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Abstract: In the present work an analytical and numerical study is presented in order to determine the residual fluid film 

thickness of a power-law fluid on the walls of a rectangular horizontal channel when it is displaced by another immiscible 

fluid of negligible viscosity. The mathematical model describes the motion of the displaced fluid and the interface be-

tween both fluids. In order to obtain the residual film thickness, m , we used a singular perturbation technique: the match-

ing asymptotic method; in the limit of small capillary number, Ca . The main results indicated that the residual film 

thickness of the non-Newtonian fluid decreases for decreasing values of the power-law index, which is in qualitative 

agreement with experimental results. 
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INTRODUCTION 

 The steady displacement of Newtonian and non-

Newtonian fluids by long bubbles, confined in vertical and 

horizontal cylindrical ducts or parallel plates has received 

considerable attention during the past decades, due to the 

fundamental and practical importance of this process in 

many industrial applications. Typical examples appear in 

film coating, bubble columns, gas-assisted injection mold-

ing, lubrication theory, oil recovery in naturally fractured 

reservoirs, etc. The theoretical and experimental studies of 

this fluid dynamic problem are, in general, very complex 

because several physical difficulties associated with the for-

mation and deposition of a liquid film in the wall of the con-

tainer are presented. Usually in these problems the important 

step is to determine the thickness of the film, considering 

two basic situations: a) when the plate is moved steadily out 

of a bath of the liquid with uniform velocity and b) the slow 

displacement of one fluid by another, taking into account 

that the walls are fixed. For Newtonian fluids this problem 

has been widely studied for different cases and parting from 

the pioneer analytical works of Bretherton [1] and Cox [2] 

and the experimental work of Taylor [3], the basic mechan-

ics of deposition films are now well understood. In this di-

rection, we can emphasize the following works: Wilson [4] 

studied analytically the film coating in a plate when it is 

drawn steadily out of a bath of the liquid: the drag-out prob-

lem. Using the method of matched asymptotic expansions to 

predict the thickness of the film for small values of the capil-

lary number Ca , this author showed that the analysis of 

Landau [5] for this same problem, represents the leading 
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order of an asymptotic solution, where the higher order cor-

rection terms were included to improve the Landau's solu-

tion. Park and Homsy [6] studied in a Hele Shaw cell the 

two-phase displacement in the gap between closely spaced 

planes. These authors also used matched asymptotic expan-

sions to estimate the thickness of the film for small values of 

the capillary number Ca , confirming the previous results 

obtained by Bretherton [1]. Schwartz et al. [7] in an effort to 

validate the theoretical prediction of Bretherton, developed 

an experimental procedure to measure the average thickness 

of the wetting film left behind during the slow passage of an 

air bubble in a water-filled capillary tube. He confirmed that 

for bubbles of length less than 20 tube radii, the agreement is 

very good. The above works have a common characteristic: 

the order of magnitude of the experimental and theoretical 

predicted thicknesses is sufficient to avoid the presence of 

intermolecular forces. In this direction, Teletzke et al. [8] 

distinguished the frontier between thick and thin films, rec-

ognizing that as liquid film thickness approaches molecular 

dimensions (thicknesses nm  100 ), the intermolecular 

forces are of the same order of magnitude of viscous and 

capillary forces. A presentation of these new topics can be 

found in the excellent book of Middleman [9], where the 

presence of other effects as surface-active impurities, slip at 

apparent contact lines, air entrainment in coating fluids, Ma-

rangoni shear stresses, etc can complicate enormously the 

treatment of the problem. For instance, Münch [10] using 

numerical and asymptotic schemes derived the thickness of a 

film, which forms at the tip of a capillary meniscus due to 

the presence of thermally induced Marangoni shear stress 

effects. Therefore, for Newtonian fluids the analysis of thin 

and ultrafilms is an active area of fundamental development 

that offers new theoretical perspectives and controversial 

aspects. 
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 However, the specialized literature to treat these prob-

