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Abstract:

Background:

This paper reviews the Particle Size Distribution (PSD) problem in detail. Mathematically, the problem faced while recovering a function from a
finite number of its geometric moments has been discussed with the help of the Spline Theory. Undoubtedly, the splines play a major role in the
theory  of  interpolation  and  approximation  in  many  fields  of  pure  and  applied  sciences.  B-Splines  form  a  practical  basis  for  the  piecewise
polynomials of the desired degree. A high degree of accuracy has been obtained in recovering a function within the first ten to fifteen geometric
moments. The proposed approximation formula has been tested on several types of synthetic functions. This work highlights some advantages,
such as the use of a practical basis for the approximating space, the exactness of computing the moments of these basis functions and the reduction
of the size along with an appropriate transformation of the resulting linear system for stability.

Objective:

The aim is to recover a function from a finite number of its geometric moments.

Methods:

The main tool is the Spline Theory. Undoubtedly, the role of splines in the theory of interpolation and approximation in many fields of pure and
applied sciences has been well- established. B-Splines form a practical basis for the piecewise polynomials of the desired degree.

Results:

A  high  degree  of  accuracy  has  been  obtained  in  recovering  a  function  within  the  first  ten  to  fifteen  geometric  moments.  The  proposed
approximation formula is tested on several types of synthetic functions.

Conclusion:

This work highlights some advantages, such as the use of a practical basis for the approximating space, the exactness of computing the moments of
these basic functions and the reduction of the size along with the data transformation of the resulting linear system for stability.
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Density Function-Based Method (KDF).
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1. INTRODUCTION

The Particle Size Distributions (PSD) is a key process used
in several industrial operations such as chemical engineering,
especially in dynamic multiphase flows. The size distribution
of particles can be extremely important for several reasons. For
 example,  this  property  may  have  an  impact  on  the  effi-
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ciency of processes like filtration. Indeed, small product sizes
may  result  in  a  significant  increase  in  processing  time.
Moreover, PSD generally represents a key result to assess the
good quality of chemical process output. The evolution of the
PSD  depends  on  several  parameters  such  as  time,  location,
particle  volume  and  chemical  composition.  Accessing
experimentally  the  evolution  of  PSD  through  time  is  very
complicated  technically.  Thus,  most  of  PSD  reconstruction
techniques  are  based  on  numerical  modeling.  Simulation  of
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such processes may require massive computational resources
including a large amount of memory, the storage and access to
the computed outputs during the simulation [1 - 6]

Several  attempts  of  PSD  reconstruction  were  proposed
based  on  the  orthogonal  polynomials  or  continuous  kernel
functions.  Some  authors  implemented  the  kernel  density
element  method  to  approximate  the  PSD  based  on  weighted
kernel  density  functions  [7].  The  main  limitation  of  this
approach is the introduction of a quadrature error at moment
closures. Other authors proposed to reconstruct the PSD using
orthonormal functions such as Legendre polynomials without
any assumptions on particle distribution [8]. Nevertheless, this
approach may lead to negative cases of  PSD as only a  finite
number of polynomials can be determined.

In addition, most of the applications implement a limited,
finite number of moments for the reconstruction, highlighting
possible  inaccuracies.  This  constraint  leads  chemical
engineering applications to be restricted only for very simple
distribution shapes such as Gaussian or log-normal functions.
In order to avoid such limitations, several authors proposed to
model PSD using its few lower-order moments, while reducing
computational cost [9 - 14]. Moments are defined as integrals
of  the  PSD  throughout  particle  ensemble.  For  example,  the
moment of order zero represents the total particle number and
the first moment is the total particle mass. In the last decade,
several  research  studies  in  chemical  engineering  focused  on
particle  size  distributions  applications  using  moment-based
techniques  to  determine  distributions.  Several  authors  have
proposed  different  approaches  to  solve  the  reconstruction
problem. A suitable PSD reconstruction technique should make
sure  that  reconstructed  PSD  converges  to  the  computed
moments.

In  addition  to  its  importance  to  the  field  of  chemical
engineering  applications,  reconstructing  a  function  from  a
finite  number  of  its  moments  is  an  important  step  for  many
other problems encountered in Science and Technology such as
electronic nuclear physics, image processing, and others. For
example, in the field of tomography and image processing, we
deal  with  the  well-known  application  of  reconstructing  an
image  from its  moments,  or  the  reconstruction  of  the  Radon
Transforms from their moments [15 - 17].

