Send Orders for Reprints to reprints@benthamscience.ae

The Open Chemical Engineering Journal, 2018, 12, 67-79

CrossMark

The Open Chemical Engineering Journal

Chemical Engineer Journal 1 N SZ Content list available at: www.benthamopen.com/TOCENGJ/

The Open

DOI: 10.2174/1874123101812010067

RESEARCH ARTICLE

Experimental Study of CO₂ Absorption in Potassium Carbonate Solution Promoted by Triethylenetetramine

Rouzbeh Ramezani¹, Saeed Mazinani² and Renzo Di Felice^{1,*}

¹Department of Civil, Chemical and Environmental Engineering, University of Genoa, Genova, Italy ²Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, B-3001Leuven, Belgium

Received: February 20, 2018

Revised: April 3, 2018

Accepted: April 21, 2018

67

Abstract:

Background:

Separation of CO₂ as the major cause of global warming is essential. In this work, potassium carbonate (K₂, CO₃) solution was selected as a base solvent for CO, absorption due to its ease of regeneration energy, low cost and low environmental impact. However, the absorption rate of CO₂ with K₂CO₃ needs to be improved by adding a suitable promoter. Therefore, the performance of CO₂ in K₂CO₃ solution promoted by triethylenetetramine (TETA) in terms of absorption capacity and absorption rate of CO₂ was studied.

Method:

Experiments were conducted at a total concentration of 2.5 (M) with different TETA mole fractions at temperatures of 303, 313 and 323 K, and CO₂ partial pressure up to 30 kPa using a stirred cell reactor. The effect of CO₂ partial pressure, temperature and concentration of TETA on absorption capacity and absorption rate of CO₂ in K₂CO₃+TETA solution was discussed in detail.

Results:

The CO₂ loading capacity obtained in this work was compared with monoethanolamine (MEA) and a better performance was observed for K₂CO₃+TETA solution. In addition, experimental results revealed that the addition of TETA to K₂CO₃ improved the CO₂ reaction rate. Finally, the response surface methodology was employed to correlate the CO₂ solubility. It was found that the correlated data are in good agreement with the experiment results.

Conclusion:

As an overall conclusion, the solution of K₂CO₃+TETA can be used as a promising absorbent in post combustion CO₂ capture processes.

Keywords: Greenhouse gas, CO₂ capture, Solubility, Absorption rate, Potassium carbonate, Monoethanolamine.

1. INTRODUCTION

The fossil fuel power plants are considered as the main source of greenhouse gases emission, which increase CO_2 concentration in the atmosphere and environmental issues [1, 2]. In order to reduce the CO₂ emission, it is essential to capture CO₂ from fossil fuel power plants [3]. Several technologies such as oxy-fuel combustion, pre combustion and post-combustion are used for CO₂ capture [4]. Among them, post-combustion using a solvent is widely employed as one of the most reliable and economical methods for CO_2 capture [5]. One of the main challenges of this method is the selection of a suitable solvent [6]. To be selected as a solvent, it needs to satisfy several desired properties, including

^{*} Address correspondence to this author at the Department of Civil, Chemical and Environmental Engineering, University of Genoa, via Opera Pia 15, 16145 Genova, Italy; Tel:+39 0103532924; E-mail: renzo.difelice@unige.it

high CO₂ loading capacity, low volatility, high absorption rate, high thermal stability and low heat of absorption [7]. Different types of solvents have been studied for the CO_2 capture such as ionic liquids, amino acid salts, inorganic solvents and alkanolamines [8]. The ionic liquids are used as solvents because of some advantages such as high CO₂ capacity and thermal stability. However, they have disadvantages such as high cost and viscosity [9, 10]. Amino acid salt solutions gained interest as a solvent because of low volatility, less toxicity and low thermal stability. The main challenges associated with amino acid salts are high cost and precipitation of carbonates at high concentration [11, 12]. The inorganic solvents such as tri-sodium phosphate and potassium carbonate are another category of solvents with desired characteristics such as low corrosion rate and lower heat of absorption than amines [13]. Alkanolamines such as monoethanolamine (MEA) have been used extensively in many CO_2 capture processes because of its low solvent cost and fast reaction kinetic [14]. However, MEA has several disadvantages such as low CO₂ absorption capacity, thermal or chemical degradation, high regeneration energy requirement and corrosive [15]. Many researchers have tried to find a suitable solvent that minimize the cost and penalty in the power plant efficiency [16]. The solution of potassium carbonate (K_2CO_3) has been received much attention due to its advantages such as low environmental impact, low solvent cost, low absorption heat and low thermal degradation [17,18]. However, its slow reactivity with CO₂ needs to be improved [19]. To solve this problem, researchers have suggested the addition of promoters to K_2CO_3 in order to enhance the absorption rate. As an example, Cullinane and Rochelle [20], reported the absorption rate of CO₂ in 20-30 wt% potassium carbonate promoted by 0.6 kmol/m³ piperazine (PZ) at temperatures from 313 to 353 K. They concluded that the CO₂ absorption rate was increased by the addition of PZ. Kim et al. [21] investigated the absorption rate of CO_2 in blend solution of 15 wt% potassium carbonate and 7.5 wt% homopiperazine (homoPZ). They observed that K_2CO_3 +homoPZ has a higher absorption rate than pure K_2CO_3 . The *et al.* [22] used 5 and 10 wt% monoethanolamine (MEA) as a promoter for K_2CO_3 . The results revealed that CO_2 absorption rate in K_2CO_3 +MEA solution is higher than potassium carbonate. Thee et al. [23] studied the effect of the addition of boric acid to 30 wt% potassium carbonate at 353.15 K. It was found that boric acid has a positive effect on CO₂ absorption rate at blended solution. Shen *et al.* [24] examined reaction kinetic in a mixture of 35 wt% K_2CO_3 and arginine at temperatures from 313 K to 343 K. It was discovered that arginine can be an effective promoter for potassium carbonate. Thee et al. [25] selected three amino acids, including glycine, proline and sarcosine as potential promoters for potassium carbonate solution and obtained reaction kinetic at temperatures from 313.15 to 353.15 K. Kim et al. [26] evaluated CO₂ absorption rate and capacity of potassium carbonate solution promoted by 2-methylpiperazine at 313, 333 and 353 K. They found that the addition of a small amount of 2-methylpiperazine to potassium carbonate can increase the CO_2 absorption capacity and rate. Bhosale et al. [27] added ethylaminoethanol to potassium carbonate and calculated reaction kinetics at temperatures (303-318 K). It was found that ethylaminoethanol acts as a good promoter. This motivated us to select triethylenetetramine (TETA) as a promoter in order to improve absorption rate of CO₂ in K₂CO₃ solution. TETA with four functional groups, including two primary and two secondary amino groups has advantages compared to other promoters like methyldiethanolamine, 2-((2-aminoethyl)amino)ethanol, diethanolamine, 2-amino-2methyl-1-propanol and monoethanolamine in terms of fast reaction kinetic, high CO₂ solubility and low regeneration energy. Due to these advantages, TETA was chosen as a promoter for potassium carbonate. Therefore, in this work, absorption capacity and rate of absorption of CO₂ in K₂CO₃+TETA were evaluated using a stirred cell reactor at a temperature range of (303.15 to 323.15) K and pressure up to 30 kPa. The CO₂ absorption capacity of K₂CO₃+TETA as a function of pressure, temperature and concentration was also correlated by response surface methodology. In fact, this work presents new CO₂ solubility data in K₂CO₃+TETA, which are important and necessary for modeling of CO₂ absorption processes in industrial application.

