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Abstract: Articular cartilage is characterized by its poor capacity for self-repair. Once articular cartilage is injured and 

defected, it cannot be spontaneously repaired and finally develops osteoarthritis (OA). OA is a major leading cause of 

severe activity limitations and disability, resulting in worldwide socio-economical burden. At present, there is no 

established therapy for adequate repair of damaged articular cartilage. Researchers have therefore attempted to establish 

the cartilage tissue engineering as an effective alternative treatment of cartilage repair. However, the articular cartilage 

repair still remains a clinical and scientific challenge. 

In cartilage tissue engineering, it is believed that cell source, scaffold and growth factors are three key factors for the 

desired result of cell therapy for the damaged cartilage repair. However, increasing evidence is showing that these key 

factors are not enough and other factors may be required to achieve the optimal outcome. Since normal articular cartilage 

is always subjected to mechanical stress in daily activities, mechanical stress has attracted much attention as fourth key 

factor in cartilage tissue engineering. However, the real impact of mechanical stress on cartilage tissue engineering is far 

from complete understanding.  

In this review, we summarize the accumulating knowledge of the effect of mechanical stress on cartilage tissue 

engineering and discuss about the challenges for the future. 
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INTRODUCTION  

 Articular cartilage, consisting of chondrocytes and hydra-
ted extracellular matrix (ECM) such as type II collagen, 
glycosaminoglycan (GAG) and water is characterized by its 
poor capacity of self-repair due to the lack of blood supply 
and nerves [1]. Unfortunately, once articular cartilage is 
injured and defected, it cannot be spontaneously repaired [2]. 
Indeed, the damage of articular cartilage caused by trauma 
often accelerates its degenerative process and finally deve-
lops osteoarthritis (OA) [3]. 

 OA, one of the most common joint diseases, seriously 
interferes with activity of daily living (ADL) and quality of 
life (QOL). Indeed, approximately 20 million of people in 
the United States are affected by OA [4]. The World Health 
Organization (WHO) estimates that approximately one in 
every ten people over 60 years in the world suffers OA [5]. 
OA is therefore one of the major leading causes of severe 
activity limitations and disability, thus resulting in world-
wide socio-economical burden.  

 Once severe OA is established, currently available 
exclusive treatment is prosthetic joint replacement. However, 
prosthetic joint replacement has just “replaced”, not 
“repaired” the involved joint, and it has several potential 
problems such as loosening and infection [6-9]. In turn, to  
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establish the optimal treatment for OA, repair of the 
damaged cartilage is essential. A number of therapeutic tech-
niques for damaged cartilage have been developed, e.g., 
drilling

 
[10], microfracture [11], osteochondral graft [12], 

periosteal graft [13], or autologous chondrocyte implantation 
(ACI) [14]. However, a successful articular cartilage repair 
still remains a clinical and scientific challenge. 

 In turn, the progress in the field of tissue engineering has 
shown the possibilities for the treatment of cartilage defects 
[14]. We have summarized representative animal studies of 
tissue engineering for articular cartilage defect using chon-
drocytes (Table 1) [15-26]. Since the pioneering work of the 
ACI, a diversity of cell therapies has been invented [27-29].  

 In 1960s, it was found that chondrocytes cultured in 
monolayer condition rapidly dedifferentiated and lost their 
characters [30, 31]. After the dedifferentiation of chondro-
cytes, the cells lose the ability of maintaining the cartilage-
specific ECM such as GAG and type II collagen, whereas 
they acquire fibroblastic morphology and mainly synthesize 
type I collagen [32-34]. Subsequent studies [34, 35] have 
revealed that three-dimensional (3D) culture with scaffold 
(i.e., collagen gel) reduces this dedifferentiation process 
(Fig. 1). However, 3D culture could not completely elimi-
nate cell-dedifferentiation. Additional modifications which 
ameliorate the quality of tissue-engineered cartilage were 
required. Several factors were tested to increase the quality 
of tissue-engineered cartilage [32-44]. In turn, it is believed 
that cell source (i.e., mesenchymal cell) [35-39], scaffold 
(i.e., collagen gel, agarose gel) [32-34] and growth factors 
(i.e., basic fibroblast growth factor (bFGF), bone morpho-
genetic protein-2, insulin-like growth factor-I, transforming 
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growth factor- 1) [40-44] are three key factors for the better 
quality of tissue-engineered cartilage, which govern the 
result of cell therapy for the damaged cartilage repair [32-
44]. However, accumulating results have shown that these 
key factors are not enough and additional factors may be 
required to achieve the optimal outcome.  