Let  ƒ  be  an  unknown  non-negative  continuous  function
with  compact  support  on  the  interval  [a,b].  The  geometric
moments of an objective function ƒ are defined as:

(1)

Theoretically,  we  can  determine  ƒ  from  the  given  finite
sequence  Miƒ  of  all  orders.  However,  encountered  with  an
underdetermined problem, we tried to match up to the given, or
allowed  moments.  Therefore,  a  numerical  approach  is
presented to find a function that matches ƒ up to some order of
moments.  We can work with a  shifted – scaled form of  ƒ so

that it is supported on the interval [0, 1] with 

Infact,  the  problem of  determining  ƒ  from a  given  finite
sequence Miƒ takes different forms due to the related physical
and mathematical assumptions. Specifically, when moments of

all  orders  are  known,  then  ƒ  can  be  recovered  completely.
Infact, the widely known Uniqueness Theorem of the moments
[18]  assures  that  the  moments  of  all  orders  are  uniquely
determined  by  ƒ.  Conversely,  Miƒ  of  all  orders  uniquely
determines ƒ. But, if only a finite number of these moments are
given,  then  we  may  face  the  well-known  inverse  problem.
Further, it is known that the support of the objective function ƒ
categorizes  the  problem  into  different  scenarios  [14].  In  the
Hausdorff  moment  problem,  the  support  of  ƒ  is  a  closed
interval [a, b]. In the Stieltjes moment problem, the support of
ƒ  is  on (0,  +∞);  and in the Hamburger moment problem, the
support of ƒ is on (-∞, +∞).

Several  reconstruction  methods  exist  in  the  literature,
mainly  for  the  Hausdorff  moment  problem,  but  there  is  no
unified  method  for  the  reconstructing  problem.  A  great
comparative study based on these various methods is discussed
in  a  study  [1].  A  brief  review  of  the  known  methods  is  as
follows:

1.1. Parameter-Fitting Method

This  method is  limited  to  simple  shapes.  For  example,  a
number  of  distributions  have  been  listed  below  whose
parameters  are  determined  by  the  given  low-order  moments,
(the  first  three  moments),  such  as,  the  Gaussian-normal
function,  the  Log-normal  distribution,  the  Half-normal
function,  the  Gamma  function,  and  others  [14].

1.2. Kernel Density Function-Based Method (KDF)

This  approach  was  motivated  by  the  above  parameter-
fitting method. It is based on a superposition of finite weighted
kernel  density  functions  for  the  Hausdorff  moment  problem
and  later  was  generalized  to  solve  the  Stieltjes  moment
problem [7]. KDF is a non-parametric method to estimate the
probability  density  function  for  a  random  variable.  This
method  is  a  positivity-preserving  representation  but  needs  a
large number of the available moments to ensure accuracy. The
objective  function  is  approximated  by  a  sum  of  N  weighted
kernel density functions as follows:

(2)

Where;

 are the KDFs, centered at xi, and is chosen as a
Beta Kernel.

The bandwidth h  of  the kernel is  a free parameter which
exhibits  influence  on  the  resulting  estimate  and  satisfies  the
coefficients cn.

(3)

The goal then is to determine the optimal coefficients cn.
This  problem  is  reformulated  as  a  constrained  optimization
problem aiming to find the coefficients cn which minimizes the
error  between the set  of  initial  moments  and those estimated
via the sum of Beta KDFs.

ℳ𝑗𝑓 ∶= ∫ 𝑥𝑗𝑓(𝑥)𝑑𝑥,    𝑗 = 0,1,2, …
∞

−∞

∫ 𝑓(𝑥)𝑑𝑥 = 1
1

0
.   