2. REACTION MECHANISM

When CO₂ is absorbed in potassium carbonate solution, the following reactions take place [26, 28]:

$$K_2CO_3 \to 2K^+ + CO_3^{2-}$$
 (1)

$$CO_3^{2-} + H_2O \to HCO_3^{-} + OH^{-}$$
 (2)

$$\mathrm{CO}_2 + \mathrm{OH}^- \to \mathrm{HCO}_3^- \tag{3}$$

$$HCO_3^- + OH^- \to CO_3^{2-} + H_2O$$
 (4)

$$2H_20 \to 0H^- + H_30^+$$
 (5)

Study of CO₂ Absorption Triethylenetetramine

$$CO_2 + K_2CO_3 + H_2O \rightarrow 2KHCO_3 \tag{6}$$

In comparison to the potassium carbonate solution, alkanolamines have a high rate of reaction with dissolved CO_2 . The general reaction mechanism between CO_2 and amine can be indicated in Eqs. (7, 8), which R_1 and R_2 are carbon side chains [29]:

$$CO_2 + 2HNR_1R_2 \leftrightarrow R_1R_2NCO_2^- + R_1R_2NH_2^+$$
(7)

$$CO_2 + HNR_1R_2 + H_2O \leftrightarrow R_1R_2NCO_2^- + H_3O^+$$
 (8)

3. MATERIALS AND METHODS

3.1. Materials

All chemicals used in this study, including potassium carbonate (K $_2$ CO $_3$), triethylenetetramine (TETA) and monoethanolamine (MEA) with grade >98% pure were purchased from Acros Organics and used without any further purification. The chemical structure of TETA is given in Fig. (1). Experiments were carried out in blended solutions of K₂CO₃ and TETA with the compositions of 2.25 M K₂CO₃ + 0.25 M TETA, 2 M K₂CO₃ + 0.5 M TETA, 1.75 M K₂CO₃ + 0.75 M TETA, 1.5 M K₂CO₃ + 1 M TETA in temperatures 303-323 K and pressures up to 30 kPa.

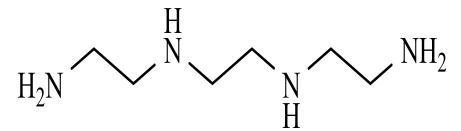


Fig. (1). The chemical structure of TETA.

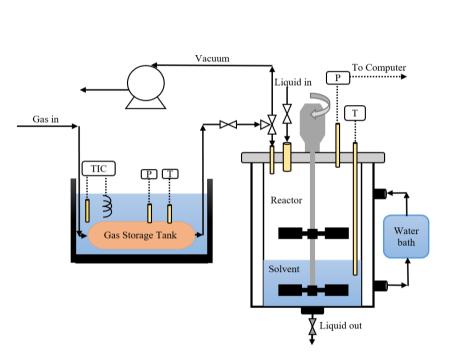
3.2. Equipment and Experimental Procedure

The CO_2 absorption measurement procedure and equipment used in this study are same as employed in our previous works [30 - 33]. A glass stirred cell reactor was used to measure CO_2 solubility and initial absorption rate of CO_2 in the solution of K_2CO_3 promoted by TETA, as shown in Fig. (2). This reactor is connected to a gas storage tank and a water bath to control the temperature during the experiments. Both stirred cell reactor and gas storage tank are connected with temperature sensor and pressure transmitter. Before running the experiment, the reactor was purged with a vacuum pump. The solvent was placed in the reactor and the solution is allowed to reach a desired temperature. After that, CO_2 was fed to gas storage tank from gas cylinder and was heated using a water bath. Next, CO_2 was transferred to reactor from gas storage tank, and stirrer was switched on. The total moles of CO_2 transferred can be calculated from:

$$n_{CO_2} = \frac{[P_1 - P_2] V_s}{R T}$$
(9)

Where V_s , P_1 and P_2 are the volume, initial and final pressure of CO₂ in the gas storage tank, respectively. The CO₂ partial pressure in the reactor is decreased over time because of the chemical absorption of the CO₂ in solution and the pressure drop in the reactor is monitored and recorded every second by a pressure transmitter. Therefore, the initial absorption rate can be obtained from slope of CO₂ partial pressure changes versus time. The equilibrium partial pressure of CO₂ and the moles of CO₂ remaining in equilibrium cell were obtained by Eqs. 10 and 11, respectively:

$$P_{CO_2}^e = P_F - P_V \tag{10}$$


$$n_{CO_2}^r = \frac{V P_{CO_2}^e}{R T}$$
(11)

Absorption capacity of CO_2 in the solution of K_2CO_3 +TETA is defined in terms of CO_2 loading α (mole CO_2 absorbed per mole of solvent).