lems for non-Newtonian fluids is scarce in spite of that there 

are abundant evidence and interesting applications. The pio-

neering works of Poslinski et al. [11] and Poslinski and 

Coyle [12] found that the fraction of the non-Newtonian 

fluid deposited on the walls is less than that of a correspond-

ing Newtonian fluid at low capillary number. In particular 

their numerical results showed that fluids with shear thinning 

viscosity exhibit a smaller fractional coverage than Newto-

nian fluid at the same capillary number. Fractional coverage 

was also found to be smaller for a fluid with a smaller shear 

thinning index. 

 Kamisli and Ryan [13] studied the two dimensional flow 

of a power-law fluid analytically using a singular perturba-

tion method and experimentally in order to determine the 

residual liquid film thickness for a circular tube and for a 

rectangular channel. The analytical results of this work indi-

cated that the residual liquid film thickness of non-

Newtonian fluids increases with decreasing power-law in-

dex. Later these authors, Kamisli and Ryan [14], developed a 

mathematical analysis to study the motion of long bubbles 

into Newtonian and non-Newtonian fluid confined in a hori-

zontal circular tube, rectangular channels, and square cross-

sectional channels. The model results are in qualitative 

agreement with previous experimental observations and give 

also a good agreement with a previous numerical solution 

obtained by Poslinski et al. [11].  

 In order to identify the effects of fluid elasticity on the 

fractional coverage, Huzyak and Koelling [15] studied the 

penetration of a long gas bubble through a tube filled with a 

viscoelastic fluid. The authors developed experiments with 

two Newtonian fluids and two highly elastic constant shear 

viscosity fluids. The fractional coverage was characterized in 

terms of the capillary and Deborah numbers; and found that 

the fractional coverage for viscoelastic fluids is a strong 

function of the tube diameter. 

 In the present work, we study the motion of an inviscid 

fluid into a power-law fluid confined in a horizontal rectan-

gular channel. We develop a mathematical model using a 

singular perturbation method in order to determine the resid-

ual fluid film thickness of pseudoplastic fluid (characterized 

by a power-law index less than unity, 1<n ) on the walls. 

METHODOLOGY  

 Consider that a fluid of negligible viscosity is injected 

displacing with constant velocity,U , a power-law fluid con-

fined in a rectangular channel, as shown schematically in 

Fig. (1). The walls of the channel are infinite long in the di-

rection perpendicular to the plane yx  and are separated a 

distance R2  small enough to neglect the gravitational ef-

fects, so that the solution is symmetric about the midplane. 

We assume that the displaced fluid totally wets the wall, 

leaving a film on the wall as displacement proceeds. The 

surface tension between the fluids is known and uniform; 

therefore the tangential force balance at the interface is equal 

to zero. On the other hand, we consider that the flow is very 

slow and the capillary number, which will be defined later, is 

small. Bretherton [1] found that for sufficiently small capil-

lary number the viscous stresses appreciably modify the 

static profile of the interface for regions only very near to the 

wall; therefore the displacement process can be considered 

as a singular perturbation problem. 

 

 

 

 

 

 

 

 

 

Fig. (1). Simplified physical model. 

 

 In the present work, we propose that the fluid which is 

found confined is described by the power-law fluid model 

that is expressed by 
n
ijij K2= , where ij  is the stress 

tensor; ij  is the strain-rate tensor, K  and n  are material 

parameters; the first is the index of consistency and the later 

is the power-law index. Using the power-law model in the 

mass and conservation equations in Cartesian coordinates 

and taking into account that the problem is stationary with 

uniform properties, we obtain that the governing equations 

for the displaced fluid are 
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 In Eq. (1)–(3), u~  and v~  represent the axial and radial 