𝑓(𝑥) = ∑ 𝑐𝑛
𝑁
𝑛=1 𝐾ℎ,𝑥𝑖 ,

(𝑥) 

 𝐾ℎ,𝑥𝑖 ,
(𝑥) 

∑ 𝑐𝑛
𝑁
𝑛=1 = 1, and   𝑐𝑛 ≥ 0
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1.3. Maximum Entropy Method

The maximum entropy method requires less knowledge of
the prior information or the number of moments, as compared
to the Kernel density function-based method [9, 10]. It is based
on  the  maximization  of  the  Shannon  entropy  or  the
minimization of the relative entropy from information theory.
The Shannon entropy is given by:

(4)

and the objective function is approximated by

(5)

The (N + 1) constraints are:

(6)

The (N + 1) Lagrange’s multipliers  are
obtained by solving the nonlinear system of (N+1) equations:

(7)

1.4. Spline-Based Method

Spline  approximation  is  a  natural  approach for  the  finite
moment  problem.  For  example,  some authors  tried  the  zero-
order spline interoperation with a restriction on the recovered
function.  This  approach  may  not  be  suitable  for  some
applications,  such  as  the  PSD  problem  [13].  John  et  al.
proposed  the  use  of  spline  theory  to  the  application  of  PSD
problem with the advantage of no priori assumptions on ƒ [14].
In  this  case,  the  number  of  needed  moments  depends  on  the
number  of  interpolation  nodes.  This  approach  divides  the
support  of  the  [a,b]  into  N  subintervals:

On  each  subinterval   the  target  function  is
approximated by a cubic polynomial,

(8)

Thus, ƒ is piecewise-defined and is written as:

(9)

The unknown coefficients are the four coefficients of each
spline,  which  is  a  total  of  4N  unknowns.  A  smoothness
condition at the boundaries of the interval is assumed, which
means  that  the  function,  its  first  and  second  derivatives,  are
null  at  the  boundaries.  This  gives  2  ×  3  equations.  The
continuity of the splines, their first and second derivatives at
the nodes, provides 3(N − 1) equations. The remaining (N − 3)
equations are supplemented from the moments by computing
the moments of both sides of the equation (9):

Hence, we can obtain N-3 equations from the equation

(10)

This  leads  to  solve  a  4N  ×  4N  ill-conditioned  linear
system.

In  this  paper,  a  method  to  improve  the  existing  spline
approach  has  been  proposed.  Namely,  the  B-Splines
expansions technique has been proposed to solve this problem.
The key fact is that B-Splines of degree k form a basis for the
linear space of piecewise polynomial functions of degree k. In
fact,  it  is  believed  that  our  approach  improves  the  approach
presented above for two reasons:

a): The 4N × 4N ill-conditioned linear system needed for
the above cubic splines approach is replaced by (N+3) × (N+3)
system, and in general, we need N+k equations for B-splines of
degree k.

b): The algorithm for this 4N × 4N system is sensitive to
negative tolerance leading to different reconstructions for the
same target function [1, 11].

The work is organized as follows the proposed methods are
presented in Section 2.

Section  3  is  concerned  with  experiments  and  discussion.
Finally, in the last section, the conclusion is presented.

2. USING B-SPLINES FOR THE MOMENT PROBLEM

2.1. Background

A  few  definitions,  concepts  and  facts  obtained  from  the
Approximation  Theory  are  first  reviewed.  Mathematical
literature  provides  a  rich  theory  and  tools  for  the  classical
interpolation and spline theory [19, 20]. Several options have
been explored for approximating ƒ. In fact, using the B-spline
functions serves and fits the physical, geometry, and settings of
the current problem.

Starting with a partition of the interval [a,b], as given by
the following equation

(11)

that divides this interval into N subintervals.

Let  S(k,∆N)  be  the  linear  space  of  piecewise  polynomial
functions of degree k with knots ∆N.

A function sϵS(k,∆N) if

(i)  On  each  subinterval  coincides  with  a
polynomial of degree ≤ k

(ii) s ϵ Ck-1[a,b], so s has k-1 continuous derivatives.

Further, the dimension of the space S(k,∆N) is N + k.

One  way  of  introducing  the  B-splines  is  to  address  the
question of choosing a basis for S(k,∆N) so that each member of
this basis is identically zero over a large part of the range [a,b].
The  family  of  B-  splines  of  degree  k  provides  such  a  basis.

Considering the above partition ∆Neach B-spline,   is  a

 ℋ(𝑓)    = − ∫ 𝑓(𝑥)𝑙𝑛𝑓(𝑥)𝑑𝑥    
∞

0
 

  𝑓𝑚(𝑥) =  𝑒− ∑ 𝜉𝑘
𝑁
𝑘=0 𝑥𝑘

ℳ𝑗𝑓𝑚  =   ∫ 𝑥𝑗𝑓𝑚(𝑥)𝑑𝑥,    𝑘 = 0,1,2, … 𝑁
∞

0
    

𝜉𝑘 , 𝑘 = 0, … , 𝑁 

ℳ𝑗𝑓𝑚 =  ∫ 𝑥𝑗  𝑒− ∑ 𝜉𝑘
𝑁
𝑘=0 𝑥𝑘

𝑑𝑥  
∞

0

∆𝑁∶  𝑎 = 𝜉1 < 𝜉1 < ⋯ < 𝜉𝑁+1 = 𝑏.  

