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Abstract:  Microorganisms  are  the  great  sources  of  Natural  Products  (NPs);  these  are  imperative  to  their  survival  apart  from  conferring
competitiveness amongst each other within their environmental niches. Primary and secondary metabolites are the two major classes of NPs that
help in cell development, where antimicrobial activity is closely linked with secondary metabolites. To capitalize on the effects of secondary
metabolites, co-culture methods have been often used to develop an artificial microbial community that promotes the action of these metabolites.
Different analytical techniques will subsequently be employed based on the metabolite specificity and sensitivity to further enhance the metabolite
induction. Liquid Chromatography-Mass Spectrometry (LC-MS) and Gas Chromatography (GC)-MS are commonly used for metabolite separation
while Nuclear Magnetic Resonance (NMR) and Mass Spectrometry (MS) have been used as tools to elucidate the structure of compounds. This
review intends to discuss current systems in use for co-culture in addition to its advantages, with discourse into the investigation of specific
techniques in use for the detailed study of secondary metabolites. Further advancements and focus on co-culture technologies are required to fully
realize the massive potential in synthetic biological systems.
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1. INTRODUCTION

Co-culture  systems  are  central  to  the  progression  of
synthetic  biology  and  are  one  of  the  best  methods  for  the
production of bioactive secondary metabolites. Higher plants
such  as  ginseng  have  been  shown  to  have  various  bioactive
effects on human health and their secondary metabolites have
been  established  through  co-culture  on  a  large  scale  [1].
Secondary  metabolites  have  been  the  focus  of  research  as
compared to primary metabolites due to their conferred biolo-
gical  effects  on  other  microorganisms  [2].  Marine-derived
fungal-bacterial  communities  have been  found to be a promi-
sing origin of novel secondary metabolites. Oh et al. observed
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that  the  co-cultivation  of  a  marine  fungus  identified  as
Emericella  parvathecia  and  the  actinomycete  Salinispora
arenicola  led to  a  100-fold production of  emericellamides A
and B by the fungus [3]. Fungal co-culturing with B. cinerea
(phytopathogenic fungus) has proven to be a successful way of
inducing antifungals against both human and plant pathogens
[4].  In  another  example,  co-cultivation  of  the  fungal  isolate
MR2012 with the bacterial strain C34 led to the production of
luteoride D, a new luteoride derivative and pseurotin G, a new
pseurotin derivative in addition to the production of terezine D
and  11-O-methylpseurotin  A  which  were  not  traced  before
from this fungal strain under different fermentation conditions.
Furthermore, when the fungus MR2012 was co-cultivated with
the bacterial strain C58, the main producer of chaxapeptin, the
titre of this metabolite was doubled [5]. Secondary metabolites
are usually produced during or end of the stationary phase of
growth  and  are  not  involved  in  the  normal  growth,  develop-
ment and reproductive process of living organisms. In a study
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carried  out  by  Sonnenbichler  et  al.  his  results  showed  the
effectiveness of co-cultures where the production of a secon-
dary metabolite in one organism takes place after sensing of a
