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Abstract: Many pharmacological therapies have been investigated for use in acute lung injury (ALI) and the acute 

respiratory distress syndrome (ARDS). These therapies can broadly be classified as being either anti-inflammatory or 

physiology based. Despite promising pre-clinical and small clinical studies almost all therapies have been shown to be 

unsuccessful in large scale randomized controlled trials. The evidence for pharmacological treatment for ALI/ARDS is 

reviewed. Potential future treatments are also presented. 
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INTRODUCTION 

 Mechanical ventilation, as a supportive treatment for 
respiratory failure, was popularised by Ibsen in Copenhagen 
during the polio epidemic in 1952. As polio caused 
neuromuscular failure the replacement of endogenous 
ventilation with mechanical ventilation was logical. 
However, for pulmonary pathologies which cause alveolar 
failure mechanical ventilation, although currently essential as 
supportive care, does not directly address alveolar failure and  
is potentially injurious. Delivering gases to the alveoli is 
only one component of the respiratory process. Gaseous 
diffusion and alveolar perfusion still need to occur and a 
ventilator does not target these mechanisms specifically. The 
options for alveolar failure are either alveolar replacement, 
via some form of extracorporeal gas exchange device, or a 
strategy for maximising endogenous alveolar function. This 
review will focus on pharmacological methods of 
maximising endogenous alveolar function, and will review 
the evidence for past, present and potential future 
pharmacological therapies for ALI/ARDS. 

BASIS FOR PHARMACOLOGICAL TREATMENT 
STRATEGIES 

 ALI/ARDS are acute inflammatory conditions of the 
lung. The inflammatory process can be targeted for 
manipulation anywhere from the genome through to 
leukocyte activation and reactive oxygen species release 
(Fig. 1). This inflammation can injure all 3 major 
components of the alveolus; the airspace (epithelium), the 
interstitium, and the capillary (endothelium). Structural 
damage leads to functional impairment of each component 
and these component dysfunctions combine to result in 
alveolar failure (Fig. 2). Although an oversimplification,  
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therapy can thus be classified as being either anti-
inflammatory or physiological in nature. Physiology based 
therapies seek to optimise individual component processes 
and can be classified as drugs affecting ventilation, diffusion 
or perfusion. 

 Anti-inflammatory therapy dampens the excessively 
harmful host response and can be classified as general anti-
inflammatory therapy, inflammatory signalling modification 
or cellular response modification. Although it is theoretically 
attractive to pharmacologically decrease the inflammatory 
response, the complexity of the inflammatory process, and 
its interdependency with other homeostatic mechanisms such 
as coagulation, means this approach could potentially be 
detrimental. For any individual it is difficult to ascertain 
which components of inflammation are functional and 
necessary, and which components are dysfunctional and 
harmful. Immuno-paralysis, with the consequent 
development of infection, is a risk and makes the timing of 
potential anti-inflammatory therapy important. 

 Many therapies may mechanistically overlap and could 
potentially act synergistically. This has been comprehensively 
reviewed elsewhere [1]. Ultimately treatment of the cause is 
required, with mechanical ventilation being necessary for life 
saving respiratory support. 

Anti-Inflammatory Therapy 

(I) General Anti-Inflammatory Therapy 

1. Glucocorticoids 

 Steroids act at many levels throughout the inflammatory 
process. Several early trials demonstrated that short course, 
high dose methylprednisolone is ineffective in preventing the 
development of ARDS in high risk patients [2-5]. Although 
an initial trial of high dose steroids early in the course of 
ARDS was negative [6], a recent study using prolonged low 
dose methylprednisolone showed reduced durations of 
mechanical ventilation and ICU stay [7]. 
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 The anti-fibrotic properties of steroids have been 
investigated in the later stages of ARDS. Observational 
studies [8-11] and a small randomized controlled trial had 
positive results [12]. However, the subsequent multicentre 
Late Steroid Rescue Study conducted by the ARDSnet group 
demonstrated no effect on mortality [13]. More recently a 
meta-analysis [14] and a systematic review [15] have both 
concluded that steroids do not prevent ARDS but could be 
useful for treating ARDS. Further studies of low dose 
steroids in early ARDS are planned. 

2. Statins 

 In addition to their cholesterol lowering effects statins 
improve epithelial and endothelial function to reduce 
alveolar capillary permeability and decrease pulmonary 
oedema. They also modulate the inflammatory cascade; 
regulate inflammatory cell recruitment, activation and 
apoptosis; and lessen cytokine and protease activity [16]. 
This may improve outcomes, as high levels and persistence 
of inflammatory mediators in ALI/ARDS are associated with 
poor outcome [17]. 