 [𝜉𝑖,, 𝜉𝑖+1], 

   𝑆𝑖(𝑥) = ∑ 𝑠𝑖𝑗
3
𝑘=0 (𝑥 − 𝜉𝑖)𝑘,     𝑥𝜖[𝜉𝑖,, 𝜉𝑖+1], 𝑖 = 1, … , 𝑁 

  𝑓(𝑥)   ≅ ∑ 𝑆𝑖(𝑥) =  ∑ ∑ 𝑠𝑖𝑘
3
𝑘=0 (𝑥 − 𝜉𝑖)𝑘,     𝑥𝜖[𝜉𝑖,, 𝜉𝑖+1] 𝑁

𝑖=1
𝑁
𝑖=1

ℳ𝑗𝑓  =  ∫ 𝑥𝑗𝑓(𝑥)𝑑𝑥 =    ∫ 𝑥𝑗[ ∑ ∑ 𝑠𝑖𝑘
3
𝑘=0 (𝑥 − 𝜉𝑖)𝑘] 𝑁

𝑖=1  𝑑𝑥     𝑏

𝑎

𝑏

𝑎

           = ∑  𝑁
𝑖=1 ∑   𝑠𝑖𝑘  ∫ 𝑥𝑗(𝑥 − 𝑥𝑖)𝑘 

𝜉𝑖+1

𝜉𝑖

3
𝑘=0 𝑑𝑥.  

ℳ𝑗𝑓  =  ∑  𝑁
𝑖=1 ∑   𝑠𝑖𝑘  ∫ 𝑥𝑗(𝑥 − 𝑥𝑖)𝑘 

𝜉𝑖+1

𝜉𝑖

3
𝑘=0 𝑑𝑥

  ∆𝑁∶  𝑎 = 𝜉0 < 𝜉1 < ⋯ < 𝜉𝑁 = 𝑏 

 [𝜉𝑖,, 𝜉𝑖+1], 𝑠(𝑥) 

   𝐵𝑝
𝑘(𝑥)
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polynomial  of  degree  k.  The  subscript  p  denotes  that  the

support of  is the interval , so that  is
zero outside this interval. A known recursion formula of the B-

splines of degree k  at  the knots  is  given  by
Cox-de Boor Recursion Formula [22]:

(12)

Fig.  (1)  shows  B-splines  of  degrees  0,1,2,  and  3  with  a
uniform partition.

This  section  has  been  concluded  with  the  following  key
points [19], showing that B-splines can be used as a basis for
the space S(k,∆N).

Theorem 1:

Consider  the  extended  partition  
.

The  set   forms  a  basis  for
S(k,∆N).

Thus,  if  sϵ(k,∆N),  then s(x)  =   for  some
coefficients.

(13)

2.2. The Theory

Returning  to  our  current  problem,  Let  ƒ  be  an  unknown
nonnegative  function  with  compact  support  on  the  interval
[a,b].  A  spline  approximation  s(x)  for  ƒ  from  S(k,∆N)  is
required  such  that

(14)

In  order  to  use  the  given  moments  of  ƒ,  we  make  the
following two observations:

First, if  is normalized so that  then
equations (2) and (6) will be formed:

(15)

Second,  the  j-th  moment  of  the  normalized

,  can  be  expressed  as  Carlson's
Dirichlet  Average  [21]  which  in  turn  can  be  solved  via  a
contour  integral  and  an  iterative  sum  [22]  as:

(16)

and D = 1. Here Γ is the Gamma function, 
, is the vector of knots in the support of , m is the vector
of their multiplicities and m is the sum of the components of m.

Consider the moments of both sides of (14):

(17)

The linear system representation of (17) is written as:

(18)

Where A is (N + k) X (N + k) matrix of B-splines moments
on  the  interval  [a,  b],  α  is  the  vector  of  the  N  +  k  unknown
coefficients and Mƒ is the vector of the known - k, 0, ...,N - 1
moments of ƒ.