secondary  metabolite  produced  by  another  organism  [6].
Secondary metabolites, including antibiotics, exert effects that
will function as competitive weapons in the form of repellents
and toxins, apart from functioning as metal transporting agents
and  symbiotic  agents  between  different  microorganisms  [7].
Alkaloids, terpenoids, flavonoids and polyketides are some of
the examples for secondary metabolites. Apart from that, co-
culture also serves as a biomimetic scaffold. For example, as
bone grafts  have significant  limitations in successful  regene-
ration, bone tissue engineering with co-culture of various cell
types  has  been  explored  as  an  alternative.  For  example,  co-
culture  of  human-induced  Pluripotent  Stem  Cells  derived
Mesenchymal  Stem  Cells  (hiPSC-MSCs)  and  macrophages
(hiPSCmacrophages)  on  hydroxyapatite-coated  PLGA/PLA
(HA-PLGA/PLA)  scaffolds  promoted  in  vitro  and  in  vivo
mature bone formation [8]. To observe the natural interactions
between microorganisms, the co-culture method is widely used
to monitor the action and effect of these secondary metabolites
towards their opponents. Co-culturing enables the development
of  an artificial  microbial  community which demonstrates  the
competition  between  microorganisms  within  the  same
environment. This method has been widely used as evidenced
by the increase of publications every year from 1950 to 2013
[9]. Co-culture is especially useful in drug research because it
allows  new  and  rare  compounds  to  be  synthesized  [9].  Co-
culture also stimulates specific biosynthetic pathways that are
triggered when cultures are grown together, mainly related to
cellular defenses. This allows for a fundamental understanding
and documentation of cell-cell and cell-host interactions. In the
study of lung tissue remodeling, new therapies for various lung
diseases  require  the  development  of  an  in  vitro  lung  model.
Such a model is the co-culture of multiple types of cells (such
as  fibroblasts,  epithelial  cells,  and  endothelial  cells).  This
enables  direct  interactions  to  occur  between  epithelial  cells,
mesenchymal cells, and their Extracellular Membrane (ECM)
components  [10].  In  toxicological  studies  mainly  on  neuro-
protection,  co-culture  combining  human  neuronal  cells  and
glial  cells  showed improved sensitivity  due to  the  functional
neuron-astrocyte metabolic interactions [11]. Co-culturing also
activates  genes  which  are  normally  not  expressed  under
standard laboratory conditions and are crucial in identifying the
secondary  metabolites  of  bacteria,  fungi  and  Actinobacteria
[12].  These  silent  genes  are  transcribed  under  the  induced
stress conditions in co-culture and in turn lead to the accumu-
lation  of  cryptic  compounds  that  are  not  detected  in  axenic
cultures of the producing strain. Therefore, we can deduce that
the activation of cryptic gene clusters in microbes in co-culture
experiments is a means of survival strategy due to the compe-
tition  or  antagonism [13].  As  an  example,  filamentous  fungi
metabolites  can  be  applied  as  anticancer  or  antibiotic  subs-
tances  but  in  laboratory  conditions,  only  some  biosynthetic
genes  are  transcribed.  Therefore,  co-cultivation  of  two  plant
beneficial  fungi  was  used  to  synthesize  novel  secondary
metabolites  not  normally  grown  in  standard  single  cultures
[14].  In  the  study  of  secondary  metabolite  accumulation  in
Rumex gmelini Turcz, results indicated that bioactive secon-
dary metabolite was significantly enhanced when co-cultured

