Long-term Effects of Elevated CO$_2$ on the Proliferation of Cyanophage PP

Cheng Kai1,2, Shang Shi Yu1, Gao Ying2, Zhao Yi Jun1 and Huang Z. Guang3*

1Key Laboratory of Ecological Remediation of Lakes and Rivers and Algal Utilization of Hubei Province, College of Resources and Environmental Engineering, Hubei University of Technology, Wuhan 430068, China

2Department of Life Sciences, Huazhong Normal University, Wuhan 430079, China

3South China Institute of Environmental Sciences, Guangzhou 510655, China

Abstract: Much of the research effort focused on the impacts of elevated CO$_2$ on marine algae but very little work was done on freshwater algae, or on freshwater algal viruses. In this paper, we studied the impacts of elevated CO$_2$ on the infection of a freshwater cyanobacterium (wild Leptolyngbya sp.) by cyanophage PP that have a wide distribution in China. In a 12-month experiment, logarithmic-phase host cells were infected with cyanophage PP at 370 or 740 µatm pCO$_2$ concentrations; the burst size, lysing cycle and proportion of adsorption were measured. The results showed that the proportion of adsorption, and burst sizes of cyanophage PP increased significantly with elevated CO$_2$ concentrations, and the proportion of adsorption increased gradually within the 12 months with the gradual increment of cell width. The result indicated that elevated CO$_2$ concentration may have significant influences on the proliferation dynamics of cyanophage-host systems, and some of the influences may increase gradually in a long-term.

Keywords: Adsorption, burst size, global change, phage–host system.

1. INTRODUCTION

Atmospheric CO$_2$ has increased by 25% in the past 200 years, and projections indicate that it may reach 750 µatm pCO$_2$ by 2100 [1]. Aquatic ecosystems are an important component of the biosphere, where the amount of CO$_2$ fixed by planktonic algal photosynthesis accounts for approximately 50% of the total fixed by the entire biosphere. This proportion is expected to increase further with rising temperatures [2].

Algal viruses control the community structure, contribute toward the abundance of planktonic algae, regulate the nutrient cycling of certain elements [3], and mediate the evolution of their hosts via horizontal gene transfer [4].

The ecological functions of algal viruses depend on their abundance, and their abundance is closely related to the levels of virus proliferation [5]. These processes occur within host cells and are affected by the host physiological status. Much research has focused on the impacts of elevated CO$_2$ on marine and freshwater algae [6-8], but little is known about cyanophage–host systems, especially in freshwater. Thus, the present study aimed to improve our understanding of the effects of high atmospheric CO$_2$ on the proliferation of freshwater cyanophage PP.

2. MATERIAL AND METHODS

Phage-host system and culture conditions: Cyanophage PP is a podovirus with linear, double-stranded DNA, which has been frequently detected at high levels in many eutrophic lakes in China [9]. The following experiments used a cyanophage PP lysate with >106 PFU mL$^{-1}$ (PFU, plaque-forming units), which was stored at 4 °C. The host cyanobacterial strain used was isolated from Donghu Lake (the East Lake) (30°31′N, 114°22′E) in Wuhan, China and identified by 16S rDNA analysis as Leptolyngbya sp. (the identity score is up to 99% in Genebank). The host was cultured in AA medium at 28 °C, with 3000 lx, and 14:10 h day/night conditions in an ambient CO$_2$ chamber (to supply a CO$_2$ concentration of approximately 370 µatm pCO$_2$, which was measured using a Telaire 7001 CO$_2$ sensor (USA), or in a 740µatm pCO$_2$ chamber. Within 1 year, the culture was re-inoculated by adding 35 mL of the cyanobacterium to 115 mL AA medium every 14 days, and the following one-step growth curve, adsorption, and photoreactivation experiments were repeated at 1, 2, 3, 6, and 12 months with in 1 year. Doubling the CO$_2$ concentration significantly accelerated host growth (P < 0.01, paired samples t-test), thus the cell densities of the cultures maintained in two different CO$_2$ concentrations were normalized to 5.6×10^5 cells mL$^{-1}$ at pH 7.6 by adding AA medium before the following experiments.

One-step growth experiment: One-step growth experiments were used to measure the lytic cycle and the average burst size, where 50 mL of prepared host cell suspensions were mixed with the cyanophage lysate at MOI of 10$^{-3}$(MOI, 1874-0707/15 2015 Bentham Open
multiplicity of infection). The MOI is low enough to avoid numerous phages attach to a single trichome even after the first generation offspring cyanophages were released. After 30 min incubation without shaking to allow adsorption, the mixtures were centrifuged at 10000 ×g for 10 min at 28 °C. The pellets were then collected and washed twice in AA medium, before the washed precipitates were resuspended in 50 mL AA medium and incubated in the chambers, as described above. For the plaque assays, 1 mL samples from the culture were plated at 0, 30, 60, 90, 120, 180, and 240 min. After constructing the one-step growth curves, the average burst size was determined as the ratio of the titer after the burst relative to the initial titer (at 0 min), and the corresponding time duration was recorded as the lytic cycle.

Adsorption experiment: In the adsorption experiments, an adsorption mixture was prepared by adding the cyanophage lysate to the prepared host cell suspensions at MOI of 10⁻⁴ (the MOI is low enough to avoid numerous phages attach to a single trichome). The initial titers of the mixtures were measured using a plaque assay and recorded as P₀. The mixtures were then incubated without shaking in the chambers described above. To measure the extent of adsorption, 3 mL aliquots of the adsorption mixture were sampled at 15, 30, and 60 min. The samples were centrifuged at 12000 ×g for 10 min at 4 °C. Then, the supernatant containing free cyanophages was removed, and the titers of the pellets containing adsorbed cyanophages were determined and recorded as Pt. The proportion adsorbed at time t (At) (%) was calculated using the following formula: At = Pt/P₀.

