Natural  organic  supports  include  polysaccharides  and  proteins  [79,  80].  The  surface  of  most  inorganic  supports  is
mainly composed of oxide and hydroxyl groups, such as silanol group in glass, and provides a mild reactive surface for
activation and protein binding [71, 81, 82].

Properties of the immobilized enzyme inevitably depend on the choice of the matrix. Nanomaterials possess the
ideal size as immobilization matrices as they occupy lesser volume in bioreactors as compared to conventional matrices
while  providing  high  surface/volume  ratio.  Nanoscale  materials  also  have  additional  advantage  of  low  cost,  rapid
reaction,  mild  conversion  conditions,  robust  activities,  mobility,  high  loading,  operational  stability  and  minimum
diffusional limitation [83]. Moreover, the small size and multifunctionality of nanoparticles (of metals such as Au, Fe,
Zn and Ag) make them suitable to interact and operate at biomolecular levels finding applications in biosensors, tumor
location analysis and drug delivery [84].

4. IMMOBILIZATION OF CHOLESTEROL OXIDASE

Cholesterol  oxidases  from  bacterial  sources  have  been  immobilized  to  improve  their  enzymatic  properties,
reusability and operational stability. The current section summarises some of the established instances of cholesterol
oxidase immobilization onto various macro/micro and nanocarriers.

4.1. Immobilization on Macro/ Micro Carriers

To improve its catalytic properties, various macro/micro carriers have been employed to immobilize cholesterol
oxidase. Cholesterol oxidase from Rhodococcus sp. NCIM 2891, immobilized on chitosan beads was found to have
increased  stability  in  organic  solvents,  and  was  reusable  upto  12  successive  cycles  of  operation.  This  immobilized
preparation was used for the biotransformation of cholesterol to 4-cholesten-3-one with around 88% millimolar yield
[85]. Two important reports by the same group describe the co-immobilization of Cholesterol Oxidase (ChOx) with
Horseradish Peroxidase (HRP) and Cholesterol Esterase (ChEt) respectively [74, 86]. While horseradish peroxidase aids
in colorimetric detection of cholesterol,  cholesterol esterase breaks down the esterified cholesterol present in blood
serum  into  free  cholesterol  for  easy  detection.  The  co-immobilization  was  carried  out  on  Tetraethyl  Orthosilicate
(TEOS)  derived  sol-gel  films,  by  physisorption,  physically  entrapped  sandwich  and  microencapsulation  with
ChOx/HRP while covalent modification was carried out for the preparation with ChOx/ChEt. The sol-gel/ChOx/ChEt
complex reveal high thermal stability upto 55°C and detection limit of 12 mg dL−1 and sensitivity of 5.4×10−5 Abs. mg−1

dL−1 for cholesterol [74]. All the three techniques used for the immobilization of ChOx/HRP showed linearity for 2-10
mM cholesterol [86]. A similar co-immobilization of ChOx, ChEt and HRP was carried out on alkylamine glass beads
and PVC [87, 88]. N-ethyl-N’-3-dimethylaminopropyl carbodiimide activated sepharose is another popular matrix for
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immobilization of cholesterol oxidase. The immobilized preparation retained 90% of activity at 4 and 9 pH, but did not
possess commendable storage stability [89]. Conducting polymers such as thiophene-3-boronic acid and 3-aminophenyl
boronic  acid  increase  the  interaction  between  the  enzyme  and  the  electrode  and  have  been  used  to  immobilize
Brevibacterium sp. cholesterol oxidase for biosensing applications [90]. Cholesterol oxidase has also been conjugated to
polymers  such  as  electrochemically-polymerized  polyaniline  with  Triton  X-100  and  functionalized  poly(methyl
methacrylate-co-glycidyl  methacrylate)  and  poly(acrylamide-co-acrylicacid)/polyethyleneimine  supports  [91,  92].

