
Send Orders for Reprints to reprints@benthamscience.ae

241

1874-0707/18 2018  Bentham Open

The Open Biotechnology Journal

Content list available at: www.benthamopen.com/TOBIOTJ/

DOI: 10.2174/1874070701812010241, 2018, 12, 241-255

REVIEW ARTICLE

A  Review  of  Three-dimensional  Printing  for  Biomedical  and  Tissue
Engineering Applications

M. Gundhavi Devi1, M. Amutheesan2, R. Govindhan3 and B. Karthikeyan3,*

1Centre for Bioscience and Nanoscience Research, Coimbatore, Tamil Nadu 641021, India
2Department of Aeronautical Engineering, Hindustan Institute of Technology & Science, Padur, Chennai, Tamil Nadu
603103, India
3Department of Chemistry, Annamalai University, Annamalai Nagar, Tamil Nadu 608 002, India

Received: June 21, 2018 Revised: July 22, 2018 Accepted: September 7, 2018

Abstract:

Background:

Various  living  organisms  especially  endangered  species  are  affected  due  to  the  damaged  body  parts  or  organs.  For  organ
replacement, finding the customized organs within the time by satisfying biomedical needs is the risk factor in the medicinal field.

Methods:

The  production  of  living  parts  based  on  the  highly  sensitive  biomedical  demands  can  be  done  by  the  integration  of  technical
knowledge of Chemistry, Biology and Engineering. The integration of highly porous Biomedical CAD design and 3D bioprinting
technique  by  maintaining  the  suitable  environment  for  living  cells  can  be  especially  done  through  well-known  techniques:
Stereolithography,  Fused  Deposition  Modeling,  Selective  Laser  Sintering  and  Inkjet  printing  are  majorly  discussed  to  get  final
products.

Results:

Among the various techniques, Biomedical CAD design and 3D printing techniques provide highly precise and interconnected 3D
structure based on patient customized needs in a short period of time with less consumption of work.

Conclusion:

In this review, biomedical development on complex design and highly interconnected production of 3D biomaterials through suitable
printing technique are clearly reported.

Keywords: 3D bioprinting, 3D scaffold, Biomedical, Tissue engineering, Polymer, Rapid prototyping.

1. INTRODUCTION

Three-dimensional  printing was  first  patented in  1986 by Charles  Hull  for  Stereolithography Apparatus  (SLA).
Early researchers are known as Rapid prototyping technologies. Later, stereolithography is commonly known as 3D
printing.  3D printing  was  initially  used  to  create  prototypes  for  product  development  within  certain  industries.  Dr.
Hideo, a Japanese lawyer was the first person to file a patent for rapid prototyping technology. Charles (chuck) Hull
was the first person to invent the stereolithography machine (3D printer), which was the first ever device of its kind to
print a real physical part from a digital (computer) generated file [1, 2]. Three-dimensional printing technology is one of
the trending additive  manufacturing  methods. It is  a  process of  making a  3D object  by adding  layer-by-layer  of
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required material using a three-dimensional digital model [3, 4]. The most commonly used core material for additive
manufacturing includes ceramic, metal, plastic and polymers (synthetic or natural polymers) [5 - 7]. 3D objects are
mainly  formed  under  the  efficient  control  of  digital  computer,  3D  modeling  software  (computer  aided  design  or
computer tomography scan images), machine equipment and layering materials [8]. Stereolithography is one of the
commonly used software file types that is used for 3D printing [9]. After the given CAD model, 3D printing reads the
input data from 3D modeling software. Finally, the highly sophisticated 3D objects are manufactured, which can easily
produce tedious shapes and structures [10]. The three-dimensional printing process is shown step-by-step in Scheme 1.

Scheme (1). Schematic process of three-dimensional printing.