with its endophytic fungi [15]. Co-culture with Tsukumurella
pulmonis or Corynebacteria glutamicum was found to activate
a novel pathway in a species identified as Streptomyces endus
S-522,  giving  rise  to  a  new  heterocyclic  chromophore-con-
taining  antibiotic  named  alchivemycin  A.  Monoculture  of  S.
endus  did not yield the same compound, nor did exposure to
filter-sterilized  media  from  mycolic  acid  bacterial  culture.
Production  of  alchivemycin  A,  therefore,  appears  to  require
cell:cell contact between S. endus and the coryneform bacteria
[16]. To further study the metabolite induction, different ana-
lytical techniques are commonly applied according to the spe-
cificity  and  sensitivity  of  the  metabolites.  Examples  of  such
techniques  are  High-Performance  Liquid  Chromatography
(HPLC), Mass Spectrometry (MS), Thin Layer Chromatgraphy
(TLC)  or  in  combination,  HPLC-MS.  The  present  review
mainly  aims  to  provide  a  discourse  about  the  currently  used
systems  for  co-cultures  including  induction  and  the  techno-
logies employed for the separation and structural elucidation of
secondary metabolites.

2. CO-CULTURE SYSTEMS AND TECHNOLOGIES

Interactions between two different cells provide the signals
that are necessary for organization, differentiation, and homeo-
stasis.  The standard parameter  for  the  co-culture  system was
having a barrier in place for separation of the cells. In the study
of the human air-blood barrier, newly establish 3D co-culture
model of macrophages and epithelial cells with functional tight
junctions appear as a valuable tool for safety and permeability
studies in developing inhalational nano-pharmaceuticals [17].
In  synthetic  biology,  the  techniques  developed  are  relatively
inexpensive  to  appeal  to  users  and  are  commonly  accessible
within most laboratories. Monocultures on their own, may not
be able to provide complete and comprehensive information;
hence,  co-culture  techniques  would  be  essential  for  studying
the cell-cell interaction. The populations of interest would be
mixed perfectly or separated partially depending on the experi-
mental set-up. Overall, choosing a particular mode to separate
the cell populations would modify the extent of interactions of
the population. The method used to separate populations needs
to  be  chosen  carefully.  For  instance,  if  the  populations  are
dependent  on each other  for  substance exchange,  the  perme-
ability of  materials  should be taken into consideration as the
diffusion  rates  between  modes  vary  differently  [18].  For
example,  the  required  nutrients  cannot  be  exchanged  if  the
diffusion  rates  are  too  low.  But  it  is  also  possible  that  the
nutrients  cannot  be  exchanged  as  the  diffusion  rates  are  too
high when one population secretes toxic substances to another
population [19]. A mixed culture basically means that different
cell  populations  arein  direct  contact  with  each  other.  Direct
contact is sometimes needed in eukaryotic cells and mamma-
lian tissue to maintain their physiological behavior [20].

The contact between cells is controlled carefully through
several  techniques,  for  instance,  microfluidics  [21,  22],  cell
immobilization  [23]  and  cell  micropatterning  [24,  25].  The
micropatterning  will  affect  the  fate  of  the  culture  because  it
determines  the  extent  of  separation  between cell  populations
and  their  diffusion  rates.  William et  al.  [26]  used  a  vascular
perfusion bioreactor  to  allow communication and to  regulate
vascular  function and  development. Albrecht et al. [27] demo-
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Fig. (1). Schematic representation of co-culture technologies.

nstrated a method using dielectrophoretic forces for the rapid
formation of high resolution three-dimensional cellular struc-
tures within a photopolymerizable hydrogel. By adjusting cell-
cell interactions in three-dimensional clusters, Albrecht et al.
showed the first evidence that micro-scaled tissue organiza-tion
regulates bovine articular chondrocyte biosynthesis. In another
example,  in the field of transplantation,  co-culture studies of
pancreatic islet  cells  with Mesenchymal Stem/ Stromal Cells
(MSCs)  showed  results  of  potentially  improving  islet  cell
quality  loss  during  culture  as  MSCs  can  enhance  β-cell
viability  and  function  and,  consequently  islet  graft  survival
[28]. Cell populations can be separated by a physical barrier or
a  gap  which  will  be  removed  subsequently  in  cell  migration
assays.  Separation,  sometimes  may  not  need  to  be  imposed
because different  niches  of  different  populations  will  lead to
physical separation naturally. This occurs, for instance, when
one  population  is  in  suspension  while  another  is  adherent  to
solid support [29], or one population is grown in a liquid medi-
um while  another  is  at  the  medium-air  interface  [30].  Gene-
rally,  cells  separate  by  differences  in  the  local  environment
such as a concentration gradient [31]. Separation can be achi-
eved using gels [32, 33], semi-permeable membrane [34 - 36]
and microfluidic devices. Byun et al. [37] studied how bacte-
rial  community  behavior  can  be  affected  by  small  physical
perturbations in unexpected ways through convective transport
and  modulation  of  diffusion  of  chemical  communication
molecules and resources. They created microcolonies in drop-
lets  for  the  communication  between  colonies.  Magnetic
particles were trapped inside the droplets, then forced to move
across  the  surface.  Different  types  of  separations  can  occur
between  populations  when  there  are  more  than  two
populations. Bacchus et al. [38] designed a synthetic biology-
inspired  control  device  that  allowed  mammalian  cells  to
receive,  process  and  transfer  information  as  well  as  to
communicate with each other. The same principle is applied in
a  transwell  system  where  communication  between  two  cell
populations occurs in a shared culture compartment.

A high throughput system is useful for the identification of
a proper set of conditions and provides a quick overview for
further  research  into  the  desired  system.  These  include  time
microfluidic devices [32, 34, 35], microdroplets [37] and 96-
well  plates  [18,  39].  Frimat  et  al.  [22]  described  a  highly
parallel microfluidic device For the growth of a single cell co-
culture  system  which  is  used  effectively  to  investigate  the
contact between cells. However, a larger volume is preferred
when  higher  production  is  needed.  Co-cultures  have  been
carried  out  on  solid  supports  such  as  slides  [24,  40],  Petri
dishes [41 - 43] and within cell patterning chambers [27]. The
challenge is  in  maintaining a  well-mixed environment  as  the
volume  gets  larger  and  ultimately  leads  to  instability  of  co-
culture. As a brief overview, a schematic representation of co-
culture technologies can be found in Fig. (1).