4.2. Immobilization on Magnetic Nanoparticles

Even  though  a  variety  of  matrices  have  been  used  to  immobilize  cholesterol  oxidase,  reports  on  magnetic
nanoparticles have been scarce. Many such studies employ co-precipitation of magnetic Fe3O4 nanoparticles with other
matrices.  For  application  as  a  biosensor,  nanoparticles  synthesized  by  the  co-precipitation  of  Fe2+  and  Fe3+  and
functionalization  with  poly(styrene-co-acrylic  acid)  have  been  used  to  conjugate  cholesterol  oxidase  followed  by
deposition on the planar platinum polyaniline (PANi) modified electrode [93]. An attempt at the immobilization on
magnetic fluorescent nanoparticles, was done through APTES mediated covalent coupling [94]. The maximal catalytic
activity was obtained at pH 7.0 and 50 °C. The immobilized preparation retained 80% of its activity at 50ºC for 5h and
it was reusable for 7 consecutive operations. Interestingly, the immobilized enzyme was optically sensitive to oxygen in
solution, thus rendering it applicable for fibre optic based biosensors. A similar study on immobilization of cholesterol
oxidase from various bacterial sources was carried out on APTES modified iron (II, III) oxide nanoparticles followed
by glutaraldehyde crosslinking. These nanoconjugates increased the thermal and pH stability and were further used for
the  production  of  4-cholesten-3-one  and  4-cholesten-3,5-dione  [95].  Cholesterol  oxidase  has  also  been  attached  to
magnetic nanoparticles (Fe3O4) synthesized by thermal co-precipitation of Fe2+ and Fe3+ chlorides, through carbodiimide
linkage.  Such  conjugation  of  cholesterol  oxidase  resulted  in  almost  98-100%  binding  with  enhanced  pH  and
temperature  stability  [96].  Functionalized  silica-coated  magnetic  nanoparticles  have  also  been  used  for  cholesterol
oxidase immobilization. Synthesis of maghemite (γ-Fe2O3) nanoparticles was done by thermal co-precipitation of iron
ions  in  alkaline  ammonia  solution,  followed  by  deposition  of  silica.  Secondary  functionalization  was  done  using
organosilane and cross-linking by glutaraldehyde [97]. Cholesterol oxidase immobilized on the silica-coated maghemite
has  been  found  to  retain  around  60% of  its  activity  [98].  Cholesterol  biosensors  have  also  been  developed  by  co-
immobilizing cholesterol oxidase with Fe2O3 micro-pine shaped hierarchical structures with very high and reproducible
sensitivity and low detection limit [99].

4.3. Immobilization on Metal Nanoparticles

Majority  of  the  cholesterol  oxidase  biosensors  comprise  of  gold  as  the  electrode.  Thus,  gold  (and  other  metal)
nanoparticles aid in the deposition of cholesterol oxidase on the electrode surface. In one such report, gold electrode
was modified with 1,6-hexanedithiol, followed by deposition of gold nanoparticles. The surface of the nanoparticles
was functionalized with carboxyl groups using 11-mercaptoundecanoic acid and cholesterol oxidase was immobilized
on  the  surface  of  the  gold  nanoparticle  film  by  covalent  bonding  using  the  N-ethyl-N’-(3-dimethylaminopropyl
carbodimide)  and  N-hydroxysuccinimide  ligand  chemistry  [100].  A  novel  biosensor  for  quantitatively  estimating
cholesterol in pork liver and egg yolk samples was made by a glassy carbon electrode with nano-composite mixture
consisting  of  Molybdenum  Disulfide  (MoS2)  and  gold  nanoparticles  (AuNPs),  over  which  cholesterol  oxidase  was
deposited [101]. Another interesting take on the cholesterol oxidase nanoimmobilization was the synthesis of aggregates
of  enzymes  in  the  nanometer  scales.  The  aggregates  were  achieved  by  cross-linking  of  cholesterol  oxidase  and
cholesterol esterase with glutaraldehyde followed by deposition on Au electrode for manufacturing the biosensor. These
ENPs retained 50% of initial activity during its regular use over a period of 60 days when stored at 4°C [102].

4.4. Immobilization on Other Nanoparticles

In  addition  to  conventional  nanomatrices,  various  novel  materials  have  been  explored  for  their  capacity  to
immobilize cholesterol oxidase. Successful immobilization of cholesterol oxidase has been carried out on Mg2AlCO3