70 The Open Chemical Engineering Journal, 2018, Volume 12

Ramezani et al.

(12)

 $\alpha_{CO_2} = \frac{n_{CO_2} - n_{CO_2}^r}{n_{solvent}}$

Fig. (2). Schematic diagram of the experimental set up.

As mentioned earlier, the method of CO_2 loading calculation can be found in our previous works. Three repeat runs were taken to check the reproducibility and data presented here represent averages.

4. RESULTS AND DISCUSSION

4.1. CO₂ Absorption Capacity in K₂CO₃+TETA Solution

In order to validate equipment and experimental procedure, the loading capacity of CO_2 in the solution of 2.5 M monoethanolamine was measured at 313 K. Fig. (3) shows a good agreement exists between the CO_2 absorption capacities measured in this work and the values previously reported [34 - 36].

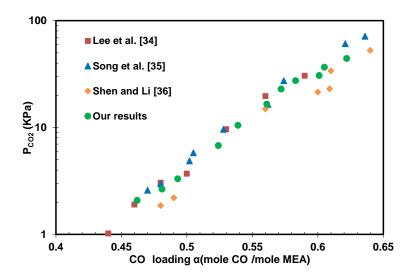


Fig. (3). Solubility of CO_2 in solution of 2.5 M MEA at 313.15 K.

CO , solubility data presents useful information for industrial application in design and modeling of CO , absorption in CO 2 capture process [24]. In this work, the CO 2 solubility in K 2 CO 3 + TETA solution was measured at temperatures 303-323 K, CO, partial pressures up to 30 kPa, and results listed in Table 1. As can be observed in Table 1, temperature has a negative effect on the CO ₂ loading. In the other words, an increase in the temperature from 303 to 323 K leads to a decrease in loading capacity from approximately 0.8 to 0.65. This reduction can be explained by the fact that the equilibrium would shift in the backward direction with increasing temperature. In order to study the effect of pressure and concentration on the performance absorption capacity of the solvent, CO 2 partial pressure as a function of CO₂ solubility was plotted in Figs. (4-6). It can be seen that K₂CO₃+TETA solution absorbs more CO₂ at higher pressure which can be due to the increase in the driving force from the gas phase to the interface. According to Figs. (4-6), the absorption capacity also increases with the increase in concentrations of TETA. The highest CO ₂ solubility was achieved at TETA mole fraction equal to 0.4. The reason for this behavior could be explained by the fact that TETA as a polyamine has four amine groups Fig. (1) that means TETA can absorb more CO₂. Thus, a smaller amount of solvent is needed for CO₂ absorption with high efficiency in absorber that leads to a lower cost. The absorption performance of K 2 CO 3 +TETA solution was compared with pure K 2 CO 3, at 313.15 K, shown in Fig. (5). It is clear that CO 2 loading of K 2 CO 3 + TETA solution is much higher than pure K 2 CO 3 in the order: 1.5 M K 2 CO 3 + 1 M TETA > 1.75 M K $_2$ CO $_3$ + 0.75 M TETA > 2 M K $_2$ CO $_3$ + 0.5 M TETA > 2.25 M K $_2$ CO $_3$ + 0.25 TETA > 2.5 M K $_2$ CO₃ suggesting high ability of TETA for CO₂ capture.

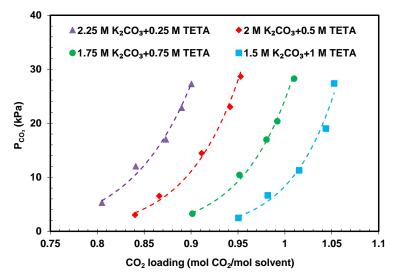
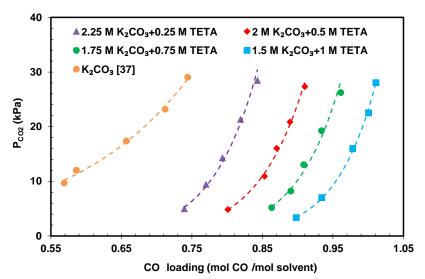



Fig. (4). Loading capacity of CO_2 in K_2CO_3 +TETA solution at 303.15 K.

Fig. (5). Loading capacity of CO_2 in K_2CO_3 +TETA solution at 313.15 K.

2.25 M K ₂ CO ₃ + 0.25 M TETA		2 M K ₂ CO ₃ + 0.5 M TETA		1.75 M K ₂ CO ₃ + 0.75 M TETA		1.5 M K ₂ CO ₃ + 1 M TETA	
P _{CO2} (kPa)	α	P _{CO2} (kPa)	α	P _{CO2} (kPa)	a	P _{CO2} (kPa)	α
		•	T = 30	3.15 K	•		
05.31	0.805	03.05	0.840	03.27	0.901	02.48	0.950
12.04	0.841	06.55	0.866	10.44	0.951	06.65	0.981
17.03	0.873	14.47	0.911	16.99	0.980	11.28	1.015
22.88	0.890	23.02	0.941	20.37	0.991	19.03	1.043
27.29	0.901	28.67	0.952	28.26	1.009	27.37	1.052
			T = 31	3.15 K			
04.95	0.739	04.83	0.801	05.19	0.863	03.35	0.898
09.44	0.769	10.93	0.853	08.21	0.890	07.02	0.934
14.27	0.793	16.05	0.870	13.04	0.908	15.99	0.978
21.32	0.818	20.85	0.889	19.27	0.933	22.52	1.001
28.44	0.842	27.33	0.910	26.25	0.961	28.04	1.011
			T = 32	3.15 K		1	-
04.37	0.673	03.08	0.740	05.14	0.810	04.37	0.870
08.26	0.702	09.94	0.787	09.95	0.840	09.82	0.902
13.05	0.744	17.33	0.822	15.51	0.859	14.09	0.927
19.74	0.763	23.05	0.845	21.37	0.882	20.03	0.951
26.38	0.791	26.69	0.852	26.62	0.901	26.35	0.962