velocities, respectively; P is the pressure in the displaced 

fluid and x~  and y~ are the Cartesian coordinates. These 

equations must be solved with the appropriate boundary 

conditions. At the inner surface of the plates, we impose the 

well known no-slip condition. At the interface we have three 

conditions. The first is the kinematic boundary condition, 

which describes that the interface is impermeable for both 

fluids and is given by 

,   '
~~~ huv =             (4) 
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where h
~

 is the interface position and is only function of the 

axial coordinate, )~(
~~

xhh = ; and the prime refers to differen-

tiation with respect to x~ ; therefore 
xd

hd
h

~

~

'
~

= . 

 The other conditions are the dynamic conditions: the tan-

gential and normal stress boundary conditions. The first one 

expresses that the tangential force balance at the interface is 

zero because the surface tension is uniform. The second con-

dition establishes that the normal stresses on the two sides of 

the interface are balanced by surface tension. Using the 

power-law model for the displaced fluid the dynamic condi-

tions are given by the following expressions 
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 Eq. (5) and (6) represent the tangential and normal stress 

boundary condition, respectively; where  is the interface 

surface tension. In the normal stress condition, Eq. (6), we 

have used the planar approximation for the curvature in 

the y direction, equivalent to setting 0
1

=yR . The principal 

radius of curvature xR  can be expressed in terms of the in-

terface position as: 
 
Rx

1
= h '' 1+ h '2( )

3/2
. 

 To obtain the fraction of the liquid deposited on the walls 

of the tube, m , we use the technique of matched asymptotic 

expansions. In order to apply the mentioned technique we 

divided the domain into three regions shown in Fig. (1): the 

constant film thickness region (region I), the front region 

(region II) and the static region (region III). In region I the 

problem can be solved using the classical lubrication theory 

if the film thickness is known. In region III the flow is para-

bolic in y direction and according with the reference frame 

in the midplane, this region is static. A detailed analysis of 

region II is required to obtain the solution. 

 In the limit of small capillary number the solution in re-

gion I does not match smoothly with the solution in the con-

stant film thickness region. Therefore, in order to obtain the 

complete solution the front region must be subdivided in 

two. The capillary static region (region B) in which the 

shape of the interface is nearly circular and pressure forces 

and interfacial tension are important. On the other hand, the 

transition region (region A) where the shape of the interface 

is deformed by viscous traction and thus viscous forces also 

become important. 

 It is necessary to examine region II more carefully, there-

fore in the following we only studied this region. In order to 

obtain representative dimensionless parameters and to ex-

plore the most appropriate scaling for the governing equa-

tions presented lines below; we apply an order of magnitude 

analysis using the scales shown in Fig. (1). We consider that 

the interface tension, , is constant and that the fluid of 

negligible viscosity is injected with a small constant veloc-

ity, U . In the capillary static region, we use the following 

scales to apply the order of magnitude analysis 
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 Using the characteristic scales in the governing equations 

and in the boundary conditions, we define the Reynolds and 

capillary numbers for a power-law fluid, respectively, as 

follow  
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 According with the characteristic values associated to the 

problem the Reynolds number is very small, 1Re << ; there-

fore in Eqs. (2) and (3) the convective terms can be ne-

glected. From the order of magnitude analysis and in the 

limit of small capillary number, we obtain that the pressure 

in the capillary static region is constant and confirms that the 

interfacial tension and the pressure forces are the dominant 

effects in the mentioned region. 

 To apply the order of magnitude analysis to the transition 

region we must consider than the thickness, , and the 

length, xL , of this region are unknown. The scales for the 

transition region are given by, 
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 Using the scales given above in the governing equations 

and the boundary conditions, it is easily to obtain the un-

known variables for this region; which are given by the fol-

lowing expressions: 