Typically, many additive manufacturing processes are available in industries, laboratories, etc. It majorly integrated
several fine parts such as vat photopolymerization, material extrusion, powder bed fusion, binder jetting, as shown in
Table 1. Stereo-lithography (SLA) comes under the basics of vat photo-polymerization method [11, 12]. It is widely
recognized as a first 3D printing method. SLA is a laser-based process, which mainly works with photopolymer resins
to form a solid 3D object. In this process, photopolymer resin is finely placed in a VAT with a movable platform inside.
A  laser  beam  is  sharply  focused  on  the  surface  of  the  resin,  and  3D  structures  are  formed  using  CAD.  Stereo-
lithography is one of the most significant 3D printing processes with the good surface finish. Digital light processing is
also depending on VAT photopolymerization. The huge difference between them is the light source, and it produces
highly accurate parts with excellent resolution. The most widely used method in the material extrusion process is the
Fused Deposition Modeling (FDM) or Fused Filament Fabrication (FFF) method.  Fused Deposition Modeling uses
continuous thermoplastic filament as the printing material to form fine structures and scaffolds [13 - 15]. In this process,
it  works  by  melting  plastic  filament  in  nozzle  head  and  precisely  deposit  in  build  platform  to  form  3D  structure
according to the 3D data supplied to the printer. FDM process needs support structures for various bio-applications with
overhanging geometries. FDM process is a highly accurate and reliable process that is studio-friendly. In the powder
bed  fusion  process,  the  most  widely  used  method  is  the  Selective  Laser  Sintering  (SLS)  technique  for  scaffold
fabrication.  SLS  is  an  additive  manufacturing  technique,  which  uses  high  power  laser  as  a  power  source  to  sinter
powdered material to fabricate various 3D scaffolds by 3D model [16, 17]. The significant material used in SLS are
plastic, metal, ceramic, glass powders. SLS has the potential for creating prototypes, scaffolds, models and even final
products, and it is mostly utilized in industry and all medical fields. It provides highly complex parts with adequate
interior components and is the fastest Additive Manufacturing (AM) process for printing three-dimensional functional
parts  and  organs  with  designed  structural  integrity.  In  Inkjet  printing,  the  material  being  jetted  is  a  binder,  and  it
selectively drops into powdered bed of the part material to fuse for creating three-dimensional objects and scaffolds for
various  medical  applications.  A range of  different  materials  can be used for  three-dimensional  printing for  various
fabrications [18, 19]. Different areas of the scientific community combined to form a 3D structure, which is shown in
Scheme 2.
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Table 1. Additive manufacturing technology.

Methods Classifications Ref.

Vat photopolymerization i) Stereolithography (SLA)
ii) Digital Light Processing (DLP) 80-84

Material extrusion i) Fused Deposition Modeling (FDM) 97-99
Powder bed fusion i) Selective Laser Sintering 112-114

Binder jetting i) Inkjet 3D printing 122

Scheme (2).  A typical  schematic  workflow of  multidisciplinary  subjects  used in  the  3D printing  method for  tissue  engineering
applications.

3D file of the object can be created using Biomedical CAD software, with a 3D scanner. The variety of materials
can be used for printing purposes such as plastics, alumide, ceramics, resins, metals, sand, textiles, biomaterials, glass,
food  and  even  lunar  dust.  Fused  Deposition  Modeling  and  Selective  Laser  Sintering  use  plastic  and  alumide  for
fabricating 3D scaffolds. Some FDM printers have two or more print heads to print multiple variable colors in scaffolds.
Selective Laser Sintering consists of fabrication of 3D object by melting successive layers of powder together to form a
scaffold. Stereolithography and Digital Light Processing use photopolymerization for developing highly sophisticated
3D products [20, 21]. 3D printing is excellent for developing healthcare products in many ways, including implantable
and  non-implantable  medical  devices  along  with  cost-effective  customizable  devices,  patient-specific  products  in
orthopedics  and  maxillofacial  surgery,  fabricating  human  living  tissue,  prosthetics  and  accurate  pre-op  models  for
academic purpose. It is mainly helpful for fabricating different types of living tissues, recreating difficult bone disorders
such as craniofacial disfigurement, hearing aids and dental delivery devices, which offer excellent visualization and
great dimensional stability. 3D printing also creates medical fixtures, functional testing models, industrial design and
end-use parts [22, 23].