Statistical analysis: 3 biological replicates were carried out in the above experiment, and SPSS 20.0 (IBM, USA) software was used for following tests: Paired sample t-test was performed to measure the differences between tested group and control group. ANOVA (with LSD post-hoc test) was performed to measure the differences among months, and Spearman’s correlation test was performed to establish a relationship between proportion of adsorption and cell width.

3. RESULTS

Burst size and lytic cycle: According to the one-step growth curves (Fig. 1), the cyanophage titer was detected 120 min after adsorption and it reached its maximum at approximately 180 min, regardless of the CO₂ concentration. In contrast to the lytic cycle, the burst size (Table 1) was significantly higher when the CO₂ concentration was doubled than that in the controls (P < 0.05). From Table 1, doubled CO₂ seemed to cause a gradual increase in the burst size and cell width from the 1st month to the 12th month. However, ANOVA indicated that the difference in the burst size was not significant among months (P > 0.05), and the correlation between the burst size and cell width at the doubled CO₂ conditions was not significant too (P > 0.05).

![Fig. (1). One-step growth curves of cyanophage PP at different CO₂ concentrations (mean ± SD).](image)

<table>
<thead>
<tr>
<th>Culture Time</th>
<th>370 μm</th>
<th>740 μm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Burst Size (PFU/Cell)</td>
<td>Cell Width (μm)</td>
</tr>
<tr>
<td>1 month</td>
<td>93 ± 4</td>
<td>2.51±0.02</td>
</tr>
<tr>
<td>2 months</td>
<td>84 ± 5</td>
<td>2.48±0.02</td>
</tr>
<tr>
<td>3 months</td>
<td>99 ± 11</td>
<td>2.44±0.08</td>
</tr>
<tr>
<td>6 months</td>
<td>93 ± 18</td>
<td>2.50±0.02</td>
</tr>
<tr>
<td>12 months</td>
<td>87 ± 8</td>
<td>2.49±0.03</td>
</tr>
</tbody>
</table>
Proportion of adsorption: The results of the adsorption experiments are shown in Fig. (2). The proportion of adsorption that occurred when the CO$_2$ level was doubled was significantly higher than that in the controls (P < 0.05). Moreover, based on the proportion of adsorption at 60 min, it is clear that doubled CO$_2$ caused a gradual increase in the proportion of adsorption from the 1st month until the 12th month. ANOVA also indicated that the difference in the proportion of adsorption at 60 min was significant among months (P < 0.05). In addition to the continuous increase in the adsorption capacity throughout the year, a continuous increase in the cell width was observed during the year (Table 1, P < 0.05, ANOVA), and there exists a significant positive correlation between the proportion of adsorption at 60 min and cell width at the doubled CO$_2$ conditions (P < 0.05).

4. DISCUSSION

Adsorption and the burst size, which are important indicators of cyanophage infectivity, can be affected by the host’s physiological status [10] in numerous ways. Firstly, viruses had higher adsorption rates and burst sizes when the host was supplied with sufficient nutrients or was in the rapid growth phase [11], and we observed a doubling the CO$_2$ concentration significantly accelerated host growth in the present study. Secondly, enlarged host cells may provide a greater surface area for adsorption [12], and we observed a significant positive correlation between the proportion of adsorption and cell width at the doubled CO$_2$ conditions in the present study.

Many studies have reported the effects of elevated CO$_2$ concentrations on marine and freshwater algae, but only three previous studies have considered the effects of different CO$_2$ concentrations on algal viruses. In a 30-day mesocosm experiment, Larsen et al. [13] showed that the abundance of small viruses (mostly phages) did not respond to changes in the CO$_2$ levels, whereas the abundance of the *Emiliania huxleyi* virus and an unidentified large dsDNA virus decreased with increasing CO$_2$ levels. In another short-term (only a few weeks) laboratory batch monoculture experiment [14], no impact was found on viral lysis of *Phaeocystis pouchetii* while increased burst size and slightly delayed lysis was observed for *E. huxleyi* with increased CO$_2$. In a 39-day laboratory batch culture experiment [15], CO$_2$ and NaOH were used to adjust the pH concentration, where the eclipse period of cyanophage S-PM2 increased as the pH decreased, whereas the latent period and burst size decreased. The present study was conducted over the course of a year, and a continuous increase in the adsorption capacity was observed throughout the year, which suggests that long-term experiments are more representative and useful than short-term experiments for understanding the effects of long-term global change [14].

Changes in the species composition of freshwater phytoplankton communities have already been observed in areas with elevated CO$_2$ levels [16]. However, the roles of phytoplanktonic viruses in these changes are poorly understood. The contributions of phytoplanktonic viruses to changes in aquatic ecosystems during global change needs to be studied in terms of significant shifts in viral infectivity (as observed in the present study) and the species-specific viral response to increasing CO$_2$ concentrations [14]. It is also necessary to establish more accurate climate and ecosystem models [15], which have previously excluded the abundant phytoplanktonic viruses and their major ecological functions [5].

CONCLUSION

Elevated CO$_2$ concentration influenced the infectivity of cyanophage PP significantly, and some of the influences may increase gradually in a long-term.

CONFLICT OF INTEREST

The authors confirm that this article content has no conflict of interest.

ACKNOWLEDGEMENTS

This work was supported by National Science Foundation of China [grant numbers 31200385, 31370148] and Science Foundation of Hubei Province [2013CFA108].
REFERENCES

Received: October 11, 2014 Revised: December 30, 2014 Accepted: December 30, 2014

© Kai et al.; Licensee Bentham Open. This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.