Table 1. Loading capacity of CO₂ in solution of K₂CO₃+TETA.

Uncertainties; U (α) =+/- 0.001; U (T) = +/- 0.01 K; U (M): 0.001 mol/l; U (P) =+/- 0.1 kPa.

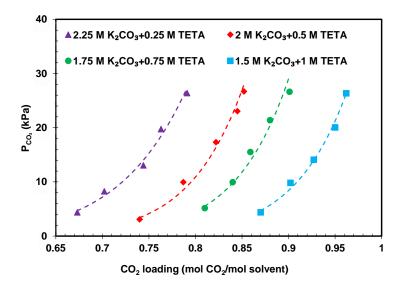


Fig. (6). Loading capacity of CO_2 in K_2CO_3 +TETA solution at 323.15 K.

In Fig. (7), the solubility of CO_2 in K_2CO_3 +TETA solution measured in this work was compared with the solubility of CO_2 in some solvents at 313.15 K. It can be found that the blend of K_2CO_3 +TETA has the highest CO_2 loading when compared to MEA and other solvents. This result confirms the high performance of this solvent for CO_2 capture.

4.2. Correlation of Experimental Data

Response surface methodology (RSM) is an efficient method to obtain the sensitivity analysis of a process and optimum condition of a multivariable system [47]. In addition, RSM can be applied for investigation of effect of factors on response, and the relationship between response variables [48]. In this work, the response surface methodology was used to correlate the CO₂ solubility experimental data (α) as a function of temperature (T), pressure (P_{CO2}) and TETA mole fraction (R) in the solution of potassium carbonate promoted by TETA. Three parameters including pressure, promoter mole fraction and temperature were selected as independent variables, and the validity of the model was

evaluated using analysis of variance ANOVA on response parameter (CO₂ solubility). The effect of these parameters on the CO₂ solubility was studied. The results showed that mole fraction of TETA has the highest impact on CO₂ solubility, while the interaction of pressure and temperaturewas found to be the least important parameter. In order to check the accuracy of the obtained model, F-value, R-squared and adjusted R-squared were determined using ANOVA analysis. The R-squared and adjusted R-squared for this system have been found to be 0.986 and 0.981, respectively. These high values of R² and R²_{adj} show the significance of model terms. The F-value of the reduced quadratic model was also found to be 85.42 which indicates the validity of model.

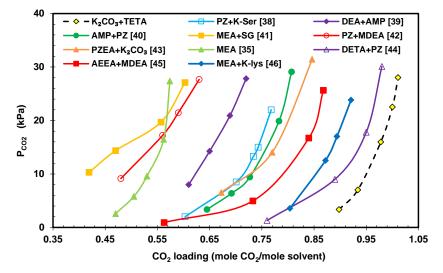


Fig. (7). Loading capacity of CO₂ in K₂CO₃+TETA solution and other solvents at 313.15 K.

$$\alpha = 5.7308 - 0.0261 \times T - 0.0076 \times P + 0.3708 \times R + 4.8684 \times 10^{-5} \times T \times P + 7.5 \times 10^{-4} \times T \times R -$$
(13)

$$5.3947 \times 10^{-3} \times P \times R + 3.1466 \times 10^{-5} \times T^{2} - 5.0457 \times 10^{-5} \times P^{2} + 0.0837 \times R^{2}$$

The predicted CO_2 absorption capacity by eq. (13) were plotted against experimental data obtained in this work in Fig. (8). It can be clearly seen that the good agreement exists between the values calculated by the eq. (13) for the absorption capacity of CO_2 and the experimental results with the average absolute deviation percent (AAD) equal to 1.19%.

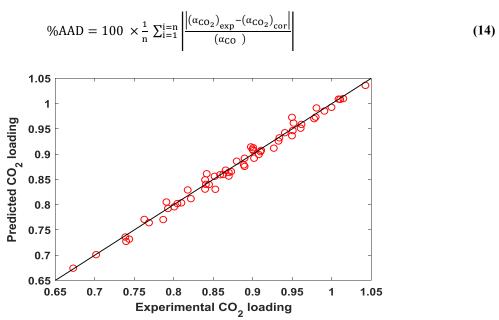


Fig. (8). Comparison of predicted CO_2 solubility using the eq. (13) with experimental data.

4.3. CO₂ Absorption Rate in K₂CO₃+TETA Solution

As previously mentioned, the main challenge of potassium carbonate is its slow rate with carbon dioxide, which leads to the larger absorber size. In this work, TETA was added as a promoter to potassium carbonate in order to enhance the rate of absorption. To check the setup and experimental method, the pressure decay during CO_2 absorption in solutions of pure MEA, TETA and K_2CO_3 at 313.15 K 313.15 K was presented in Fig. (9) and compared with literature data [26, 29]. A good agreement was found between results obtained in this work and the literature. As expected, the absorption rate in TETA solution is much higher than MEA and K_2CO_3 because of its structure feature.