 Observational studies of patients with sepsis suggest that 
prior statin use is associated with better outcomes [18-21]. 
Similarly, observational studies have suggested a beneficial 

effect of prior statin therapy in patients with pneumonia, 
supporting a potential role for statins in modulating 
pulmonary inflammation [22-24]. 

 Retrospective studies suggest prior statin therapy was 
associated with improved survival in sepsis and pneumonia 
[18-21, 24]. A prospective randomized controlled trial 
showed pre-treatment with statins reduced pulmonary 
markers of inflammation in a human experimental model of 
lung injury [25]. In a recent retrospective study statin use in 
patients with ALI/ARDS was associated with increased 
ventilator-free days and reduced mortality, although this was 
not statistically significant [26]. The recently completed 
HARP study (ISRCTN70127774) is investigating the effect 
of simvastatin in the prevention and treatment of ALI/ARDS 
and will further inform this area. Several groups, including 
ARDSnet and the Irish Critical Care Trials group, are 
currently considering undertaking multicentre studies to 
address the role of statins in ALI/ARDS. 

3. Renin-Angiotensin System Modification 

 The SARS outbreak in 2003 affected over 8000 people in 
25 countries across 5 continents killing 774 people 
worldwide in a matter of weeks [27]. It was due to infection 
with a novel coronavirus [28], the receptor for which was 

 

Fig. (1). Rationale for anti-inflammatory based drug therapies in ALI/ARDS. The diagram depicts an alveolus suffering a bacterial 

injury and generating an inflammatory response. 
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discovered to be a variant of the angiotensin converting 
enzyme (ACE), termed ACE2 [29]. ACE2 functions to divert 
a local renin-angiotensin system (RAS) signal from the 
angiotensin 1 receptor (AT1R) to the angiotensin 2 receptor 
(AT2R). AT1R mediates vasoconstriction, alveolar 
permeability and fibrosis whilst the AT2R opposes these 
actions via vasodilation, decreased alveolar permeability, 
and apoptosis [30]. It was hypothesised that the SARS 
coronavirus downregulated ACE2 and impeded the counter-
regulatory side of the RAS in the lung causing ARDS [29]. 
Several animal studies have implicated the RAS in the 
development of ARDS [31-35]. 

 Genetic observational studies in humans have also 
implicated the RAS system in the development and outcome 
of ARDS [36, 37]. ACE activity correlates with the severity 
of lung injury in ARDS [38]. In a retrospective study prior 
treatment with an ACE inhibitor was associated with 
decreased mortality in patients requiring hospitalization for 
community acquired pneumonia [24]. Therapeutic 
modulation of the RAS has been investigated in rodents with 
recombinant ACE2, AT1R inhibition and ACE inhibitor 
studies all demonstrating amelioration of ARDS [29, 39-41]. 
Losartan, an AT1R antagonist, may reduce the damage 
caused by ventilator induced lung injury [42]. Human studies 
are awaited. 

4. Matrix Metalloprotease Modification 

 The matrix metalloproteases (MMPs) are a group of 
structurally related zinc-dependent enzymes which together 
are capable of degrading all the components of the 
extracellular matrix (ECM). Many cell types in the lung are 
capable of MMP secretion, including alveolar macrophages, 
monocytes, neutrophils, endothelial cells, epithelial cells, 
and fibroblasts. In addition to regulation of ECM breakdown, 
MMPs may modulate the immune response and cell survival 
and may be pro-inflammatory. As MMPs are secreted from a 
variety of cells involved in the pathogenesis of ALI/ARDS, 
and have an important regulatory role on the ECM as well as 
inflammatory and immune function modulation, it follows 
that they may have a role in the evolution of ALI/ARDS. 

 Animal studies of lung injury suggest that MMP activity 
is up-regulated [43]. Similarly high levels of MMPs have 
been shown in ARDS patients [44-46]. Previous animal 
studies of MMP inhibition in ALI suggest that MMP 
inhibition is a potentially useful therapeutic option early in 
the course of ARDS [47]. However, up-regulation of MMP-9 
activity at day 4 is associated with a reduction in pulmonary 
oedema [46]. These data caution against broad-spectrum 
MMP inhibition in ARDS. The timing of the intervention 
may be important. Early intervention may decrease 
proteolytic damage but later in the course of ALI, MMPs and 
in particular MMP-9, may be important in repair. 

(II) Inflammatory Signalling Modification 

1. Ketoconazole 

 Ketoconazole is an imidazole antifungal agent with anti-
inflammatory properties. It blocks the synthesis of pro-
inflammatory mediators such as the eicosanoid leukotrienes 
and thromboxane A2 and also reduces macrophage pro-
inflammatory cytokine production [48]. Early small studies 
were successful in preventing ARDS in high risk patients 

[49-51], however a later study by the ARDSnet group of 
ketoconazole in 234 patients with ARDS was negative [52]. 