Hydrotalcite Layered Double Hydroxide nanomaterials for biosensor applications [103]. This group used extracts of
Acacia salicina  leaves  in  order  to  scavenge the  free  radicals  such as  H2O2  liberated during the  enzymatic  reaction.
Polymers such as Poly-Ethylene Glycol (PEG), decorated polystyrene (PS) nanoparticles along with Congo red have
also  been  used  to  immobilize  cholesterol  oxidase  [104].  APTES  modified  and  glutaraldehyde  cross-linked  silica
nanoparticles were used to conjugate cholesterol oxidase, subsequently used as a biosensor with 200s response time and
detection limit of 4.2 mg/dL [105].
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Immobilization of enzyme to improve upon their biochemical properties, stability and reusability has been explored
for  a  variety  of  industrial  and  clinically  important  enzymes.  Apart  from cholesterol  oxidase,  enzymes  successfully
conjugated onto macro/micro carriers as well as nanoparticles include cellulose [30, 106] keratinase [107, 108], lipase
[109, 110] laccase [111, 112] and α-amylase [113, 114]. From the biosensing point of view, enzymes which has been
immobilised  apart  from  cholesterol  oxidase  include  glucose  oxidase  [115],  horseradish  peroxidase  [116],  glucose
dehydrogenase [117] and lactate dehydrogenase [118]. In fact, glucose oxidase forms one the largest class of oxidase
enzymes immobilised for clinical applications.

5. APPLICATIONS OF IMMOBILIZED CHOLESTEROL OXIDASE

Immobilization of cholesterol oxidase renders it useful for varied industrial and medical applications. The majority
of immobilized forms have been used as biosensors for the detection of cholesterol in food samples, blood serum and
other clinical samples. Other applications include bioconversions for the production of steroid compounds. The general
enzymatic cholesterol biosensors comprise of cholesterol esterase (which converts cholesterol esters present in blood to
free  cholesterol),  cholesterol  oxidase  (which  converts  the  free  cholesterol  to  4-cholesten-3-one)  and  horseradish
peroxidase (it reacts with the liberated H2O2 to result in the colored compound which is detected). However, a limitation
of this specific cholesterol detection scheme is the high cost of enzyme involved. Cholesterol oxidase based biosensors
are considered superior  as  compared to traditional  detection methods such as  HPLC or GC, owing to their  simpler
working protocols, higher reusability, higher specificity and low cost.

Ordinary fabricated biosensors are limited by inadequate performance in terms of detection limit, sensitivity and
stability. These challenges can be overcome by the use of nanomaterials, which provide catalytic, optical and electronic
properties.  Incorporating  nanomaterials  in  biosensors  enhance  the  surface  chemistry,  electroconductivity  and
compatible  length  scales  for  bioconjugation.  Some  of  the  nanomatrices  used  for  the  immobilization  of  cholesterol
oxidase for biosensing applications are discussed here.

The physicochemical properties of cholesterol oxidase biosensors are generally studied through electrochemical
impedance  spectroscopy  and  cyclic  voltammetry.  In  one  report,  the  linear  range  of  the  biosensor  made  by
electrodepositing cholesterol oxidase nanoparticles was 10-700 mg/dL for cholesterol. It optimally responded at pH 5.5
and  40°C  within  5s  when  polarized  at  +0.25  V  versus  Ag/AgCl  [101].  A  gold  based  biosensor  was  created  by
covalently conjugating cholesterol  oxidase to  gold nanoparticles,  which in  turn were deposited on a  gold electrode
[100]. This biosensor exhibited a linear response to cholesterol in the range of 0.04-0.22mM with a detection limit of
34.6µM,  apparent  Km  of  0.062mM  with  cholesterol  and  a  high  sensitivity  of  9.02µA  mM−1.  Polymeric  biosensors
created by cholesterol oxidase immobilization onto Polystyrene/PEG/Congo red particles yielded linear response in the
cholesterol concentration range of 100 mg dL−1 to 300 mg dL−1 [104].

Immobilization of cholesterol oxidase has proved to be a versatile technology for medical and food applications. For
an enzyme like cholesterol oxidase with varied clinical applications, it becomes imperative that the substrate specificity
is maintained after immobilization. However, the effect of immobilization on substrate specificity need to be studied
further.

CONCLUSION

The  science  of  immobilization  of  enzymes  and  other  biological  molecules  on  different  supports  is  now  well
established and developed earlier.  Selection of  appropriate  support  matrix  in  enzyme immobilization is  of  extreme
importance. Recently, nanomaterials have been used as a matrix for immobilization of enzyme due to their large surface
area and small size. In this review, immobilization of cholesterol oxidase on nanomaterials and other matrices were
discussed. Immobilization on nanomatrices has been observed to increase the stability and activity of enzymes. This
enhances the applicability of cholesterol oxidases for various industrial and clinical applications such as in biosensors.
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