Nowadays, the ultimate aim of tissue and organ engineering is to restore normal functions of living organs and
tissues, regeneration, replacement of defective or injured organs and tissues using different technology. To achieve this
aim amongst different technology, three-dimensional scaffolds are commonly used for biomedical, tissue engineering
applications and all medical fields, which is made up of polymer (natural or synthetic polymers), metals, ceramics, etc.
Three-dimensional Scaffolds provide several mandatory functions [24 - 26]. It creates an adequate internal pathway for
the cell attachment and migration. It should transfer several growth factors, oxygen transport and waste product removal
in 3D scaffolds [27, 28]. It must be biocompatible, good mechanical properties and keeps its shape and structure when
the cells and tissue are growing [29 - 32]. Hence, 3D bioprinting technology is commonly used for controlling cell and
tissue  pattern  to  be  retained  viability  and  functionality  of  the  cells  inside  the  printed  3D  structure  using  different
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biomaterials [33 - 35]. Many researchers have been studied development and improvement of the appropriate scaffold
using 3D printing in tissue engineering applications. Advances developed by 3D printing enhance the ability to control
pore  volume,  pore  size,  and  pore  interconnectivity  in  3D  scaffolds  for  patient  specific  applications.  In  addition,
materials  used  in  a  3D  printing  machine,  which  is  very  essential  for  fabricating  3D  scaffolds  using  3D  modeling
software  and  scan  data.  3D  bioprinting  process  uses  living  cells  and  bioactive  molecules  in  biomaterials,  which
produces a 3D structure that does not affect the viability and functionality of the cells [36, 37].

In future,  researchers should be considered in the biomaterials  such as bio-ink for creating 3D objects in tissue
engineering  applications  and  all  the  medical  fields.  Recent  advancement  in  the  biomedical  field  of  stem  cell
development can be approached to the Bio3D printing cells fabrication techniques. It has the huge potential of studying
disease  modelling,  discover  drugs  and  mimicry  of  cellular  components.  The  microfluidic  approach  in  3D  tissue
fabrication  printing  has  garnered  to  a  significant  leap  in  the  vascularization  of  biomedical  engineering.3D printing
technology can be evolved to cover the entire range of biomedical applications beginning from diagnosis and ending
with prognosis. The potential of 3D printers can be exploited in the field of biomedical engineering such as research
works, drug delivery, lab testing, clinical practice and helping the surgeons with as detailed mock surgeries as possible.
3D printing is used as a one-step solution for all the biomedical engineering problems [38 - 40].

Among different rapid prototyping technologies, the widely used four technologies for biomedical applications are
stereolithography, fused deposition modeling, selective laser sintering and inkjet 3D printing [41 - 43]. Even though
these techniques are used in various fields such as architectural modeling, art, lightweight machines, aircraft industry,
defense field and medical fields, but it is excellent in tissue and other biomedical engineering applications [44 - 48].
Many researchers keep on improving various methods and materials to create 3D structure by satisfying the mechanical
properties, biocompatibility for regeneration of normal tissues and bone regeneration, etc. [49, 50]. In this review, only
few  ongoing  technologies  are  discussed,  which  can  produce  highly  precise,  greatly  customized  and  extremely
interconnected  bio  parts  by  satisfying  all  requirement  of  biomedical  needs.

2. THREE-DIMENSIONAL PRINTING FOR TISSUE ENGINEERING APPLICATION

Three-dimensional printing technologies are an emerging technology to develop new tissues and organs [51 - 55].
Many researchers are currently conducting a study for fabricating 3D structure, which is useful for tissue engineering
fields [56 - 60]. Three-dimensional bioprinting creates unique 3D structure, which controls cell proliferation, attachment
and  migration  within  3D  printed  structures  [61  -  65].  Therefore,  different  types  of  three-dimensional  bioprinting
techniques are used for a variety of tissue and organ engineering applications [66 - 70]. Herein, we will discuss the four
different  types  of  three-dimensional  bioprinting  methods,  which  are  most  commonly  used  methods  such  as
Stereolithography and Digital Light Processing in Vat Photopolymerization, Fused Deposition Modeling in material
extrusion,  Selective  Laser  Sintering  in  powder  bed  fusion  and  Inkjet  printing  in  binder  jetting  methods.  Table  2
represents  some  of  the  advantages  and  disadvantages  of  different  3D  printing  methods  in  tissue  engineering
applications.