2. Ibuprofen 

 Ibuprofen is a non-steroidal anti-inflammatory agent 
which inhibits cyclo-oxygenase. In a large sepsis study of 
448 patients Ibuprofen diminished prostanoid production and 
was associated with trends towards decreased duration of 
pulmonary dysfunction and ARDS, but this did not reach 
statistical significance [53]. Modulation of other 
inflammatory mediators has also been investigated [54]. 

3. Complement Inhibition 

 Complement can contribute to ALI/ARDS by both 
propagating inflammation, via the generation of pro-
inflammatory mediators [55], and also causing cellular injury 
via the production of the membrane attack complex, C5b-9 
[56]. Complement receptor 1 is a cell surface receptor on 
erythrocytes and leukocytes which can inhibit both classical 
and alternative complement pathways. Initial animal studies 
[57, 58] and a small human phase 1 study [56] have 
confirmed that recombinant soluble cytokine receptor 1 is 
safe and can inhibit the complement cascade. Clinical trials 
are awaited. 

4. Insulin 

 Insulin has anti-inflammatory effects via inhibition of the 
pro-inflammatory transcription factor NFkB [59]. A 
landmark trial of intensive insulin therapy (IIT) in critical 
care reported a large decrease in mortality by maintaining 
serum glucose levels between 80 and 110 mg/dL [60]. 
Subsequent critical care studies have had mixed results [61-
63], and a significant risk of hypoglycaemia was apparent 
upon meta-analysis of intensive insulin therapy studies [64]. 
In a rat model of endotoxin induced ALI tight glycaemic 
control to 90-110mg/dl reduced the severity of lung injury 
[65]. The role of intensive insulin therapy in preventing 
ALI/ARDS by maintaining tight glycaemic control (80 to 
110 mg/dL) is currently being studied in New York 
(NCT00605696). 

5. Immunonutrition 

 Fish oils, which contain the omega 3 poly unsaturated 
fatty acids eicosapentaenoic acid (EPA), gamma-linolenic 
acid (GLA) and docosahexaenoic acid (DHA), can lessen the 
production of pro-inflammatory arachadonic acid 
metabolites. Clinical studies using fish oils in ALI/ARDS 
have demonstrated reduced inflammation in the form of 
decreased pulmonary neutrophil infiltration, improved 
physiology in the form of decreased microvascular 
permeability and pulmonary vascular resistance and 
improved outcomes in the form of reduced duration of 
ventilation and ICU stay and improved mortality [66-70]. 
The beneficial effects of fish oil supplementation in 
ALI/ARDS have been reiterated in a recent systematic 
review on immunonutrition [71]. The OMEGA trial, 
investigating omega 3 fatty acids, GLA and anti-oxidants in 
ALI has recently been presented at meeting level and 
reported negative findings. Full publication is awaited. 
Further studies of fish oils in ALI/ARDS are underway in 
Spain (ISRCTN63673813) and America (NCT00351533). 
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 Additional uses for immunonutrition are the 
manipulation of the generation of carbon dioxide, via a low 
carbohydrate, high fat feed, resulting in decreased ventilator 
requirements [72]. Feeding enterally, rather than 
parenterally, can stimulate lung and gut IgA defences [73]. 
The early use of enteral nutrition by itself may improve 
outcomes in ALI [74]. 

6. Others 

 Interleukin 8 (IL-8) is a chemoattractant for neutrophil 
migration into the alveolus [75]. In a rat model of gastric 
aspiration anti-IL-8 antibody significantly reduced 
neutrophil recruitment to the alveolus and reduced the 
severity of lung injury [76]. Similarly, a rabbit model of 
acute pancreatitis induced lung injury was attenuated with 
anti-IL-8 antibody [77]. As IL-8 levels are elevated in at risk 
patients who subsequently develop ARDS [78] and in early 
ARDS [75, 79, 80] this represents a potential therapeutic 
target. 

 Other current studies of potential anti-inflammatory 
treatments include a trial investigating the safety, tolerability 
and efficacy of recombinant human interferon beta in 
ALI/ARDS (NCT00789685) and a phase 2 trial of IC14, a 
recombinant chimeric monoclonal antibody to CD14, to 
block CD14 medicated cellular activation in patients with 
sepsis-induced ALI (NCT00233207). This trial has recently 
been terminated and results are awaited.  

(III) Cellular Response Modification 

1. Anti-Adhesion Molecule Therapy 

 Transfer of immune cells from the vascular to the extra-
vascular space is vital in the process of tissue inflammation. 
Blockage of CD18, a neutrophil adhesion molecule 
necessary for diapedesis, reduces the severity of 
experimental lung injury [81, 82]. Human data is awaited. 