The  following  discussion  includes  the  most  commonly
used  co-culturing  methods  such  as  the  microfluidic  system,
petri dish system, transwell system, solid support system and
bioreactor.

2.1. Microfluidic System

2.1.1. Microfluidic Device

The  microfluidic  system  is  made  up  of  PDMS  (poly-
dimethylsiloxane) using 28µm thick SU-8 patterned wafers by
the standard photolithography method. The PDMS is cured at
80ºC  overnight  and  removed  from  the  wafers  followed  by
punching to form inlets and outlets [33]. A thin PDMS layer is
first prepared on a glass coverslip to enclose the microfluidic
structures. It is then treated with plasma and bonded together to
form a sealed PDMS microfluidic device. To build a physical
barrier  that  allows diffusion of  biochemical  factors,  collagen
gel is introduced into the passage of collagen placed between
the central bacteria channel and cell culture channel. To con-
firm the diffusion of biochemical factors from cell culture to
collagen gel and then into the central bacteria channel, FITC-
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conjugated  dextran  is  diluted  in  phosphate-buffered  saline.
Lastly, capturing the image of the fluorescent particles will be
carried  out  in  both  analysis  culture  and  collagen  gel  using  a
high-resolution camera [22].

2.1.2. Droplets Culture System
Encapsulated microbes can grow only if droplets contain

symbiotic  interactions.  The  device  is  made  up  of  slanted  T-
junction to generate droplets and a chamber to hold droplets.
Monodispersed  droplets  are  generated  with  a  single  vacuum
line  at  the  outlet  of  slanted  T-junction.  The  viable  range  of
frequency will be 1-500 droplets/sec. Co-flow of two immis-
cible phases occurs when the frequency exceeds the maximum
range.  The  droplets  generated  are  then  collected  and  held
within the chamber. Up to ~ 1,400 droplets can be packed very
tightly in a 10 mm×5 mm chamber [44]. After the chamber is
filled,  the  vacuum  is  removed  and  the  flow  stops  directly.
Droplets are incubated for 4 days. Unlike other conventional
microfluidic  systems,  this  droplets  culture  system  not  only
reduces  cost  but  also  increase  the  precision  and  accuracy  of
measurements and thereby allowing new experimental appro-
aches. However, the droplets culture system is susceptible to
contamination during delivery, which is a major drawback that
reduces its lifespan.

2.2. Petri Dish System
In a petri dish system, 4 ml of Lysogeny Broth (LB) soft

agar is poured onto a petri dish with a hard LB agar base and
subsequently, bacteria are grown on the surface of it. 15µl of
the  pure  culture  is  placed  in  a  31-point  hexagonal  lattice  to
initialize the plate. During each transfer, the fully-grown plate
is  lightly  pressed  on  the  velvet  and  turned  clockwise  at  any
chosen angle and then pressed for a second time. The plate is
then  turned  randomly  counter-clockwise  and  pressed  for  the
third time. Lastly, the plate is turned randomly clockwise and
pressed for the fourth time.  Finally,  the plate is  then pressed
onto the velvet to complete this ‘mixed up’ sample preparation
[45]. The advantage of the petri dish co-culture method is the
convenience  for  its  users  to  observe  the  interaction  between
two organisms macroscopically. However, it will need a lot of
Petri  dishes,  media  and  incubation  space  if  there  are  many
organisms  to  be  studied.  It  is  also  not  high-throughput  and
time-consuming [46].

2.3. Transwell Co-Culture System
If there are more than two populations, then there is poten-

tial  for  a  different  type  of  separation  among  the  populations
which allows each population to be connected with others in a
defined  way.  Transwell  system  is  designed  to  create  a  cell
culture environment that is similar to that of in vivo state. The
transwell system is also available in different membranes and a
range of pore sizes to meet various experimental requirements.

Firstly,  the  medium  is  added  to  the  culture  plate,  then
medium and cells were added to the inner compartment of the
transwell insert. There are three openings on the side wall of
transwell  insert  for  pipette  tip  access  to  allow samples  to  be
removed or added from the lower compartment.