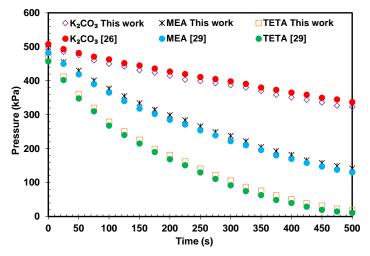


Fig. (9). Comparison of obtained pressure decay in this work with the values reported in the literature at 313.15 K.

The profile of CO_2 partial pressure versus time for the solution of K_2CO_3 +TETA at different concentrations and temperatures were illustrated in Figs. (**10-12**) to investigate the effect of the addition of TETA to potassium carbonate on the absorption rate. The initial slope of the pressure curves over time is an indication of CO_2 absorption rate. It was found that the CO_2 partial pressure decreases with increasing time until a gas-liquid equilibrium is reached. The time required to obtain an equilibrium state is different for each solutions. This pressure reduction in the equilibrium cell shows the amount of gas absorption. According to Figs. (**10-12**), the addition of small amount of TETA to potassium carbonate has been led to a significant increase in the absorption rate that is favorable for the CO_2 capture process. The structure feature of TETA with two primary amino groups and two secondary amino sites, and also an increase in the rate of reaction of CO_2 with OH due to increase of PH of solution can be applied to explain this rate enhancement. It also can be observed from Fig. (**11**) that the mixed absorbent has higher absorption rate compared to single potassium carbonate. This result proves the slow kinetics between potassium carbonate and CO_2 .

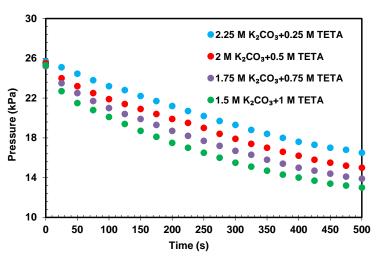


Fig. (10). The effect of addition of TETA to K₂CO₃ on the CO₂ absorption rate at 303.15 K.

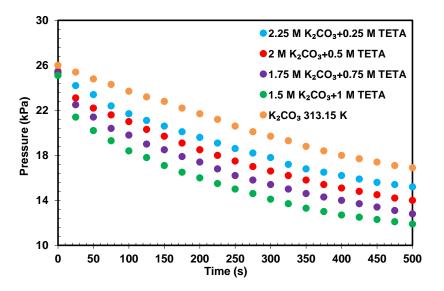


Fig. (11). The effect of addition of TETA to K₂CO₃ on the CO₂ absorption rate at 313.15 K.

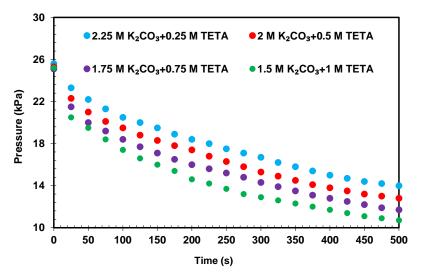


Fig. (12). The effect of addition of TETA to K₂CO₃ on the CO₂ absorption rate at 323.15 K.

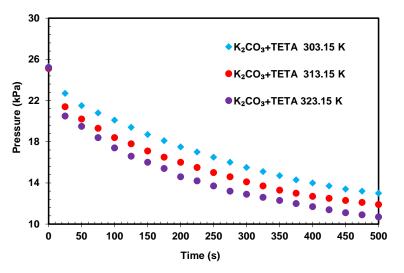


Fig. (13). The impact of temperature on the CO₂ absorption rate in solution of 1.5 M K₂CO₃+1 M TETA...

The influence of the temperature on the initial absorption rate in solution of K_2CO_3 +TETA was investigated and shown in Fig. (13). As expected, higher temperature resulted in an increase in reactivity of CO_2 with solution of K_2CO_3 +TETA. The obtained results shows that TETA has a good ability as a promoter for potassium carbonate and TETA+ K_2CO_3 solution could be an appropriate solvent for CO_2 capture because of its high absorption rate and capacity.

CONCLUSION

In this work, CO ₂ solubility and initial absorption rate in K ₂CO ₃+TETA solution were investigated at temperatures 303-323 K and the partial pressures up to 30 kPa using a stirred cell reactor. Obtained results revealed that CO_2 absorption capacity of K₂CO₃+TETA solution increase with the increase in TETA mole fraction, and decreased with the increase in temperature. The results also indicated that the K₂CO₃+TETA solution has absorption capacity higher than MEA. A correlation was presented to predict CO₂ loading capacity in solution, and predicted values were found in excellent agreement with the experimental results. Therefore, considering these results, K₂CO₃+TETA solution can be used as an alternative solvent to MEA. However, in order to make better judgment about this solvent, more investigation needs to be performed to determine the corrosion rate and absorption heat of K₂CO₃+TETA solution.

NOMENCLATURE

AEEA	=	2-((2-aminoethyl)amino)ethanol	
MDEA	=	Methyldiethanolamine	
K-lys	=	potassium lysinate	
K ₂ CO ₃	=	Potassium carbonate	
HomoPZ	=	Homopiperazine	
PZEA	=	2-(1-piperazinyl)-ethylamine	
DEA	=	Diethanolamine	
K-Ser	=	Potassium serinate	
ТЕТА	=	Triethylenetetramine	
AMP	=	2-Amino-2-methyl-1-propanol	
DETA	=	Diethylenetriamine	
MEA	=	Monoethanolamine	
PZ	=	Piperazine	
SG	=	Sodium glycinate	
P _v	=	Vapor pressure of solution	
P ^e _{CO2}	=	The equilibrium partial pressure of CO $_{\rm 2}$	
n _{solvent}	=	The moles of solvent in liquid phase	
P _F	=	Final pressure of reactor	
α:	=	CO ₂ solubility (mole CO ₂ /mole of absorbent)	
V	=	V Volume of reactor	
V _s	=	Volume of gas storage tank	

CONSENT FOR PUBLICATION

Not applicable.