Notice that we need to pay attention when using Equation
(16) to fill the matrix A ; namely, adjustments regarding those
splines whose supports are partially beyond the interval [a, b].
This  endpoint  concern  will  be  discussed  later.  Equation  (18)
can  be  ill-conditioned  for  a  large  size  computation.  More
details on this system are presented in the discussion section.

3. DISCUSSION AND EXAMPLES

Following  the  discussion  of  Section  2,  the  B-spline
approximation of the function ƒ on the interval [0,1] ƒ(x) s(x)
as in Equation (14), with degree k = 3, will now be considered.
For the cubic B-splines, we use the partition

With  this  particular  value  of  the  degree  (k=3);  Equation
(14) becomes,

(19)

We proceed Equation (17) by computing the moments of
Equation (19):

We explicitly display the first and last three terms of this
summation:

(20)

For a more compact notation, we write the left three terms
as

𝐵𝑝
𝑘(𝑥) 𝐵𝑝

𝑘(𝑥)   [𝜉𝑝, 𝜉𝑝+𝑘+1]

 𝜉𝑝, … , 𝜉𝑝+𝑘+1 

 𝐵𝑝
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𝑥−𝜉𝑝

𝜉𝑝+𝑘−𝜉𝑝
 𝐵𝑝
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𝜉𝑝+𝑘+1−𝑥

𝜉𝑝+𝑘+1−𝜉𝑝+1
𝐵𝑝+1

𝑘−1(𝑥),  

with          

 𝐵𝑝
0(𝑥)  =  {

1,    𝑖𝑓 𝑥 ∈ [𝜉𝑝, 𝜉𝑝+1)

0  , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

  𝜉−𝑘 < ⋯ < 𝑎 = 𝜉0 < 𝜉1 <

⋯ < 𝜉𝑛+1 = 𝑏 < ⋯ < 𝜉𝑁+𝑘 .   

  𝔅 =: {  𝐵−𝑘
𝑘 , 𝐵−𝑘+1 

𝑘 , … ,  𝐵𝑁−1
𝑘  }   

  ∑  𝛼𝑝𝐵𝑝
𝑘(𝑥)𝑁−1

𝑝=−𝑘  

𝛼𝑝: 𝑝 =  −𝑘, … , 𝑁 − 1.     

𝑓(𝑥)   ≅  𝑠(𝑥) =  ∑  𝛼𝑝𝐵𝑝
𝑘(𝑥)𝑁−1

𝑝=−𝑘               

  𝐵𝑝
𝑘(𝑥)  ∫ 𝐵𝑝
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𝜉𝑝+𝑘+1

𝜉𝑝

 1 = ∫ 𝑓(𝑥)𝑑𝑥 = 
𝑏

𝑎
∫  ∑  𝛼𝑝𝐵𝑝

𝑘(𝑥)𝑁−1
𝑝=−𝑘 𝑑𝑥 = ∑  𝛼𝑝

𝑁−1
𝑝=−𝑘

𝑏

𝑎
             

 𝐵𝑝
𝑘(𝑥), i.e ℳ𝑗𝐵𝑝

𝑘(𝑥) 

  ℳ𝑗  𝐵𝑝
𝑘(𝑥) = ∫ 𝑥𝑗   𝐵𝑝

𝑘(𝑥) 𝑑𝑥  
𝜉𝑝+𝑘+1

𝜉𝑝
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Γ(𝑗+1)Γ(𝑚)

Γ(𝑚+𝑗)
𝐷𝑗(𝓂, 𝑡) 

  𝐷𝑗 =
1

𝑗
∑ [  ( ∑ 𝓂𝑖

 
𝑖

𝑗
𝑢=1 . 𝑡𝑖

𝑢  ) 𝐷𝑗−𝑢]

 𝑡 =  〈𝜉𝑝, … 𝜉𝑝+𝑘+1〉,

   𝐵𝑝
𝑘(𝑥)

𝑓(𝑥)   ≅  𝑠(𝑥) =  ∑  𝛼𝑝𝐵𝑝
𝑘(𝑥)𝑁−1

𝑝=−𝑘  , and            

 ℳ𝑗𝑓  = ∫ 𝑥𝑗  𝑓(𝑥)𝑑𝑥    
𝑏

𝑎
  

           =  ∫ 𝑥𝑗  ∑  𝛼𝑝𝐵𝑝
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𝑏

𝑎
.                  
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𝑏

𝑎
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< 𝜉𝑁 = 𝑏 <  𝜉𝑁+1  <  𝜉𝑁+2 < 𝜉𝑁+3.  
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  𝑓(𝑥)   ≅  𝑠(𝑥) =  ∑  𝛼𝑝𝐵𝑝
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0
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𝑝=0

              + ∫ 𝛼𝑁−3𝑥𝑗   𝐵𝑁−3
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Fig. (1). B-Splines of degrees 0,1,2, and 3.