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 Using the results of the order of magnitude analysis, the 

equations for the capillary static region can be non-

dimensionalized using the following scales: 

x-Ut y h u
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 The dimensionless governing equations can be written 

for the capillary static region as, 
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 Eq. (8) is the dimensionless mass conservation equation, 

and Eqs (9) and (10) are the dimensionless motion equations. 

The boundary conditions in dimensionless variables are 

given by the following expressions: 
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 As we mentioned previously the problem is suitable to 

apply the matched asymptotic expansion technique. For this 

problem the small parameter is the capillary number; then we 

proposed the following expansions for the capillary static 

region: 
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0
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in which  represent indistinctly dimensionless pressure, 

velocity or interface position and the subscript j  refers to 

the order of the variable. Substituting the above expansion 

into Eq. (8)–(14) and collecting terms of the same power of 

Ca , we obtain a set of equations in the capillary static re-

gion. The leading order of Eqs. (9) and (10) are given by, 
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where the subscript 0 denotes the zeroth order approxima-

tion. Eq. (16) implies that the leading order to the pressure is 

constant, as it was mentioned in the order of magnitude 

analysis. In order to determine the value of the constant pres-

sure, the interfacial boundary conditions have to be exam-

ined. The zeroth order interface position can be obtained 

from the normal stress boundary condition subjected to the 

conditions at the front tip of the interface:  'h when 

Lx  and 0=h  at Lx = . We obtain the zero order solu-

tion as: 
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1
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where 
0

P  is the pressure jump across the interface and L  is 

the distance from the tip of the front to the origin of the ref-

erence frame. 

 In the transition region, the problem has to be rescaled. In 

this region, the pressure, viscous force and interfacial tension 

are all important. Using the order of magnitude results, Eq. 

(7), we proposed the following change of variables to obtain 

the dimensionless governing equations. 
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 In the change of variables l  is a shift of coordinates that 

is determined with the matching condition. Using an equiva-

lent expansion as in the capillary static region, the zeroth 

order equations for the transition region are given by, 
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 From the above Eq. (18)–(24), it is possible to obtain an 

ordinary differential equation for the interface given by, 

d 3
0

d 3 =
0 0( )

n

0( )
2n+1

2n +1

n

n

  .

        (25) 

 Eq. (25) is a non-linear and third-order differential equa-

tion, in which 
0

 means the leading order for the constant 

film thickness in the transition region that is determined by a 

matching condition. For the numerical integration, Eq. (25) 

is transformed by using a change of variable originally pro-

posed by Park and Homsy [6]. The transformation is given 

by, 
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H0 =
0

0

,    X =
+ s
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2n +1

n

n /3

  .

       (26) 

 In the above equation s  is an arbitrary constant that 

shifts the coordinates and is determined by the matching 

condition. Using Eq. (26) into Eq. (25) we obtain the canoni-

cal form for a power-law fluid expressed as: 

d 3H0

dX 3 =
H0 1( )
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         (27) 

 Eq. (27) must be solved with appropriate boundary con-

ditions which are provided by the matching with the uniform 

film thickness region (I) and with the near region (III) to the 

front tip. Therefore, we proposed for the first region that for, 

.  1  ;
0

HX          (28) 

 For simplicity, we propose a new change of variable for 

Eq. (27) of the following form: 1
0

= H . Therefore the 

matching condition is 0  ;X . Using the change 

of variable in Eq. (28) and linearizing it about 1
0

=H , ac-

cording with the matching condition, we obtain the follow-

ing equation: 

n

dX

d
=

3

0

3

.          (29) 

 Eq. (29) presents two different cases. The first one is the 

Newtonian limit with 1=n . Under this condition Eq. (29) is 

an ordinary linear equation and equi-dimensional in ; 

therefore the solution for the Newtonian case, valid for the 