The plates are then incubated for at least one hour or up to
24 hours at the same temperature according to the requirement

of cells needed to grow. Fresh medium is added to the trans-
well insert and returned to the incubator. The medium level is
checked  periodically  as  a  fresh  medium  can  be  added  if
required.  Cell  monolayers  may  be  stained  and  fixed  using
standard  cytological  techniques.  A  solvent  that  will  dissolve
polycarbonate, polytetrafluoroethylene or polyester should be
avoided. Cutting around membrane edges carefully by using a
scalpel may remove polyester or polycarbonate membrane with
stained  and  fixed  cells  attached  from  transwell  insert.  The
collagen-coated  polytetrafluoroethylene  is  fragile.  Therefore,
careful  handling  is  required  during  removal.  Before  it  is  cut
out,  a  wetted  cellulosic  membrane  serving  as  a  support  for
collagen-coated  polytetrafluoroethylene  is  to  be  placed  in
direct  contact  with  the  underside  of  the  transwell  insert
membrane.

The use of permeable supports in vitro allows the cells to
grow and could  be  studied  in  a  polarized  state  under  natural
conditions  for  epithelial  and  other  cell  types.  For  example,
advancements in tumor cell  biology have incorporated trans-
well-based  models  that  involve  migration,  invasion  and
transendothelial  migration  to  further  study  the  metastatic
cascade.  Advantages  of  such  assays  are  its  low cost,  ease  of
implementation and high throughput. However, it is limited by
its  low  physiological  relevance  and  that  it  can  only  assay
single-cell  motility  [47].

2.4. Solid Support System
This is an easily implemented and inexpensive technique

which  is  based  on  the  use  of  parafilm  insert.  Parafilm  is  an
attractive  choice  because  it  is  cheap,  available  in  most  labo-
ratories, non-toxic and therefore will not affect cell viability in
the  patterning  process,  easy  to  handle,  and  can  cut  into  the
desired  shape.  However,  the  only  concern  would  be  not  all
organisms  were  proven  to  be  effective  to  be  co-cultured
unchanged using this system. Thus, more evidence is needed
before  we  can  use  this  system  widely  [48].  To  produce  a
parafilm insert  that  can fit  into a one well  of  a 96-well  plate
well,  a  6  mm diameter  biopsy  punch  is  used  to  cut  parafilm
into  circular  pieces.  Then,  a  small  sharp  tool  such  as  blunt-
ended  tip  needle  is  used  to  obtain  circular  holes  that  are
required  for  cell  patterning.  The  parafilm  insert  has  to  be
placed  into  96-well  plate  and  the  cells  are  seeded  on  the
parafilm  insert.  The  cells  will  grow  only  on  tissue  culture
polystyrene which is not covered with parafilm. The sample is
incubated at  37°C for  an hour  to  allow the cells  to  stick and
then gently washed off with fresh culture medium.

A  striped  cell  pattern  can  be  used  for  the  cultivation  of
cells apart from the circularly patterned stripe. To generate a
stripe, 20mm x 20mm square of parafilm is cut out and pressed
tightly  on  22mm  x  22mm  glass  coverslip.  Phosphate  Buffer
Saline  (PBS)  is  added  to  ensure  that  the  parafilm  pattern  is
completely submerged and degassed for 5 minutes at 30 psig.
This  is  to  ensure  that  the  liquid infiltrates  the  small  holes  or
stripes  within  the  insert  and  subsequent  cell  patterning  [48].
The films are sterilized in PBS by using UV irradiation for 30
minutes  followed  by  the  removal  of  PBS and  other  parafilm
strips.  The  sample  is  incubated  for  3  hours  at  37°C  and  the
non-adherent  cells  will  be  gently  washed  off  with  the  fresh
culture medium.
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2.5. Bioreactor
Bacteria possess cell walls that can be found outside of the

cell membrane. This elastic yet strong network maintains cell
shape, counteracts osmotic pressure, and serves as a protective
barrier. The cell wall is composed of Peptidoglycan polymers
in both Gram-positive and Gram-negative bacteria.