CONFLICT OF INTEREST

The author (editor) declares no conflict of interest, financial or otherwise.

ACKNOWLEDGEMENTS

Decleared none.

REFERENCES

 K.H. Smith, T. Harkin, K. Mumford, S. Kentish, A. Qader, C. Anderson, B. Hooper, and G. Stevens, "Outcomes from pilot plant trials of precipitating potassium carbonate solvent absorption for CO2 capture from brown coal fired power station in Australia", *Fuel Process.* *Technol.*, vol. 155, pp. 252-260, 2017. [http://dx.doi.org/10.1016/j.fuproc.2016.08.008]

- [2] B.K. Mondal, S.S. Bandyopadhyay, and A.N. Samanta, "Experimental measurement and Kent-Eisenberg modelling of CO2 solubility in aqueous mixture of 2-amino-2-methyl-1-propanol and hexamethylenediamine", *Fluid Phase Equilib.*, vol. 437, pp. 118-126, 2017. [http://dx.doi.org/10.1016/j.fluid.2017.01.020]
- [3] M.M. Taib, and T. Murugesan, "Solubilities of CO2 in aqueous solutions of ionic liquids (ILs) and monoethanolamine (MEA) at pressures from 100 to 1600 kPa", *Chem. Eng. J.*, vol. 181-182, pp. 56-62, 2012. [http://dx.doi.org/10.1016/j.cej.2011.09.048]
- J. Lim, D.H. Kim, Y. Yoon, S.K. Jeong, K.T. Park, and S.Ch. Nam, "Absorption of CO2 into aqueous potassium salt solutions of l-alanine and l-proline", *Energy Fuels*, vol. 26, pp. 3910-3918, 2012. [http://dx.doi.org/10.1021/ef300453e]
- [5] Q. Xiang, M. Fang, H. Yu, and M. Maeder, "Kinetics of the reversible reaction of CO2(aq) and HCO3(-) with sarcosine salt in aqueous solution", J. Phys. Chem. A, vol. 116, no. 42, pp. 10276-10284, 2012. [http://dx.doi.org/10.1021/jp305715q] [PMID: 22992127]
- T. Wang, and K. Jens, "Oxidative degradation of aqueous 2-amino-2-methyl-1-propanol solvent for post combustion CO2 capture", *Ind. Eng. Chem. Res.*, vol. 51, pp. 6529-6536, 2012.
 [http://dx.doi.org/10.1021/ie300346j]
- I. Sreedhar, T. Nahar, A. Venugopal, and B. Srinivas, "Carbon capture by absorption-Path covered and ahead", *Renew. Sustain. Energy Rev.*, vol. 76, pp. 1080-1107, 2017.
 [http://dx.doi.org/10.1016/j.rser.2017.03.109]
- [8] G. Hu, N. Nicholas, K. Smith, K. Mumford, S. Kentish, and G. Stevens, "Carbon dioxide absorption into promoted potassium carbonate solutions: A review", *Int. J. Greenh. Gas Control*, vol. 53, pp. 28-40, 2016. [http://dx.doi.org/10.1016/j.ijggc.2016.07.020]
- M. Rahman, M. Siaj, and F. Larachi, "Ionic liquids for CO2 capture-development and progress", *Chem. Eng. Process.*, vol. 49, pp. 313-322, 2010.

[http://dx.doi.org/10.1016/j.cep.2010.03.008]

- S. Kadiwala, A. Rayer, and A. Henni, "High pressure solubility of carbon dioxide in aqueous piperazine solutions", *Fluid Phase Equilib.*, vol. 292, pp. 20-28, 2010.
 [http://dx.doi.org/10.1016/j.fluid.2010.01.009]
- [11] D. Guo, H. Thee, Ch. Tan, J. Chen, W. Fei, S. Kentish, G. Stevens, and G. da Silva, "Amino acids as carbon capture solvents: chemical kinetics and mechanism of the glycine+CO2 reaction", *Energy Fuels*, vol. 27, pp. 3898-3904, 2013. [http://dx.doi.org/10.1021/ef400413r]
- [12] T. Wang, and K. Jens, "Oxidative degradation of aqueous 2-amino-2-methyl-1-propanol solvent for post-combustion CO2 capture", *Ind. Eng. Chem. Res.*, vol. 51, pp. 6529-6536, 2012. [http://dx.doi.org/10.1021/ie300346j]
- [13] H.K. Balsora, and M.K. Mondal, "Solubility of CO2 in aqueous TSP", *Fluid Phase Equilib.*, vol. 328, pp. 21-24, 2012. [http://dx.doi.org/10.1016/j.fluid.2012.05.014]
- [14] H. Songa, S. Parka, H. Kima, A. Gaura, J. Parka, and S. Lee, "Carbon dioxide absorption characteristics of aqueous amino acid salt solutions", *Int. J. Greenh. Gas Control*, vol. 11, pp. 64-72, 2012. [http://dx.doi.org/10.1016/j.ijggc.2012.07.019]
- [15] M. Ramdin, T.W. de Loos, and T.J.H. Vlugt, "State-of-the-art of CO2 capture with ionic liquids", *Ind. Eng. Chem. Res.*, vol. 51, pp. 8149-8177, 2012.
 [http://dx.doi.org/10.1021/ie3003705]
- [16] U.E. Aronu, A. Hartono, and H.F. Svendsen, "Density, viscosity, and N2O solubility of aqueous amino acid salt and amine amino acid salt solutions", *J. Chem. Thermodyn.*, vol. 45, pp. 90-99, 2012. [http://dx.doi.org/10.1016/j.jct.2011.09.012]
- [17] R. Ramazani, S. Mazinani, A. Jahanmiri, and B. Van der Bruggen, "Experimental investigation of the effect of addition of different activators to aqueous solution of potassium carbonate: absorption rate and solubility", *Int. J. Greenh. Gas Control*, vol. 45, pp. 27-33, 2016. [http://dx.doi.org/10.1016/j.ijggc.2015.12.003]
- [18] A. Jayakumar, A. Gomez, and N. Mahinpey, "Post-combustion CO2 capture using solid K2CO3: Discovering the carbonation reaction mechanism", *Appl. Energy*, vol. 179, pp. 531-543, 2016. [http://dx.doi.org/10.1016/j.apenergy.2016.06.149]
- [19] A. Lee, M. Wolf, N. Kromer, K.A. Mumford, N. Nicholas, S.E. Kentish, and G.W. Stevens, "A study of the vapour liquid equilibrium of CO2 in mixed solutions of potassium carbonate and potassium glycinate", *Int. J. Greenh. Gas Control*, vol. 36, pp. 27-33, 2015. [http://dx.doi.org/10.1016/j.ijggc.2015.02.007]
- J. Cullinane, and G. Rochelle, "Carbon dioxide absorption with aqueous potassium carbonate promoted by piperazine", *Chem. Eng. Sci.*, vol. 59, pp. 3619-3630, 2004.
 [http://dx.doi.org/10.1016/j.ces.2004.03.029]