And the right three terms as:

Then,  Equation  (20)  with  the  values  j  =  0,1,  ...  ,  N  +  2
gives the (N + 3) X (N + 3) system:

(21)

System (18), built from (21), can be ill-conditioned for a
large size computation. We treat this behavior by the following
transformation  of  data:  Let  A  =  QR  be  the  QR-factorization,
which is a decomposition of the matrix A where R is an upper
triangular  matrix  and Q  is  an  orthogonal  matrix  i.e.  QQT  =  I
where  T  denotes  the  transpose  and  I  is  the  identity  matrix.
Then, one can show that the system (18) is equivalent to

(22)

that can be solved by back substitution.

We also need measures of error. Define

(23)

This measures the closeness s of ƒ

Along with  this  discussion,  we consider  some examples.
All the experiments are conducted using MATLAB.

Example  1.  In  Fig.  (2),  we  show  the  function:  ƒ(x)  =
sin(πx)e4x normalized on [0,1] with the moments: N = 4,5,6,7,8
and 9, along with the corresponding error (23).

Another example of our tests:

Example 2. We consider the function:

ƒ(x)  =  exp  [-80(x  -  0.3)2]  + exp  [-80(x  -  0.6)2]  +  
normalized  on  [0,1],  with  moments  with  moments  N  =
10,11,12,13,14,  and  15.  Results  are  shown  in  Fig.  (3)

We  now  address  a  number  of  concerns  regarding  our
approach; we summarize these concerns in the following three
remarks:

Remark 1: On approximation with polynomials

The  Weierstrass  approximation  theorem  [23],  states  that
for every continuous function ƒ(x) defined on an interval [a,b],
there exists a set of Polynomials pi(x), i ≤ N that approximates
ƒ(x) with uniform convergence over [a,b] as N→∞ . However,
this theorem does not provide a general method of finding such
a set of polynomials. A set of polynomials may even diverge as
N increases. This typically occurs in an oscillating pattern that
magnifies  near  the  ends  of  the  interpolation  points.  This  is
known as Runge's phenomenon [24]. In fact, oscillation at the
edges of an interval occurs when polynomials of a high degree
over  a  set  of  equispaced  interpolation  points  are  used.  The
phenomenon  is  similar  to  the  Gibbs  phenomenon  in  Fourier
series approximations [25]. According to Runge's phenomenon,
the  magnitude  of  the  n-th  order  derivatives  of  this  function
grows quickly for a large degree and the equidistance between
points, which leads to a larger Lebesgue constant for large N.

In  the  classical  interpolation  practice,  we  mitigate  this
issue  using  different  approaches,  such  as  change  of
interpolation  points,  use  constrained  minimization,  use  of
piecewise  polynomials,  Least-squares  fitting,  and  others.

Although  our  research  problem  here  is  not  a  classical
interpolation, since interpolations require the knowledge of a
sample of ƒ(x) on [a,b], we indeed adapted the use of piecewise
polynomials, the B-splines.

𝑅𝑗,𝑁−3 = ∫ 𝑥𝑗   𝐵𝑁−3
3 (𝑥) 𝑑𝑥  ,

1

0
   𝑅𝑗,𝑁−2 = ∫ 𝑥𝑗   𝐵𝑁−2

3 (𝑥) 𝑑𝑥 ,

and    

1

0

𝑅𝑗,𝑁−1  = ∫ 𝑥𝑗   𝐵𝑁−1
3 (𝑥) 𝑑𝑥  

1

0
 

ℳ𝑗𝑓 = 𝛼−3𝐿𝑗,−3 +  𝛼−2𝐿𝑗,−2

  +   𝛼−1𝐿𝑗,−1  +   ∑  𝛼𝑝 𝑁−4
𝑝=0 [ ℳ𝑗𝐵𝑝

3(𝑥)] 

  + 𝛼𝑁−3 𝑅𝑗,𝑁−3  +  𝛼𝑁−2 

𝑅𝑗,𝑁−2  +  𝛼𝑁−1𝑅𝑗,𝑁−1  

 𝑅𝛼 =  𝑄𝑇(ℳ𝑓)  

𝐸𝑓 = ‖𝑓 − 𝑠‖    

1

2

1
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Fig. (2). The function ƒ(x) = sin(πx)e4x normalized on [0,1] and s(x) from (19) along with Eƒ for different moments.