2. Immune Cell Blockade 

 Pentoxyfylline [83-85] and its derivative lisofylline [86-
89] have various inhibitory effects on immune cell function 
[83-85]. A small study using pentoxyfyline in ARDS failed 
to show physiological improvements in either gas exchange 
or haemodynamics [90]. A large multicentre ARDSnet study 
of lisofylline in 235 patients with ALI/ARDS was negative 
[91]. 

 Granulocyte-macrophage colony stimulating factor (GM-
CSF) plays a role in the control of both alveolar 
macrophages and epithelial cells [92]. Alveolar macrophage 
tumour necrosis factor-  initiates alveolar epithelial repair by 
inducing autocrine epithelial GM-CSF signalling [93]. 
Higher GM-CSF levels in bronchoalveolar lavage fluid in 
ARDS patients correlates with improved survival [94]. 
Recombinant human GM-CSF improved oxygenation in a 
small placebo controlled study of 18 patients with sepsis 
related pulmonary dysfunction [95]. A further study of this 
agent in ARDS is ongoing in the USA (NCT00201409). 

 Neutrophil elastase, which is released by activated 
neutrophils, contributes to alveolar endothelial injury, 
increased permeability and airspace flooding [96, 97]. 
Sivelestat, a neutrophil elastase inhibitor, has had mixed 
results in clinical trials. A Japanese study demonstrated 
improved pulmonary function and reduced duration of ICU 

stay with trends towards reduction in both duration of 
mechanical ventilation and mortality [98]. The subsequent 
larger international STRIVE study was stopped after an 
interim analysis due to an increase in 6 month all cause 
mortality [99]. Additionally, pulmonary function did not 
improve and 28 day mortality was not reduced. 

3. Anti-Oxidants 

 Free radicals are highly reactive molecules due to the 
presence of unpaired electrons. Immune cells partly exert 
their injurious effects via the generation of these substances. 
Pulmonary levels of glutathione, an antioxidant, are known 
to be low in ARDS [100]. N-acetylcysteine and procysteine 
are precursors for this molecule and their administration can 
replete pulmonary glutathione levels in ARDS [101]. N-
acetylcysteine has had mixed success in small ALI/ARDS 
studies [101-104], while a study of procysteine in lung injury 
was stopped early due to increased mortality (unpublished 
data). Additionally, N-acetylcysteine can also downregulate 
NFkB, a pro-inflammatory transcription factor, with ensuing 
reductions in inflammatory markers. 

 Albumin exerts antioxidant effects via its thiol group. 
Non-survivors of ARDS have reduced thiol values [105]. 
The infusion of albumin is associated with increased plasma 
thiol levels in sepsis [106] and ARDS [107] and decreased 
markers of oxidant injury 

 Vitamins C & E may reduce the duration of mechanical 
ventilation and ICU stay, but not prevent the development of 
ARDS [108]. Based on the evidence to date routine use of 
anti-inflammatory therapy for ALI/ARDS is not 
recommended. 

Physiological Derangement 

(I) Ventilation 

1. Surfactant 

 Surfactant is a multifunctional substance secreted by 
alveolar type 2 cells. It decreases alveolar surface tension 
preventing alveolar collapse during expiration, and has anti-
inflammatory and antimicrobial properties

1
. Local 

ventilation is hindered by surfactant deficiency during 
ALI/ARDS. This deficiency is both qualitative and 
quantitative, with reduced amounts of less functional 
surfactant produced during ALI/ARDS

1
. 

 Although respiratory distress syndrome, the infantile 
form of ALI/ARDS, has been successfully treated with 
exogenous surfactant, adult studies have been disappointing. 
Small studies have shown physiological improvements [109-
115], but subsequent larger studies have demonstrated no 
change in mortality [116, 117]. These findings have been 
confirmed in a recent meta-analysis, with improved 
oxygenation without improved duration of ventilation or 
mortality being the conclusion [118]. Further studies using 
different formulations, methods of delivery, timing of 
initiation of therapy, and duration of therapy are underway in 
response to criticisms of the earlier studies (NCT00682500), 
(NCT00215553) and (NCT00742482). 

                                                
1 Frerking I, Gunther A, Seeger W, Pison U. Pulmonary surfactant: 

functions, abnormalities and therapeutic options. Intensive Care Med 2001; 

27: 1699-717. 
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2. Bronchodilators 

 Three small studies of inhaled beta-agonists 
demonstrated beneficial effects on lung mechanics by 
reducing airflow resistance, peak and plateau airway 
pressure, and improving lung compliance [119-121]. The 
BALTI trail, a phase 2 trial of the effect of intravenous 
salbutamol on the clearance of alveolar oedema, also 
demonstrated reduced peak airway pressures [122]. 