Table 2. Additive manufacturing: Advantages and disadvantages.

Methods Advantages Disadvantages Materials Ref.

SLA, DLP Simple and complex
Fast and good resolution Expensive equipment and materials PEG, PCL, PEGDA [79-84]

FDM Easy to use good mechanical properties Filament required
Cannot used with cells PCL, PLGA [96-99]

SLS No need for support materials Various of biomaterials Rough surface
Expensive equipment PCL/HA, PCL [111-114]

Inkjet Cells and hydrogel printed, incorporation of drug and molecules Low resolution
Low mechanical properties Fibrin, Gelatin [121-122]

2.1. Stereolithography (SLA)

Stereolithography is also known as photo-solidification, which has been early and still  widely used 3D printing
method. SLA technique has commonly been used to fabricate 3D models, prototypes, patterns and production parts by
using UV light in layer-by-layer. This technique has been obtained the patent by Charles (chuck) Hull in 1986 [71 - 73].
SLA method has the potential to create 3D scaffolds using photopolymerization. Similarly, the DLP technique has also
been  utilized  to  create  3D  functional  models  and  positive  mold  objects  using  visible  light  source  [74,  75].  Both
Stereolithography and DLP are formed on the vat photopolymerization [76 - 78]. In this process, UV light beam is
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directed onto the area of vat filled with a liquid photopolymer. UV light makes chains of molecules to bind and form
polymers.  And  those  polymers  are  essentially  focused  to  fabricate  three-dimensional  objects.  However,
Photopolymerization method is formed free radicals that can affect cell membrane, protein and nucleic acids. Using
computer Aided manufacturing or computer Aided design, Stereolithography can make any design that can be fast and
expensive [79 - 81]. A typical schematic of stereolithography technique is shown in Scheme 3. Many scientists obtained
the SLA 3D product using various biomaterials in tissue engineering applications. Elomaa et al. fabricated cell-laden
hydrogels constructs with biomimetic complexity for use in pharmaceutics, vascular and tissue engineering application.
They reported that  they used water-soluble  methacrylated poly  (ethylene glycol-co-depsipeptide)  to  synthesize  and
formed a biodegradable photocrosslinkable macromer for SLA [82]. Neiman’s et al.  created three-dimensional(3D)
hydrogel  scaffolds  with  open  channels  for  post-seeding  using  photopolymerizable  PEG in  Stereolithography based
method. They showed that structural and functional development of foster formation in 3D liver aggregates. The aim of
this study was to develop a platform for drug toxicity study, liver pathophysiology and obtained micro perfusion flow
within the open channels of this 3D hydrogel structure [83]. Justinas et al. utilized direct laser writing lithography to
fabricate three-dimensional (3D) microstructured scaffolds for cartilage tissue engineering using ultrafast pulsed lasers.
They reported that 3D microstructured scaffolds are excellent in spatial resolution, geometry complexity and hexagonal
pore  shaped  hybrid  organic  and  inorganic  material  micro-structured  scaffold,  which  were  fabricated  using  DLW
technique  in  combining  with  Cho  seeding  [84].  Owen  et  al.  created  Polymerized  High  internal  Phase  Emulsions
scaffolds using emulsion templating by combining with micro-stereolithography, which produces cell ingrowth, plasma
penetration,  tightly  controlled  and  highly  interconnected  microporosity.  Scaffolds  constructed  using  two  acrylate
monomers with isobornyl acrylate and supported osteogenic differentiation of mesenchymal cells [85]. Du et al. created
ceramic artificial bone scaffolds using stereolithography with acrylic resin, which produced correct external shape and
internal architecture for bone tissue ingrowth [86]. Hang et al. produced a three-dimensional (3D) scaffold with desired
architectures using Stereolithography (SLA) technique. They showed that they used two lentiviral gene constructs with
human bone marrow-derived mesenchymal stem cells into a solution of photocrosslinkable gelatin, which was focused
using visible light-based projection [87]. Main advantages of stereolithography in tissue engineering applications are
fast speed, good resolution, easy to remove support materials, complex designs and fabrication of a simple, and the
disadvantages in SLA are a limited range of photosensitive resin and polymers, expensive equipment and materials,
cytotoxicity of uncured photoinitiator.