- [21] Y. Kim, J. Choi, S. Nam, S. Jeong, and Y. Yoon, "NMR study of carbon dioxide absorption in aqueous potassium carbonate and homopiperazine blend", *Energy Fuels*, vol. 26, pp. 1449-1458, 2012. [http://dx.doi.org/10.1021/ef201617b]
- [22] H. Thee, Y.A. Suryaputradinata, K.A. Mumford, K.H. Smith, G. da Silva, S.E. Kentish, and G.W. Stevens, "A kinetic and process modeling study of CO2 capture with MEA-promoted potassium carbonate solutions", *Chem. Eng. J.*, vol. 210, pp. 271-279, 2012. [http://dx.doi.org/10.1016/j.cej.2012.08.092]
- [23] H. Thee, K.H. Smith, G. da Silva, S.E. Kentish, and G.W. Stevens, "Carbon dioxide absorption into unpromoted and borate-catalyzed potassium carbonate solutions", *Chem. Eng. J.*, vol. 181-182, pp. 694-701, 2012. [http://dx.doi.org/10.1016/j.cej.2011.12.059]
- [24] Sh. Shen, X. Feng, R. Zhao, U. Kumar Ghosh, and A. Chen, "Kinetic study of carbon dioxide absorption with aqueous potassium carbonate promoted by arginine", *Chem. Eng. J.*, vol. 222, pp. 478-487, 2013. [http://dx.doi.org/10.1016/j.cej.2013.02.093]
- [25] H. Thee, N.J. Nicholas, K.H. Smith, G. da Silva, S.E. Kentish, and G.W. Stevens, "A kinetic study of CO2 capture with potassium carbonate solutions promoted with various amino acids: glycine, sarcosine and proline", *Int. J. Greenh. Gas Control*, vol. 20, pp. 212-222, 2014. [http://dx.doi.org/10.1016/j.ijggc.2013.10.027]
- [26] Y.E. Kim, J.H. Choi, S.Ch. Nam, and Y. Yoon, "CO2 absorption capacity using aqueous potassium carbonate with 2-methylpiperazine and piperazine", *J. Ind. Eng. Chem.*, vol. 18, pp. 105-110, 2012. [http://dx.doi.org/10.1016/j.jiec.2011.11.078]
- [27] R.R. Bhosale, A. Kumar, F. AlMomani, U. Ghosh, A. AlNouss, J. Scheffe, and R.B. Gupta, "CO2 capture using aqueous potassium carbonate promoted by ethylaminoethanol: a kinetic study", *Ind. Eng. Chem. Res.*, vol. 55, pp. 5238-5246, 2016. [http://dx.doi.org/10.1021/acs.iecr.5b04398]
- [28] G. Capannelli, A. Comite, and C. Costa, *Ind. Eng. Chem. Res.*, vol. 52, pp. 13128-13136, 2013. [http://dx.doi.org/10.1021/ie401376w]
- [29] A. Schaffer, K. Brechtel, and G. Scheffknecht, "Comparative study on differently concentrated aqueous solutions of MEA and TETA for CO2 capture from flue gases", *Fuel*, vol. 101, pp. 148-153, 2012. [http://dx.doi.org/10.1016/j.fuel.2011.06.037]
- [30] R. Ramezani, S. Mazinani, R. Di Felice, S. Darvishmanesh, and B. Van der Bruggen, "Selection of blended absorbents for CO2 capture from flue gas: CO2 solubility, corrosion and absorption rate", *Int. J. Greenh. Gas Control*, vol. 62, pp. 61-68, 2017. [http://dx.doi.org/10.1016/j.ijggc.2017.04.012]
- [31] R. Ramezani, S. Mazinani, R. Di Felice, and B. Van der Bruggen, "Experimental and correlation study of corrosion rate, absorption rate and CO2 loading capacity in five blend solutions as new absorbents for CO2 capture", *J. Nat. Gas Sci. Eng.*, vol. 45, pp. 599-608, 2017. [http://dx.doi.org/10.1016/j.jngse.2017.06.028]
- [32] S. Mazinani, R. Ramazani, A. Samsami, A. Jahanmiri, B. Van der Bruggen, and S. Darvishmanesh, "Equilibrium solubility, density, viscosity and corrosion rate of carbon dioxide in potassium lysinate solution", *Fluid Phase Equilib.*, vol. 396, pp. 28-34, 2015. [http://dx.doi.org/10.1016/j.fluid.2015.03.031]
- [33] R. Ramazani, S. Mazinani, A. Jahanmiri, S. Darvishmanesh, and B. Van der Bruggen, "Investigation of different additives to monoethanolamine as a solvent for CO2 capture", *J. Taiwan Inst. Chem. E.*, vol. 65, pp. 341-349, 2016. [http://dx.doi.org/10.1016/j.jtice.2016.05.037]
- [34] J. Lee, and I. Otto, "Equilibrium between carbon dioxide and aqueous monoethanolamine solutions", J. Appl. Chem. Bio. Techn, vol. 26, pp. 541-549, 1976.
 [http://dx.doi.org/10.1002/jctb.5020260177]
- [35] J.H. Song, J.H. Yoon, H. Lee, and K. Lee, "Solubility of carbon dioxide in monoethanolamine + ethylene glycol + water and monoethanolamine + poly(ethyleneglycol) + water", J. Chem. Eng. Data, vol. 45, pp. 497-499, 1996. [http://dx.doi.org/10.1021/je9502758]
- [36] K. Shen, and P. Li, "Solubility of carbon dioxide in aqueous mixtures of monoethanolamine with methyldiethanolamine", J. Chem. Eng. Data, vol. 37, pp. 96-100, 1992. [http://dx.doi.org/10.1021/je00005a025]
- [37] J.S. Tosh, J. Field, H. Benson, and W. Haynes, "Equilibrium Study of the System Potassium Carbonate, Potassium Bicarbonate, Carbon Dioxide, and Water", U.S. Bureau of Mines Rept. Invest. No. 5484; pp. 23, 1959.
- [38] D. Kang, S. Park, H. Jo, J. Min, and J. Park, "Solubility of CO2 in amino-acid-based solutions of (potassium sarcosinate), (potassium alaninate + piperazine), and (potassium serinate + piperazine)", J. Chem. Eng. Data, vol. 58, pp. 1787-1791, 2013. [http://dx.doi.org/10.1021/je4001813]
- [39] G. Kumar, T. Mondal, and M. Kundu, "Solubility of CO2 in aqueous blends of (Diethanolamine +2-amino-2-methyl-1-propanol) and (diethanolamine +N-Methyldiethanolamine)", J. Chem. Eng. Data, vol. 57, pp. 670-680, 2012. [http://dx.doi.org/10.1021/je200647j]
- [40] Z. Yang, A. Soriano, A. Caparanga, and M. Li, "Equilibrium solubility of carbon dioxide in (2-amino-2-methyl-1-propanol + piperazine + water)", J. Chem. Thermodyn., vol. 42, pp. 659-665, 2010.