The bioreactor body consists  of two chambers which are
made up of polycarbonate.  Two strains are separated by pla-
cing  a  microporous  filter  membrane  between  them  through
which exchange occurs. The external magnetic field drives the
propeller of agitators. Temperature and pH are under automatic
feedback control. Two-chamber configuration will easily help
to monitor the biomass in each chamber and allows indepen-
dent  control  of  different  oxygen  conditions.  During  fermen-
tation, the bioreactor also controls the biomass development of
those  individual  strains.  For  example,  Kim  and  coworkers
demonstrated a bioreactor made up of polycarbonate with two
chambers  separated  by  a  microporous  filter  membrane,  can
control the biomass co-culture development of Saccharomyces
cerevisiae  and Scheffersomyces  stipitis  by  adjusting the  ope-
ration time, dilution rate and feed concentration. The bioreactor
thus ensures a quantitative and systematic study of co-culture
systems.  However,  the  drawback  of  using  bioreactor  may
include lots of optimisations steps to be conducted to optimize
the  co-culturing  for  the  two  organisms.  It  is  also  noted  that
there  might  still  be  a  limited  understanding  of  the  dynamic
interaction between the microorganisms [49].

3.  CHEMISTRY  TECHNIQUES  USED  TO  MEASURE
CO-CULTURE METABOLITES

Co-culture’s higher efficiency increases the yield of secon-
dary metabolites via induction where new and rare metabolites
may  be  produced  as  compared  to  pure  culture  methods.
Genome sequencing has revealed possible increased structural
diversity  of  secondary  metabolites  suggesting  that  microbial
synthetic  pathways  are  silent  under  standard  laboratory
conditions [9]. To further study the metabolite induction in the
microorganisms’  interaction,  several  chemistry-based  tech-
niques  such  as  High-Performance  Liquid  Chromatography
(HPLC), Mass Spectrometry (MS), Thin Layer Chromatogra-
phy  (TLC)  or  combinations  such  as  HPLC-MS  are  used.
However, not all analytical methods are able to detect all kinds
of metabolites. Some of them are specific, which Only detects
the presence of particular metabolites while others such as MS
and  Nuclear  Magnetic  Resonance  (NMR)  Helps  to  elucidate
the structural information of the isolated compounds [9]. NMR
and  MS  are  the  common  techniques  used  for  metabolomics
studies.  However,  due to the current  technological  advances,
MS-based  methods  have  been  indicated  to  have  more
advantages  especially  in  terms  of  sensitivity  over  NMR [50,
51]. This has propelled MS into becoming the more preferred
method over NMR for metabolomics. In addition, amongst the
MS technologies, LC-MS and GC-MS are the most popularly
used methods for metabolite separation before the samples are
passed  into  the  MS  [52].  LC  is  the  most  commonly  used
chromatography-MS strategy for analysis due to its wide range
of metabolite coverage [39 - 55].

LC-MS is  able to collect  both quantitative and structural
information of the metabolites [54]. It also works as a versatile

tool in metabolite profiling studies by undertaking most of the
analytical tasks [54]. However, it offers lower reproducibility
in view of retention times as compared to that of GC-MS [56].
Besides,  High-Pressure  Liquid  Chromatography (HPLC)-UV
has emerged as the most simple and popular among all HPLC
detectors  [57].  Although  HPLC-UV  is  not  suitable  for  NPs
without UV chromophores, it has the best quality in terms of
sensitivity,  linearity,  versatility  and  reliability  among  the
currently  developed  LC  detectors  [58].

3.1. Nuclear Magnetic Resonance (NMR)

NMR has been used mainly to determine the structure for
unknown compounds. It is non-destructive, useful to apply on
intact  biomaterials  and  provides  perfect  information  for
determining  the  molecular  structure  [59].  It  does  not  require
sample  pretreatment  and  separation  for  the  analysis  of  bio-
fluid, and hence, is relatively straightforward [60]. NMR was
also  used  in  showing  the  suppression  of  certain  natural  pro-
ducts  [61].  It  is  able  to  identify  and  quantify  compounds
directly to a range of abundant analytes [54]. Other than that, it
requires  only  minimal  specimen  preparation  and  causes  low
disturbance  prior  to  the  quantitative  spectral  acquisition  step
[62].  However,  its  threshold  is  limited  only  to  the  most
abundant metabolites due to the limitations in sensitivity [53].
Two  most  common  types  of  NMR are  the  Proton  NMR and
Carbon  NMR  and  their  key  advantage  is  that  it  is  nondes-
tructive, unbiased and quantitative.