Remark  2:  Convergence  Property  of  Spline  Approxi-
mation

When we require a B-Spline interpolation s from S(k,∆N) to
a function ƒ on the interval [a,b], we need to have a bound on
the least maximum error:

(24)

It is known that [19],

(25)

where  ω  is  the  modulus  of  continuity  of
,  and  k  is  t  QR  the  spline

degree.

It  follows  that  any  continuous  function  can  be
approximated to arbitrarily high accuracy by a spline function
s(x) = , provided that the spacing between the

knots is sufficiently small.
However,  our  study,  as  said,  is  not  an  interpolation

problem  and  the  use  of  a  large  N  brings  other

limitations, as explained in the next remark.

Remark 3: Limitations

Although  our  approach  never  needs  a  large  N,  it  is
important  for  the  completeness  of  this  discussion  to  address
this  point.  Consider  the  system  Aα  =  Mƒ  in  Equation  (18),
given in a more explicit form by Equation (21):

Each j generates one equation of this system, j = 0,1, ... , N
+ 2; and the entries of the coefficient matrix A are decreasing
as j increases. For example, the coefficient of the first unknown
α-3 is

 

2  

𝐸𝑓 

a 4 0.5894 

b 5 0.1815 

c 6 0.0341 

d 7 0.0090 

e 8 0.0043 

f 9 0.0010 

 𝑑∗(𝑓 −  𝑆( 𝑘, ∆𝑁) ∶= 𝑚𝑖𝑛𝑠 𝜖 𝑆( 𝑘,∆𝑁 )‖𝑓 − 𝑠‖

 𝑑∗(𝑓 −  𝑆( 𝑘, ∆𝑁)  ≤  𝜔 (
1

2
[𝑘 + 1]ℎ )

𝑓;   ℎ = 𝑚𝑎𝑥𝑖=1,…𝑁(𝜉𝑖 − 𝜉𝑖−1)

 ∑  𝛼𝑝𝐵𝑝
𝑘(𝑥)𝑁−1

𝑝=−𝑘

ℳ𝑗𝑓 = 𝛼−3𝐿𝑗,−3 +  𝛼−2𝐿𝑗,−2  +   𝛼−1𝐿𝑗,−1

  +   ∑  𝛼𝑝 𝑁−4
𝑝=0 [ ℳ𝑗𝐵𝑝

3(𝑥)]   + 𝛼𝑁−3 𝑅𝑗,𝑁−3  +  𝛼𝑁−2 

𝑅𝑗,𝑁−2  +  𝛼𝑁−1𝑅𝑗,𝑁−1.  
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Fig. (3). The function ƒ(x) = exp [-80(x - 0.3)2] + exp [-80(x - 0.6)2] +  normalized on [0,1] and s(x) from (19) along with Eƒ for different moments.

This  may  explain  why  a  large  N  makes  the  matrix  A
singular. The QR factorization can reduce the instability of this
system. However, for a large N, this approach would not work.

CONCLUSION

Recovering  a  function  from  a  finite  number  of  its
geometric  moments  is  a  known  ill-posed  problem.  The
literature-based  on  this  topic  has  been  reviewed,  and  a
significant  improvement  for  the  spline  approach  has  been
proposed  to  solve  this  problem.  It  has  been  observed  that
approximating the target function from its moment in terms of
a  piecewise  polynomial  is  one  of  the  efficient,  and  stable
approaches,  in  particular  when  the  basis  of  such  a  space  of
functions is a family of B-Splines. Results show good accuracy
in recovering different types of synthetic functions. In fact, this
work  brings  some  advantages  as  compared  to  the  existing
approaches,  such  as  the  use  of  a  practical  basis  for  the

approximating space, the exactness of computing the moments
of these basis functions and the reduction of the size along with
the  QR  transformation  of  the  resulting  linear  system  for
stability.
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