[http://dx.doi.org/10.1016/j.jct.2009.12.006]

- [41] S. Mazinani, A. Samsami, A. Jahanmiri, and A. Sardarian, "Solubility (at low partial pressure) density, viscosity and corrosion rate of carbon dioxide in blend solutions of monoethanolamine and sodium glycinate", J. Chem. Eng. Data, vol. 56, pp. 3163-3168, 2011. [http://dx.doi.org/10.1021/je2002418]
- [42] S. Dash, and S. Bandyopadhyay, "Studies on the effect of addition of piperazine and sulfolane into aqueous solution of Nmethyldiethanolamine for CO2 capture and VLE modelling using NRTL equation", *Int. J. Greenh. Gas Control*, vol. 44, pp. 227-237, 2016. [http://dx.doi.org/10.1016/j.ijggc.2015.11.007]
- [43] R. Ramazani, S. Mazinani, A. Hafizi, A. Jahanmiri, B. Van der Bruggen, and S. Darvishmanesh, "Solubility and absorption rate enhancement of CO2 in K2CO3", *Sep. Sci. Technol.*, vol. 51, pp. 327-338, 2015. [http://dx.doi.org/10.1080/01496395.2015.1088027]
- [44] Y. Chang, R. Leron, and M. Li, "Equilibrium solubility of carbon dioxide in aqueous solutions of (diethylenetriamine + piperazine)", J. Chem. Thermodyn., vol. 64, pp. 106-113, 2013. [http://dx.doi.org/10.1016/j.jct.2013.05.005]
- [45] Ch. Guo, Sh. Chen, and Y. Zhang, "Solubility of carbon dioxide in aqueous 2-(2-aminoethylamine)ethanol (AEEA) solution and its mixtures with n-methyldiethanolamine/2-amino-2-methyl-1-propanol", J. Chem. Eng. Data, vol. 58, pp. 460-466, 2013. [http://dx.doi.org/10.1021/je301174v]
- [46] R. Ramazani, A. Samsami, A. Jahanmiri, B. Van der Bruggen, and S. Mazinani, "Characterization of monoethanolamine + potassium lysinate blend solution as a new chemical absorbent for CO2 capture", *Int. J. Greenh. Gas Control*, vol. 51, pp. 29-35, 2016. [http://dx.doi.org/10.1016/j.ijggc.2016.05.005]
- [47] A. Setameteekul, A. Aroonwilas, and A. Veawab, "Statistical factorial design analysis for parametric interaction and empirical correlations of CO2 absorption performance in MEA and blended MEA/MDEA processes", *Separ. Purif. Tech.*, vol. 64, pp. 16-25, 2008. [http://dx.doi.org/10.1016/j.seppur.2008.09.002]
- [48] R. Ramazani, S. Mazinani, A. Hafizi, and A. Jahanmiri, "Equilibrium solubility of carbon dioxide in aqueous blend of monoethanolamine (MEA) and 2-1-piperazinyl-ethylamine (PZEA) solutions: Experimental and optimization study", *Process Saf. Environ. Prot.*, vol. 98, pp. 325-332, 2015.
 [14] H. (10, 1016) [10, 1016] [10,

[http://dx.doi.org/10.1016/j.psep.2015.09.003]

© 2018 Ramezani et al.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.