3.2. Mass Spectrometry (MS)

Analytically, MS-based methods are useful because of its
better  sensitivity  and  Low  cost  requirement  as  compared  to
NMR  [53,  54].  It  is  able  to  detect  the  metabolites  that  are
below the detection thresholds of NMR spectroscopy [53, 63].
Although  MS-based  methods  may  be  useful  for  generating
metabolic  data,  its  detectability  and  quantitation  could  be
affected by the differential ionization efficiency in the complex
[64].  MS  fingerprinting,  however,  does  not  require  any
chromatographic  separation  step  prior  to  analysis  [50].  Like
NMR, it  is  Suitable for work on untargeted metabolomics as
these  methods  aim  to  measure  the  amount  of  metabolites  as
comprehensively as possible.

3.3. Liquid Chromatography-Mass Spectrometry (LC/MS)

LC/MS  is  broadly  used  to  perform  untargeted  metabo-
lomics especially in life sciences and bioanalytical sectors due
to its ability to detect and separate a wide range of molecules
[53]. Furthermore, LC/MS requires only a minimal amount of
sample [63]. It can also prevent chemical derivatization [65].
Besides that, it provides information about an accurate mass to
be used as a query in most of the NP database [66]. Further-
more, in some cases, LC-UV/Vis-MS had been chosen as the
preferred dereplication method for small molecules over LC-
UV/Vis  Diode  Array  Detection  (DAD)  as  detecting  the  pre-
sence of conjugation has been the major feature of the UV/Vis
spectra  [67,  68].  Electrospray  Ionization  (ESI)  is  the  most
widely  applied  method of  small  molecule  ionization  for  LC-
MS-based  metabolomics  studies.  It  is  known  as  the  “soft”
ionization  technique  that  facilitates  the  mass  spectrometric
detection of non-volatile and high-mass analytes [69]. ESI can
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improve  volatility  without  chemical  derivatization  and  mini-
mizes  analyte  fragmentation  which  helps  in  the  analytical
interpretations of complex mixtures [69]. However, there are
five  major  disadvantages  for  LC-MS  screening  with  Atmos-
pheric Pressure Chemical Ionization (APCI) or ESI. Although
its  sensitivity  is  very  much  compound-dependent,  whereas
some of the compounds were unable to ionize in positive and/
or  negative  polarity;  this  led  to  causing  false  assignment  of
molecular  mass  from  co-eluting  impurities,  resulting  in  and
causes ion suppression [66]. It is also difficult to determine the
pattern of adducts for the correct assignment of the molecular
ion [70 - 72].

Furthermore,  different  LC-MS  systems  have  different
adducting  patterns  and  this  may  change  during  a  sequence
because of sodium extraction from solvent glass bottles [71, 73
- 76]. Some compounds predominantly form di- and trimeric
ions which can further complicate the assignment. Moreover,
some compounds fragment easily Contributing to an erroneous
assignment of their molecular mass [71, 72].

3.4. High-Performance Liquid Chromatography (HPLC)
Analytical  strategies  based  on  LC  can  be  applied  to

targeted micro-isolation of selected NPs. It allows the induced
secondary metabolites to be further identified and assessed for
their bioactivity [77]. HPLC is a powerful method for separa-
ting NPs in complex matrices without the need of a complex
sample  preparation  [78]  for  selective  detection  and  quantifi-
cation  or  general  profiling  [58].  There  are  several  HPLC
detectors,  namely UV visible,  light  scattering,  Corona disch-
arge,  fluorescence,  and  radioactive.  UV  detector  is  the  most
common  example  of  an  analyte-specific  property  detector.
Mobile  phase  solvent  and  buffer  selection  are  important  for
optimum UV sensitivity and linearity. However, the UV dete-
ctor  requires  a  chromophore.  Further,  light  scattering  works
well  with  the  gradient  HPLC.  Corona  discharge  provides  a
consistent  response  but  requires  the  use  of  volatile  buffers.
Fluorescence detection can be more sensitive and selective. In
addition, the radioactivity detector is gradient-compatible and
has a wider response range compared to other detectors [79]. It
is well-known that there is currently no HPLC detector that can
efficiently detect all  types of NPs in a given extract within a
single analysis step [80]. The resolution and throughput of LC
can  be  effectively  improved  through  Ultra-High  Pressure
Liquid  Chromatography  (UHPLC)  by  using  sub-2µm  silica
beads [81]. The small particle size in UHPLC column allows it
to analyze microbial extracts in a shorter time [82]. The high
throughput differential Ultra-High Pressure Liquid Chromato-
graphy-Time-Of-Flight  Mass  Spectrometry  (UHPLC-TOF-
MS) is a metabolite-profiling technology that serves as a fast
and efficient tool for the determination of metabolome modifi-
cation  in  complex  matrices  [66].  It  presents  an  efficient
comparison of monocultures and their corresponding co-culture
metabolome fingerprints to highlight de novo induced biomar-
kers  [83].  This  approach  has  efficiently  highlighted  a  large
number  of  features  detected  such  as  ion  intensities  in  the
particular  co-culture  studied  [84].