3. Mucolytics 

 Dornase alfa reduces sputum viscosity and improves 
sputum clearance by cleaving extracellular DNA released by 
degenerating leukocytes. Mucolytics improve lung function 
in cystic fibrosis [123-125] and have been investigated in 
other respiratory conditions. Dornase alfa reduced the 
duration of mechanical ventilation in children after cardiac 
surgery [126]. The successful use of Dornase alfa in patients 
undergoing mechanical ventilation for asthma [127] and 
ARDS [128] has been published only as case reports. 

(II) Gas Diffusion 

 ALI/ARDS are forms of increased permeability 
pulmonary oedema. Strategies to minimise alveolar oedema 
include measures to limit the generation of alveolar flooding 
and measures to increases the resolution of this oedema. 

1. Limitation of Generation of Alveolar Oedema 

 Alveolar flooding is primarily dependent on three factors, 
as described by Starlings law: capillary hydrostatic pressure, 
oncotic pressure and permeability. Capillary permeability is 
increased in ALI/ARDS, with the reflection coefficient being 
reduced from the normal 0.7-0.9 to about 0.5 [129]. In this 
setting potentially reducing hydrostatic pressure and/or 
increasing oncotic pressure may ameliorate the development 
of pulmonary oedema [130]. 

 Hydrostatic pressure may be manipulated in a number of 
ways. Fluid intake can be restricted or fluid output increased, 
either with diuretics or renal replacement therapy. 
Vasomotor tone can be decreased with vasodilators. Cardiac 
filling pressures can be used to guide the above measures. 

 The ARDSnet FACTT study showed improved duration 
of ventilation and ICU stay with a restrictive fluid strategy 
[131]. Fluid management was governed by a complex 
protocol of diuretic therapy based on filling pressures. 
Patients in the fluid restrictive arm of the study averaged 
approximately a net fluid balance over 7 days of 0mls. Those 
in the liberal fluid arm averaged approximately plus 
7000mls. Of note there was no increase in renal failure or 
organ hypoperfusion with the fluid restrictive strategy. 
Mortality was unchanged between the groups. 

 The reduction of both central venous [131] and 
pulmonary capillary wedge [132] pressures may be 
associated with improved outcomes in ALI/ARDS. However 
the use of a pulmonary artery catheter is not superior to the 
use of a central venous catheter for managing ALI/ARDS 
[133]. A positive fluid balance [134-137] and increased 
extravascular lung water (EVLW) [138] are both associated 
with poor outcomes. Using EVLW measurements with a 
PiCCO device to direct fluid management may be better than 
pulmonary artery wedge pressure based management [139]. 
As lung size is dependent on height rather than weight the 

use of EVLW indexed to predicted body weight is superior 
to EVLW indexed to actual body weight (Craig - in press 
Critical Care Medicine, ISRCTN70127774). 

 Renal replacement therapy has been shown to reduce 
pulmonary oedema via reductions in pulmonary vascular 
pressures and permeability in experimental models of lung 
injury. Human experience has been limited to two small 
observational studies. 10 children with ALI/ARDS after 
bone marrow transplantation or chemotherapy treated with 
RRT had an 80% survival rate in contrast to a historical 
survival of 15% [140]. Thirty seven adults with renal failure 
and ALI/ARDS treated with RRT and a zero fluid balance 
had no pulmonary improvements within the first 24 hours of 
treatment [141]. The role of RRT in the management of 
ALI/ARDS remains uncertain. 

 The choice of fluid for resuscitation in ALI/ARDS 
remains unclear. Theoretically a colloid with higher oncotic 
pressure would be more suitable than a crystalloid, but this 
has not been borne out in a large comparative study of saline 
versus albumin for fluid resuscitation in critical illness [142]. 

 Hypoproteinaemia is associated with the development of 
lung injury and is a marker of weight gain and death [143, 
144]. Two small studies have investigated the use of 
furosemide with albumin infusions in hypoproteinaemic 
patients with acute lung injury. Both showed increases in 
total serum protein and more negative fluid balances with 
furosemide and albumin administration. This was associated 
with improvements in oxygenation, but without improving 
mortality [145, 146]. 

 An Oregon based study is presently investigating whether 
minimising EVLW, as measured by PiCCO and directed by 
the FACTT diuretic algorithm, is superior to central venous 
pressure guided therapy (NCT00624650). A phase 2 study 
investigating the role of recombinant human atrial natriuretic 
peptide (Carperitide) in minimising pulmonary oedema in 
ARDS has recently completed and its report is awaited 
(NCT00030121). 