 Normal articular cartilage is always subjected to mecha-
nical stress in daily activities. In turn, mechanical stress has 
attracted much attention as fourth key factor in cartilage 
tissue engineering. However, the effect of mechanical stress 
on cartilage tissue engineering is far from complete unders-
tanding (Fig. 2). In this review, we summarize the accumu-

lating knowledge of the effect of mechanical stress on 
cartilage tissue engineering and discuss the challenges for 
the future. 

MECHANICAL STRESS ON ARTICULAR 
CARTILAGE IN PHYSIOLOGICAL CONDITION 

 Articular cartilage is always exposed to various types of 
mechanical stimuli. During routine activities under normal 
physiological conditions, mechanical stimuli on articular 
cartilage can exert peak dynamic mechanical stresses of up 
to 18 megapascals (MPa) [45]. Furthermore, static physio-

Table 1. Representative Animal Studies of Tissue Engineering for Articular Cartilage Defect Using Chondrocytes 

 

Author Cells Graft Animal Joint Scaffold Main findings Reference 

Chesterman PJ chondrocytes allo rabbit  shoulder free fibrous tissue [15] 

Wakitani S chondrocytes allo rabbit  knee collagen gel hyaline-like tissue [16] 

Hendrickson DA chondrocytes allo horse  knee fibrin glue hyaline-like tissue [17] 

Kawamura S chondrocytes allo rabbit  knee collagen gel hyaline-like tissue [18] 

Wakitani S chondrocytes allo rabbit  knee collagen gel hyaline-like tissue [19] 

Katsube K chondrocytes allo rabbit  knee collagen gel hyaline-like tissue [20] 

Grigolo B chondrocytes auto rabbit  knee hyaluronic acid hyaline-like tissue [21] 

Mierisch CM chondrocytes allo rabbit  knee alginate beads mix of hyaline and fibrous [22] 

Lee CR chondrocytes auto canine knee collagen gel mix of hyaline and fibrous [23] 

Willers C chondrocytes auto rabbit  knee collagen gel hyaline-like tissue [24] 

De Franceshi L chondrocytes auto rabbit  knee collagen gel fibrocartilagenous  tissue [25] 

Dorotka R chondrocytes auto ovine  knee collagen gel hyaline-like tissue [26] 

 

 

Fig. (1). Schematic presentation of cartilage repair using tissue-engineered 3D constructs. 
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logical stresses applied to knee joints for 5-30 min can result 
in approximately compressive strains of 40% in certain knee 
cartilages [46]. On the other hand, in vivo joint immobi-
lization and reduction of joint loading resulted in a rapid loss 
and degradation of ECM content, whereas moderate exercise 
stimulated ECM synthesis [47-49]. Accordingly, it is 
considered that mechanical stress plays an important role in 
cartilage homeostasis [50-52] and the lack of appropriate 
mechanical stress in previous culture systems in cartilage 
tissue engineering might be one of the causes of failure.  

 Mechanical stress can be divided into roughly two types; 
static and dynamic loading. The former is stimulus repre-
sented by standing; the latter is stimulus represented by 
walking or running. In recent studies [60-80], many resear-
chers have attempted to determine the influence of these 
mechanical stresses on cartilage tissue engineering. 

STATIC COMPRESSIVE LOAD 

 Previous studies have revealed that the ECM synthesis by 
chondrocytes under static compression load varied depe-
nding on the time length of stimulation [53, 54, 60, 61].  

 In particular, Ragan et al. [53] showed that both aggrecan 
and type II collagen mRNA expressions were up-regulated 

during the first 30 min of static compression, whereas they 
were significantly down-regulated 4 h to 24 h after the initial 
static compression. Valhmu et al. [54] reported that aggrecan 
mRNA expression temporarily increased 1 h after the initial 
static compression, however after 24 h long-term static 
compression had no significant change on it. Similarly, 
Fitzgerald et al. [61] demonstrated that ECM proteins were 
increased 2-3 fold during the first 8 h of 50% static 
compression. However, after 24 h of the static compression, 
ECM proteins were down-regulated, whereas ECM pro-
teinases were highly up-regulated.  

 It remains unknown why chondrocytes showed differen-
tial response depending on the stimulating time.  