matching condition can be given by 

,  
1

XeF=           (30) 

where 
1

F  is a constant and may take any value due to the 

arbitrary shift of coordinates s . For 1<n  (pseudoplastic 

fluid) Eq. (27) is a non-linear equation, therefore it does not 

accept an exponential solution [16].  

 The second boundary conditions for Eq. (27) is given 

when the interface is closed to the tip. This matching condi-

tion with region III is 1
0

>>H  when X . Therefore 

Eq. (27) in this limit can be rewritten as follow, 
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 The solution for Eq. (31) is 

1 2
H AX +BX+C  .0

2
         (32) 

 In the above equation CBA   and    ,  are constants that 

will be determine by numerical integration of Eq. (27), using 

a fourth order Runge-Kutta method. The results for different 

values of the power-law index are shown in Table 1 and in 

Fig. (2). The initial values to integrate Eq. (27) are given by 

Eq. (30) for any value of the power index, n . For non-

Newtonian fluids we use an iterative form. 

Table 1. Values for Constants of Integration A, B and C for 

Different Values of the Power-Law Index 

n A B C 

1 0.643 -0.535 3.015 

0.8 0.588 3.794 14.147 

0.6 0.567 5.877 31.963 

0.5 0.567 6.582 39.521 

0.4 0.573 7.186 46.353 

0.3 0.582 7.726 52.448 

0.2 0.588 8.146 57.468 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (2). Results of the numerical integration of Eq. (27) for differ-

ent power-law indexes. 

 

 Once the constants of integration are known, the Eq. (32) 

can be expressed in dimensionless variables for the transition 

region is 
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 (33) 

 The solution is incomplete until the thickness 
0

t  is de-

termined. This variable and all other quantities are deter-

mined by matching with the solution in the capillary static 

region. The matching condition is given by the following 

equation: 

lim
x l

h x( ) = lim 1 ( )Ca2/2n+1
( )

 .        (34) 

 By expanding )(xh about lx =  using Taylor series ex-

pansion, rewriting the expansion in transition region vari-

ables and comparing it with the left-hand side term by term, 

matching conditions for each order can easily be determined. 
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We obtain the following set of equations up to terms of sec-

ond order. The zero order are 
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 The first order equations are given by 
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 Finally the second order equations are 
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 Eqs. (35) and (36) give the zeroth order for pressure and 

to define the position of the reference frame for the transition 

region. The pressure jump across the interface and the shift 

of coordinates can be determined from the previous equa-

tions combined with Eq. (17). Then the leading order for the 

pressure jump and the shift of coordinates are given by the 

following expressions 
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 Knowing 
0

P  and ,l  Eq. (37) can be solved and the re-

sidual film thickness is determined. Then, the film thickness 

expressed in dimensionless variables of the capillary static 

region is given by 
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 The fraction of liquid deposited on the walls is defined 

as: 

T

BT

A

AA
m = ; where TA  is the transverse area and BA  

is transverse area of the injected fluid. For this particular 

case, we have a rectangular transverse area; therefore 

tm 2= . Then the liquid fraction is 
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 The higher order corrections for both regions can be de-

termined in a similar way. However, the details are not pre-

sented in this work. 

RESULTS 

 In order to validate the model developed in this work, we 

compare our theoretical predictions with the results obtained 

by Park and Homsy [6]. These authors studied the two-phase 

displacement in three dimensions in a Hele Shaw cell and 

presented the following expressions for the thickness of the 

film and the pressure jump across the interface. The results 

are given by 

t = 1.337Ca2/3 1+
2 1
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 f ''+ f '[ ]

2
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O 2Ca,Ca4/3
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       (48) 

P = 1+ 3.80Ca2/3 1

4
 f '' 2

+

O Ca, 2Ca2/3
( )   .

        (49) 

 In the above equations 

TL

R
= , where TL  is the width 

of the Hele Shaw cell; f  represents the tip projection of the 

interface onto the zx  plane and is function of the z  coor-

dinate. In the case that we are studying TL , 0=  and 

Lf = . Therefore, the results from Eqs. (44) and (46), taking 