3.5. Gas Chromatography (GC)
GC was used to analyze low molecular weight and volatile

components at temperatures up to 250ºC [52] through deriva-
tization  [65].  GC  is  able  to  identify  metabolites  via  MS
information and only a small amount of samples are required to
run  the  analysis.  In  addition,  it  has  a  higher  resolution
reproducibility  [53].  GC  is  also  relatively  feasible  economi-
cally [85]. Conversely, it does possess several limitations. Its
sample preparation time is relatively long and can be prone to
error.  There  may  also  be  some  issues  regarding  byproduct
formation and degradation. Besides that, non-volatile metabo-
lites  can  be  transformed  to  different  or  unwanted  forms  of
derivatives  during  the  derivatization  reaction,  leading  to  the
production of a specimen having different forms of the same
parent metabolites existing together [53]. GC/MS is suitable to
separate  and  detect  polar  compounds  like  amino  acids  and
sugars,  and  non-polar  compounds  like  fatty  acids  [86,  87].
GC/MS  is  efficient  in  terms  of  reproducibility  in  retention
times  and  mass  spectra,  and  reference  databases  that  can
identify many compounds including primary metabolites,  etc
[56, 86, 88]. Non-volatile, large or heat sensitive compounds
cannot be detected using the GC-MS analysis [62, 65, 89]. Gas
Chromatography with A Flame Ionization Detection (GC-FID)
is one of the popular methods because it is precise, reliable and
inexpensive [90]. Flame Ionization Detection (FID) is used to
determine  the  concentration  of  an  analyte  based  on  its  total
carbon content [69]. It also has a higher scanning speed com-
pared to MS.

CONCLUSION AND FUTURE PROSPECTS
Co-culture methods are used to study a population of cells

from different cell types and provide more realistic perception
into  the  biological  processes  such  as  tissue  regeneration  and
tissue repair [91]. Co-cultures are said to present a whole range
of  advantages  over  monocultures  in  terms  of  modularity,
scalability, predictability, and stability, as their systems will be
fundamental to synthetic biological progress. It is used to study
both natural and synthetic cell-cell interactions and potentially
engineer new such interactions. Furthermore, such studies will
highlight new pathways for re-engineering even in difficult-to-
culture organisms [92]. The other advantage co-cultures have
over monoculture is that it  has the ability to analyze a wider
range of  components  such as  those that  have high molecular
mass, and are thermally labile [93]. However, they are bound
to have potential challenges that pose a limiting factor in such
advances in technology. Firstly, synthetic biology is constitu-
tionally  an  interdisciplinary  field  where  there  is  no  unified
terminology for such experiments, as similar terms may have
different definitions in such a diverse field [94]. Also, indus-
trial scale-up, medical and environmental applications require
in-depth data collection and characterization [95] and not  all
methods of data acquisition may be compatible with eventual
industrial, medical or environmental applications. Nonetheless,
co-cultures  can cover  so  many levels  of  biological  hierarchy
like organs and ecosystems, indicating that investment in the
development  of  technologies  will  enhance  research  in  more
than one area [96]. Availability of co-culture technology could
allow  answering  a  huge  range  of  biological  questions.  It
represents  the  link  between  genetic  engineering  and  the
application of complex systems. Hence, co-culture systems and
technologies, in the future, will have numerous applications in
biological  studies  in  which  natural  or  synthetic  interactions
between cell populations are of utmost importance.
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