Scheme (3). A typical schematic representation of stereolithography.
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2.2. Fused Deposition Modeling (FDM)

FDM is known as Solid-based AM technology. It is also an Additive Manufacturing technology (AM) which is
mainly  used  for  modeling,  prototyping  and  production  applications  [88  -  90].  Fused  Deposition  Modeling  was
developed and commercialized by Scott Crump and Stratasys, which works under the controlling of Stereolithography
(STL) file [91 - 93]. In this process, FDM printers use a continuous filament of a thermoplastic material in a material
extrusion method. These filaments are heated to the melting point temperature, and molten material from the printhead
nozzle is deposited on the surface of the growing workpiece to create 3D structures [94]. The nozzle and substrate are
controlled by computer to print defined shape and structure, and nozzle can be travelled in both horizontal and vertical
directions.  Using  computer-aided  technology,  FDM  is  very  flexible  to  print  3D  objects  [95  -  97].  FDM  used  the
thermoplastics  PLA,  ABS,  ABSi,  polyphenylsulfone,  polycarbonate  and  among  others  material.  Fused  Deposition
Modeling is a thermal heating technique, which is used for 3D scaffolds fabrication in tissue engineering applications.
Many researchers were investigated using FDM method for tissue engineering applications. Pati et al. fabricated 3D
printed  scaffolds  using  a  composite  of  polycaprolactone,  polylactic-co-glycolic  acid,  β-  tricalcium  phosphate  and
mineralized ECM laid by human nasal inferior turbinate tissue-derived mesenchymal stromal cells. They studied that
they improve the biological functionality of 3D printed synthetic scaffolds to mimics bony microenvironment using
Fused Filament Fabrication,  and they develop cellular responses and drive osteogenesis of stem cells.  Jensen et al.
created a polycaprolactone (PCL) scaffold using the combination of Fused Deposition Modeling and thermal induced
phase separation to create nanoporous structure in polycaprolactone (PCL) scaffold. They studied PCL3D scaffold to be
an  excellent  osteoconduction  and  osteointegration  [98].  Xu  et  al.  fabricated  polycaprolactone  nano-HA  and
polycaprolactone (PCL) 3D artificial bones to mimic natural goat femurs using Computed Tomography-guided Fused
Deposition Modeling. They reported that polycaprolactone (PCL) /HA 3D artificial bones scaffolds are excellent in cell
biocompatibility,  biodegradation  ability  and  bone  formation  ability,  good  biomechanical  properties  that  reduce  the
stress  shielding  effect  [99].  Idaszek  et  al.  created  a  ternary  polycaprolactone  (PCL)  scaffold,  which  consists  of
polycaprolactone (PCL), TCP and PLGA using Fused Deposition Modeling. They evaluated mechanical characteristics,
degradation kinetics and surface properties through in-vitro. They resulted that the introduction of PLGA improved the
degradation  rate  and  surface  roughness  [100].  Li  et  al.  used  the  Fused  Deposition  Modeling  technique  to  make  a
comparison  between  Ti  cage  and  PCL-TCP  scaffold  as  a  spinal  fusion  cage.  They  reported  that  inferior  fusion
performance of the PCL-TCP scaffold at 6 months is similar to Ti cage at 12 months. In addition, PCL-TCP scaffold is
resulted in better bone ingrowth and distribution compared to Ti cage [101]. The main advantages of Fused Deposition
Modeling are easy operation and easy use, adequate mechanical properties, low cost, solvent is not required and various
lay- down patterns and the disadvantages in Fused Deposition Modeling are materials in filament form (thermoplastics),
low speed, cannot used with cells and tissues, high temperature and smooth surface.