 Lung injury is often heralded by a rise in pulmonary 
vascular resistance

2
, with an imbalance between pulmonary 

vasoconstrictors and vasodilators being seen in animal 
endotoxin shock models

3,4
. Intravenous adenosine reduces 

EVLW
5
, whilst intravenous nitroprusside and nitroglycerin 

also reduce pulmonary oedema generation, but at the 
expense of increasing V/Q mismatch

6,7
. To date there is no 

                                                
2 Nakazawa H, Noda H, Noshima S, et al. Pulmonary transvascular fluid 

flux and cardiovascular function in sheep with chronic sepsis. J Appl 

Physiol 1993; 75(6): 2521-8. 
3 Hales CA, Sonne L, Peterson M, Kong D, Miller M, Watkins WD. Role of 

thromboxane and prostacyclin in pulmonary vasomotor changes after 

endotoxin in dogs. J Clin Invest 1981; 68: 497-505. 
4 Ichinose F, Zapol WM, Sapirstein A, et al. Attenuation of Hypoxic 

Pulmonary Vasoconstriction by Endotoxemia Requires 5-Lipoxygenase in 

Mice. Circ Res 2001; 88(8): 832-8. 
5 Kutzsche S, Lyberg T, Bjertnaes LJ. Effects of adenosine on extravascular 

lung water content in endotoxemic pigs. Crit Care Med 2001; 29: 2371-6. 
6 Gottlieb SS, Wood LDH, Hansen DE, Long GR. The Effect of 

Nitroprusside on Pulmonary Edema, Oxygen Exchange, and Blood Flow in 

Hydrochloric Acid Aspiration. Anesthesiology 1987; 67(2): 203-10. 
7 Radermacher P, Santak B, Becker H, Falke KJ. Prostaglandin E1 and 

Nitroglycerin Reduce Pulmonary Capillary Pressure but Worsen 

Ventilation-Perfusion Distributions in Patients with Adult Respiratory 

Distress Syndrome. Anesthesiology 1989; 70(4): 601-6. 
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clear evidence to support the role of vasodilator treatment 
targeted to decrease hydrostatic pressure in ALI/ARDS. 

2. Maximising Clearance of Alveolar Oedema 

 Alveolar fluid clearance (AFC) is impaired in over 50% 
of those with ALI/ARDS, with this group having higher 
mortality rates [147]. Beta-agonists upregulate AFC via an 
effect on sodium ion movement [148]. Aerosolized 
salbutamol has been shown to accelerate the resolution of 
pulmonary oedema after lung resection [149]. A clinical trial 
of intravenous salbutamol in ARDS demonstrated reduced 
extravascular lung water and a trend towards increased 
survival [150]. A retrospective study of salbutamol exposure 
in ALI suggested an association between higher exposure 
and improved outcome [151]. Beta 2 agonists may exert 
several other beneficial effects in ALI/ARDS including 
increased surfactant secretion, decreased lung endothelial 
permeability, decreased airway resistance and decreased 
airway pressures [150]. A large phase 3 UK multicentre 
study is currently in progress examining the effects of 
intravenous salbutamol on outcome in ARDS 
(ISRCTN38366450). The ARDSnet group have recently 
terminated a multicentre, randomized, placebo controlled 
study investigating albuterol for the treatment of ALI (ALTA 

trial) [152]. This study was halted early for futility after 
studying 279 patients who received the active drug. There 
was no reduction in duration of ventilation or 60 day 
mortality with albuterol. It has been speculated that this 
result may be due to 2 factors [153]. Firstly, this study was 
performed in a less sick ALI population likely to have 
retained an ability to clear alveolar fluid without the need for 
exogenous upregulation, rather than a sicker ARDS 
population. Additionally, inadequate delivery of the drug to 
the alveolus may have contributed to this failure. 

 The alveolar epithelium contains active glucose-sodium 
co-transporters [154] and alveolar glucose levels correlate 
with experimental alveolar fluid clearance [155]. In the 
setting of increased permeability higher alveolar glucose 
levels could theoretically improve AFC, however higher 
airway glucose concentrations are associated with increased 
risk of nosocomial infection in critically ill patients [156]. 
The effect of tight blood glucose control in critically ill 
patients on AFC is unclear and requires evaluation. 

 Gene therapy to increase the expression of the ion 
channels and pumps needed for AFC is another possible 
future therapy. An animal study investigating overexpression 
of the beta-1 subunit of the sodium-potassium ATPase pump 

 

Fig. (2). Rationale for physiology based drug therapies for ALI/ARD. The diagram depicts the bronchoalveolar pathophysiological 
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demonstrated increased rates of AFC and improved survival 
[157]. If the alveolar epithelium is badly injured then cellular 
regeneration may be required before a functioning epithelial 
layer can be manipulated. 