DYNAMIC COMPRESSIVE LOAD 

 A number of studies [51, 52, 55-60, 63-73, 75-78, 80] 
have demonstrated that dynamic compressive loads 
enhanced the cartilage-specific ECM synthesis by chondro-
cytes in 3D scaffolds (i.e., collagen gel, agarose gel) or 
cartilage explants. Most researchers in these studies have 
reported that amplitude (i.e., 5-15%) and/or frequency (i.e., 
0.01-1 Hz) of dynamic compressive road govern ECM 
synthesis by chondrocytes.  

 

Fig. (2). Schematic presentation of cartilage repair using tissue-engineered chondrocytes. The quality of tissue-engineered chondrocytes 

before implantation governs the result of cell therapy for the damaged cartilage repair. Better quality of tissue-engineered chondrocytes 

[extracellular matrix (ECM) rich] under mechanical stress compared to those without mechanical stress might contribute to the optimal 

repair.  
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 Specifically, Buschmann et al. [57] demonstrated that 6% 
maximum strain of cyclic compression elevated GAG syn-
thesis by chondrocytes embedded in agarose gel at 0.01-1 
Hz. Elder et al. [63] demonstrated that low amplitude cyclic 
compression at 0.33 Hz promoted GAG synthesis of mesen-
chymal cells from chick limb bud embedded in agarose gel. 
Furthermore, we also found that cyclic compressive loading 
of 5% amplitude in cycles of 3s stimulated cartilage-specific 
ECM synthesis by chondrocytes embedded in type I collagen 
gel [76]. 

 In contrast, only a few researchers reported that dynamic 
compressive loads were ineffective [58-60, 67]. Lee et al. 
[58] found that 15% dynamic compressive loading inhibited 
PG synthesis by chondrocytes embedded in agarose gel at 
0.3 Hz and had no effect on it at 3 Hz, whereas stimulated it 
at 1 Hz. Hunter et al. [60] also demonstrated that 25% dyna-
mic compressive loading at 1 Hz had no effect for cartilage-
specific gene expressions in 3D collagen gel.  

 The cause of this discrepancy remains to be determined. 
However, the differences of animal species, experimental 
conditions or lack of strict control have been suggested as 
likely explanations [67]. Thus, the optimal conditions, (i e., 
frequency, amplitude or timing etc.) for up-regulation of 
cartilage-specific ECM synthesis by chondrocytes to achieve 
“optimal tissue-engineered cartilage” remains to be deter-
mined. For the moment, most researchers seem that dynamic 
compressive loads with moderate frequency (0.01-1 Hz) and 
low amplitude (up to 15% peak to peak compression) 
achieve the best results.  

 Furthermore, recent studies [62, 81-86] have also revea-
led how mechanical stimulation can act on chondrocytes. 
Mechanical stimulation is converted to biochemical signal 
via mechanotransduction, which results in the activation of 
intracellular signaling pathways such as mechanoreceptors  
(i e., integrins) [81], ion channels (slow conductance Ca

2+
 

sensitive K
+
 and stretch-activated ion channels) [82], soluble 

mediators [bFGF, interleukin-4 (IL-4)] [83, 84], and intra-
cellular protein kinases (mitogen-activated protein kinase 
(MAPK) family) [62, 85]. Consequently, these intracellular 
signaling pathways modulate various biochemical activities 
in chondrocyte behavior. Salter et al. have demonstrated that 
integrin-associated signaling pathways, activation of stretch-
activated ion channels and autocrine/paracrine activity of IL-
4 are involved in the cellular response of human articular 
chondrocytes cultured in monolayer condition to dynamic 
load [86]. Further investigation to clarify the precise 
mechanisms of signaling pathways activated by mechanical 
stress might contribute to achieve a “better tissue-engineered 
cartilage”. 

SUMMARY AND FUTURE VISION 

 Many cells in our body are exposed to mechanical stress 
during physiological activities and respond to them in 
different ways. Especially, tissues which function as a 
supportive tissue, i e., bone or cartilage use this stimulation 
during tissue formation and maintenance. As mentioned 
above, a number of studies have shown the effects and 
mechanisms of mechanotransduction in cartilage or three 
dimensional engineered tissues. Furthermore, these biolo-
gical responses to mechanical stimulation are thought to 

enhance cartilage formation or regeneration. In turn, mecha-
nical stimulation of a cultured tissue is thought to be a feasi-
ble strategy to develop a new and most effective cartilage 
therapy. Further studies are needed to elucidate precise 
mechanism as well as optimal conditions of mechanical 
stress for “best tissue-engineered cartilage”. 
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