2.3. Selective Laser Sintering (SLS)

Selective Laser Sintering is an additive manufacturing technique, which uses laser as a power source to form solid
3D  scaffolds  [102  -  104].  It  is  very  similar  to  Direct  Metal  Laser  Sintering.  SLS  was  patented  and  developed  in
mid1980’s by Carl Deckard and Joe Beaman. SLS uses high powered lasers, which is too expensive. In this process,
high powered lasers selectively fuse powdered material using CAD file or Scan data to form 3D objects [105]. This
process is printed various materials; plastic, metal, ceramic and polymers and their composites [106 - 108]. Moreover,
the SLS technique does not require a separate feeder for support material. SLS technique is the ability to make highly
complex geometry directly  from digital  CAD data  [109 -  111].  A typical  schematic  of  Selective Laser  Sintering is
shown in Scheme 4. Many researchers reported the SLS product using various biomaterials. In addition, SLS is used in
tissue engineering applications as scaffolds from various biomaterials and their composites. Du et al. constructed three-
dimensional  bone  scaffolds  in  Selective  Laser  Sintering  technique  with  uniform  multi-scaled  porosity,  moderate
mechanical  properties  and  good  biocompatibility  using  PCL  microspheres,  and  polycaprolactone  /hydroxyapatite
composite microspheres are used as the basic building materials. They showed that SLS derived scaffolds are excellent
in multiple stem cells behavior, promoting cell adhesion, supporting cell proliferation, inducing cell differentiation,
histocompatibility  and  adequate  mechanical  features  [112].  Chen  et  al.  fabricated  polycaprolactone  scaffolds  for
cartilage tissue engineering in craniofacial reconstruction using Selective Laser Sintering technique, which was surface
modified  through  immersion  coating  with  either  gelatin  or  collagen.  They  reported  that  surface  modification  with
collagen  or  gelatin  improved  the  hydrophilicity,  water  uptake  and  good  mechanical  strength  [113].  Roskies  et  al.
created  polyetheretherketone  scaffolds  using  Selective  Laser  Sintering  technique  with  a  computer-aided  design
program. They evaluated that PEEK scaffolds maintain the viability of adipose and bone marrow-derived MSCs and
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induce the osteodifferentiation of the adipose-derived MSCs [114]. Feng et al. created highly interconnected porous
scaffolds with β-TCP doping of zinc oxide powder using Selective Laser Sintering technique. They studied that porous
scaffold  resulted  in  excellent  mechanical  and  biological  properties  by  evaluating  fracture  toughness,  compressive
strength,  osteoinduction  and  osteoconduction  [115].  Shuai  et  al.  developed  poly  (vinyl  alcohol)/calcium  silicate
composite scaffolds with interconnected porous structures and customized shapes using Selective Laser Sintering. They
found  excellent  compressive  strength,  good  bioactivity  and  cytocompatibility  in  these  scaffolds  [116].  The  main
advantages  of  Selective  Laser  Sintering  are  a  wide  range  of  materials,  good  mechanical  strength,  relatively  high
precision, high porosity, support materials not required, and the disadvantages of selective laser sintering are materials
in powder form, difficult to remove trapped materials, expensive equipment and rough surface.

Scheme (4). A typical schematic representation of selective laser sintering.