3. Epithelial Repair 

 Stem cells have the capacity for limitless self-renewal 
and differentiation. Embryonic stem cells are pleuripotent 
and have the ability to differentiate into any cell type in the 
body, whilst adult stem cells are multipotent and have the 
ability to differentiate into several cell types, including cell 
types of other organ systems [158]. 

 Stem cells provide 3 therapeutic opportunities [158]. 
Firstly, endogenous stem cells may be stimulated via 
exogenously administered growth factors. Hepatocyte 
growth factor [159] and transforming growth factor  (TGF 

) [160] have been shown to reduce the effects of acute lung 
injury in animal models. Epidermal growth factor [161, 162], 
TGF  [163] and KGF [164, 165] can all up regulate AFC. 
Vascular endothelial growth factor (VEGF) promotes 
angiogenesis and regulates vascular permeability [166]. 
Genetic polymorphisms of the VEGF gene are associated 
with lower levels of VEGF and increased mortality in ARDS 
[167]. The administration of VEGF enhances alveolar repair 
in both cell [168] and animal models [169] and its role in 
ARDS is currently being studied at Cornell University 
(NCT00319631). The administration of exogenous growth 
factors has not yet been directly studied in human trials of 
ALI/ARDS. 

 Keratinocyte growth factor (KGF) is a heparin-binding 
growth factor that is secreted by fibroblasts and is known to 
act via a receptor specific to epithelial cells [170]. It induces 
potent proliferative activity in a variety of epithelial cells 
including alveolar type 2 cells. Other potentially useful 
effects include cytoprotection, augmented surfactant 
secretion and an antioxidant effect [171-172]. KGF reduces 
the severity of lung injury in experimental models [171, 173-
174]. A phase 2 study investigating the effects of KGF pre-
treatment in adults using an inhaled LPS model of lung 
injury is currently underway (ISRCTN98813895). 

 Secondly, administration of exogenous stem cells, either 
embryonic or adult, can provide repair to an injured alveolus. 
In an LPS induced ALI model bone marrow progenitor cells 
localised to the site of injury and differentiated into 
endothelial and epithelial cells [175]. Embryonic stem cells 
have the ability to produce a fully differentiated airway 
epithelium when cultured in an air-liquid interface [176]. 
Patients with pneumonia [177] and ALI/ARDS [178] have 
higher levels of endothelial progenitor cells and this higher 
level correlates with outcome. Autologous transplantation of 
endothelial progenitor cells preserves endothelial function 
and maintains the integrity of the pulmonary alveolar-
capillary barrier in an animal study [179]. Mesenchymal 
stem cells were originally thought to act as a source of 
regenerative cells by differentiating into, and locally 
replacing, lethally injured cells. However their primary 
mechanism of action is via the secretion of growth factors, 
cytokines and other signalling molecules to cause the trophic 
modulation of inflammation, cell death, fibrosis and tissue 
repair [180]. 

 The third role of stem cells is their ability to deliver gene 
therapy to the injured lung. Endothelial progenitor cells have 
been used to deliver vasodilatory genes to the pulmonary 
vasculature with resultant decreases in pulmonary artery 
pressures in experimental pulmonary hypertension [181, 
182]. Human studies are awaited. 

(III) Perfusion 

1. Vasodilators 

 Nitric oxide (NO) is an endogenous vasodilator produced 
by the endothelium. When administered by inhalation it 
vasodilates the circulation of ventilated alveoli thus reducing 
shunt and pulmonary hypertension. Its short half life and 
apparent lack of side-effects made it an attractive therapy. 
Early studies demonstrated physiological improvements with 
NO in ARDS [183-187], however mortality remained 
unchanged. Two meta-analyses showed no mortality benefit 
[188-189] and reported possible harm due to 
methaemoglobinaemia, toxic nitrogen compounds, increased 
pulmonary oedema, rebound pulmonary hypertension and 
renal failure. As NO is expensive, possibly harmful, and 
without a mortality benefit, its routine use is not 
recommended although it may have a place as rescue therapy 
for severe hypoxaemia given its ability to improve 
oxygenation [190]. 

 Prostacylins are derivatives of arachadonic acid and have 
potentially beneficial effects including vasodilation, 
inhibition of platelet aggregation, reduction of neutrophil 
adhesion, and inhibition of both macrophage and neutrophil 
activation [191]. Inhaled PGI2 (prostacyclin) has been 
compared to inhaled NO in ARDS [192-194]. PGI2 has 
similar efficacy and some advantages including minimal 
systemic effects, absence of platelet dysfunction, easy 
administration, harmless metabolites and no requirement for 
monitoring [195]. No placebo controlled randomized trial 
has yet studied PGI2 in ARDS, but a current Pakistani study 
aims to show that nebulized PGI2 (iloprost) decreases 
pulmonary hypertension selectively and improves 
oxygenation in ARDS (NCT00314548). 