into account higher order corrections, are 

3/2
33751.1 Cat =          (50) 

3/2
7346.31 CaP +=          (51) 

 For Newtonian fluid case Eqs. (50) and (51) are in good 

agreement with Eqs. (48) and (49). 

 Eq. (20) expresses the fraction m  of fluid remaining after 

passage a fluid of negligible viscosity for any power-law 

Table 2. Fluid Fraction Expressions for Different Values of 

the Power-Law Index 

Power-law index 

n 

Fluid Fraction 

m 

1 
3/2

 675.2 Ca  

0.8 
13/10

 237.2 Ca  

0.6 
11/10

 874.1 Ca  

0.5 Ca 708.1  

0.4 
9/10

 541.1 Ca  

0.3 
4/5

 357.1 Ca  

0.2 
7/10

 118.1 Ca  
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index. From this equation is clearly shown that the fraction 

m  depends on two parameters: the capillary number, Ca , 

and the fluid power index, n . The influence of both parame-

ters on the fluid fraction is clearly shown in Table 2. 

 In Figs. (3) and (4) we show the fluid fraction for differ-

ent values of the power index. It is clear that for smallest 

values of the capillary number we obtain the minimum fluid 

fraction independently of the fluid properties. On the other 

hand for any given capillary number with decreasing the 

power-law index the fluid fraction decreases. This result is in 

qualitative agreement with the experimental results obtained 

by Kamisli and Ryan [13].  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (3). Fluid fraction versus capillary number. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (4). Fluid fraction versus capillary number (log-log). 

 

 The results show in the present study contrast with the 

theoretical results obtained by Kamisli and Ryan [13] using 

perturbation methods to determine the residual film thick-

ness in gas-assisted power-law displacement. These authors 

concluded that a perturbation analysis using a power-law 

constitutive equation does not correctly predict the variation 

of the residual liquid film thickness as a function of the 

power law index. In the cited study above the expansions for 

the capillary static and the transition regions are developed in 

terms of a small parameter 
3/1Ca , where Ca  is the modified 

capillary number and is independent of the power-law index. 

For any power-law index, the dimensionless variables for the 

transition region suggested by Kamisli and Ryan [13], are 

given by 
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 We can appreciate that the expansions and the scaling of 

the dimensionless variables proposed by Kamisli and Ryan 

[13] produces a divergence between experimental and nu-

merical results. However, our scaling is in accordance with 

in the determination of the residual film thickness. These can 

be seen in Eq. (15) and in the dimensionless variables for the 

transition region. For the Newtonian fluid, 1=n , we recover 

the expansions and dimensionless variables proposed by the 

authors mentioned above. Nevertheless for 1n  the expan-

sions proposed in [13] are not valid, because the residual 

film thickness depends on the displaced fluid properties. 

 In order to analyze this behavior, we present Fig. (5), in 

which we have plotted the ratio of the non-Newtonian fluid 

fraction, nnm , with the Newtonian fluid fraction, nm , for 

three values of the capillary number. Fig. (5) shows that the 

ratio of fluid fractions decreases for decreasing values of the 

power-law index; and confirms that the minimum fluid frac-

tion is obtained with smaller capillary numbers.  

 

 

 

 

 

 

 

 

 

 

 

Fig. (5). Fluid fraction ratio versus power-law index. 

 

DISCUSSION AND CONCLUSION 

 The residual liquid film thickness is determined applying 

a perturbation analysis using a power-law constitutive equa-

tion. The theory predicted that the residual fraction increases 

with increasing values of the power-law index which is in 

qualitative agreement with the experimental observations of 

previous investigators. Furthermore, it is possible to recover 

the results obtained previously by many authors for the New-

tonian case. It is important to note the relevance of the order 

of magnitude analysis in this kind of problems, because the 

appropriate scales of the transition region and the series ex-

pansions for the perturbation technique are fundamental to 
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obtain the residual film thickness and the pressure jump 

across the interface.  

 According to the results for any power-law index, the 

minimum residual liquid film thickness is obtained for the 

smaller capillary numbers. This result is important to deter-

mine the best conditions for oil recovery in naturally frac-

tured reservoirs.  
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