2.4. Inkjet 3D Printing

Inkjet 3D printing technique is a rapid prototyping method, which is layered manufacturing technology for creating
objects described by 3D modeling software and scan data [117]. Inkjet three-dimensional printing technique is similar
to Inkjet head printing. In addition, Inkjet 3D printing method has the potential to use polymeric bio-inks for various
applications  such  as  Biomedical,  Tissue  engineering  and  all  other  Medical  fields  [118  -  120].  Nowadays,  Inkjet
bioprinter  is  a  commonly  used  technology,  which  is  useful  for  both  non-biological  and  biological  applications.
Moreover,  Inkjet  bioprinter  is  a  powerful  technique  for  depositing  cells,  biomaterials  and  has  become  popular  in
creating cell-laden constructs, which can mimic the high complexity of native tissue and organ. A typical schematic of
Inkjet bioprinting is shown in Scheme 5. Many scientists were investigated using Inkjet 3D printing in tissue and organ
engineering  applications.  Lorber  et  al.  fabricated  Retinal  Ganglion  Cells  (RGC) and  glia  using  piezoelectric  inkjet
printing. They found that the viability and survival/growth of the cells in culture were not affected by the inkjet printing
process [121]. Pati et al. printed dome-shaped adipose tissue using human decellularized adipose tissue matrix bio-ink,
which  encapsulates  human  adipose  tissue-derived  mesenchymal  stem  cells  from  the  biomimetic  approach.  They
evaluated the efficacy of their printed tissue constructs for adipose tissue regeneration [122]. Irvine et al.  created a
patterned 3D structure using Inkjet bioprinter and used printable gelatin as an ideal material crosslinked with microbial
transglutaminase to print cell bearing hydrogel for three-dimensional constructs. They confirmed excellent cell affinity
[123]. The main advantages of Inkjet 3D printing in tissue engineering applications are cells, tissues and hydrogel that
can be printed, patient-customized fabrication, incorporation of drug and biomolecules, low cost and rapid production,
and the disadvantages in Inkjet printing are a limitation of size, low resolution, low mechanical properties, using limited
biomaterials.
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Scheme (5). A typical schematic representation of inkjet printing method.

CONCLUSION AND FUTURE DIRECTION

Rapid intellectual shine in the material science field uses nanoscopic materials for various societal applications:
Nano Electronics, Tissue Engineering, Artificial Intelligence, etc. through various printing methodologies. SLA can be
able to produce a high resolution of excellent surface finish products in a short period of time. The capability of using
multiple prints heads provides choice to select different colors and materials on making the biomedical 3D products
using FDM. SLS has the functionality to make highly complex geometry with more accuracy. Usage of bio-ink through
ink jet printing open doors for a biomedical researcher for producing living cell products to satisfy the need of the rare
species and other living organism. Biomedical researchers keep on working in Regenerative medicine. Self-healing
property,  natural  Self-assembly  of  nanotubes  and  synergetic  effect  are  the  key  factors  in  the  artificial  bio  parts
manufacturing. Natural Self-assembling property of the biocompatible peptide nanotubes can be able to reform its shape
if the occurred damages in the 3D printed bio Parts are under the acceptable range of damages in biostructure like bone,
tissues  etc.  This  technique  can  be  able  to  reduce  the  number  of  failure  in  the  final  products  and  minimize  the
requirement  of  design,  production and overall  cost.  The precise  designing using the  Biomedical  CAD software  for
customized  design  of  tissue  and  organs  for  biomedical  application,  which  can  design  the  required  3D  model.  To
manufacture the designed product, a unique combination of cells with the biopolymers can act as the core material for
organs and tissues. The recent development of rapid prototyping process leads the manufacturing of living tissues and
organs with highly porosity architecture.  To obtain a highly efficient  manufacturing model,  the multifunctional  3D
structure is undergoing recent development by combining more than two 3D printing technology or combination of 3D
printing technology with other scaffold 3D printing technology. The quality of the functioning of the scaffold is mainly
due to the integrity of design, materials and the manufacturing process. Improving biomaterials quality (Polymers and
Bio-ink) is the most significant goal in Additive Manufacturing, which should be biocompatible, ease of processing,
good mechanical properties for cell support and secure 3D structure. 3D printing also used for drug delivery, Chemical,
Biological agents and Organ on-chip devices along with tissue engineering. The scientific community is now improving
the  resolution,  speed  of  prototyping  and  quality  of  printing  process  by  compatible  with  cells  and  tissues  in  3D
manufacturing. Patient customized 3D bioprinting is still a challengeable process of implementing for the whole global
community. Moreover, the mimicking ability of the direct organ fabrication in the medical field is the goal of tissue
engineering and regenerative medicine using 3D bioprinting. Fabrication of the scaffold for the mass bone defect is the
crucial  process  in  the  3D  manufacturing  due  to  unsatisfactory  bone  graft  substitutes.  The  capability  of  integrating
various disciplines: chemistry, materials science, computer-aided design, medical imaging and biomedical world should
focus on to improve the availability of various models for different patient specific applications [124 - 126].
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