 Intravenous prostacyclin in the form of PGE1 has also 
been investigated in ARDS. Although vasodilatory effect can 
cause hypotension and increase pulmonary shunting [196], 
prostacyclin is anti-inflammatory and can increase both 
cardiac output and oxygen delivery [197] and improve 
oxygen extraction during reduced oxygen delivery [198]. 
Early studies [199-201] in ARDS showed no significant 
benefit although the dose delivered was questioned [202]. 
PGE1 was reformulated as liposomal PGE1 in order to 
increase pulmonary drug delivery and minimise side effects. 
Again despite a promising preclinical study [203] further 
studies were negative [204, 205]. 

 Endothelin 1 is a potent vasoconstrictor which has been 
implicated in the pathophysiology of lung injury [206-208]. 
Tezosentan, an endothelin receptor antagonist, has been 
investigated in animal models of lung injury and with mixed 
results thus far [209, 210]. 

2. Vasoconstrictors 

 Almitrine is a pulmonary vasoconstrictor which may 
increase hypoxic pulmonary vasoconstriction and reduce 
shunt. In a small ARDS study oxygenation was improved 
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with minimal increase in pulmonary vascular pressures 
[211]. The combination of intravenous almitrine to decrease 
blood flow to hypoxic lung units and inhaled NO, to increase 
blood flow to ventilated lung units, has been investigated in 
both experimental lung injury

8
, and a small clinical study 

[212]. Both found the combination superior than either 
therapy alone at increasing PaO2 with a minimal rise in 
pulmonary artery pressure. Further research is required. 

3. Coagulation 

 An imbalance between fibrinogenesis and fibrinolysis in 
ARDS results in widespread fibrin deposition in the alveolar 
airspace, interstitium and blood vessels [213]. Pulmonary 
intravascular thrombosis and vasoconstriction can lead to the 
development of dead space, a known independent predictor 
of mortality in ARDS [214]. Several anticoagulants have 
been proposed as potential therapies in ALI/ARDS and have 
undergone investigation in animal models. Tissue factor 
pathway inhibitor (TFPI), factor VIIai, heparin, antithrombin 
III, activated protein C (APC) and thrombomodulin have all 
been shown to have beneficial effects at this level of 
investigation [215]. 

  Protein C levels are lower in patients with ARDS than 
normal controls and the level of protein C correlates with 
clinical outcome [216]. However, a small randomized 
controlled trial of APC in ARDS did not reduce either 
duration of ventilation or mortality. (156) A Dutch study 
investigating APC in inflammatory and infectious 
ALI/ARDS is currently in progress (ISRCTN52566874). A 
phase 2 trial of recombinant TFPI demonstrated 
improvements in lung dysfunction score and survival [217]. 
Antithrombin III has had mixed results on pulmonary 
function in sepsis studies [218-220]. 

Reasons why Pharmacological Therapy is Ineffective in 
ALI/ARDS 

 Despite repeated promising pre-clinical and clinical 
phase 1 and 2 studies of therapies for ALI/ARDS, no non-
ventilatory strategy has yet convincingly improved 
outcomes. This situation is not unique to lung injury. Over 
the past 30 years just 3 out of 38 new therapies evaluated for 
sepsis returned positive results [221]. All three therapies 
have since been seriously questioned and their place is 
presently unclear. 

 There are many reasons for the scientific failure of 
translation from bench to bedside [222]. Animal studies, 
which inform higher levels of clinical study, suffer from 
numerous limitations including the lack of generalization of 
inter-species physiology, immunology, genetics and host 
response to injury. The use of young healthy animals and 
pre-treatment before injury models directly contradicts true 
clinical practice. Large randomized controlled trials suffer 
from a heterogeneous study population which usually lacks 
identification of the phenotype most likely to receive a 
beneficial effect from the study drug. Allied with a small 
signal from the study intervention in comparison with the 
large signal from the multiple co-morbidities suffered by 
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most elderly patients, genuine positive interventional effects 
may be difficult to recognise. The use of outcome measures 
such as oxygenation in a condition in which only a small 
minority die from refractory hypoxemia [223, 224] makes 
this signal even more difficult to recognise. 

 The use of pharmacological agents as adjuncts to 
increase oxygenation allowing the limitation of injurious 
ventilation may be associated with improved outcomes but 
this remains to be tested. 

CONCLUSION 

 Despite promising scientific advances, non-ventilatory 
strategies for ALI/ARDS remain elusive. The best evidence 
we have is for minimising pulmonary oedema via fluid 
restriction when appropriate. Other therapies may 
occasionally be justified as salvage therapy in severe 
ALI/ARDS, but with the knowledge that their risk benefit 
ratio remains unclear. 
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