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Abstract: Following a preliminary study of power generation processes consuming sugar-cane bagasse; this second round 
indicates the possibility of almost doubling the current efficiency presently obtained in conventional mills. A combined 
cycle uses highly pressurized fluidized bed boiler to provide steam above critical temperature to drive steam-turbine cycle 
while the flue-gas is injected into gas turbines. The present round also shows that gains over usual BIG/GT (Biomass In-
tegrated Gasification/Gas Turbine) are very likely mainly due to the practicality of feeding the biomass as slurry that can 
be pumped into the pressurized boiler chamber. Such would avoid the cumbersome cascade feeding of the fibrous bio-
mass, usually required by other processes. The present stage assumes slurry with 50% added water. Future works will 
concentrate on thicker slurries, if those could be achieved. All studies apply a comprehensive simulator for boilers and 
gasifiers [CSFMB© or CeSFaMBTM] and a process simulator (IPES) to predict the main features of the steam and gas tur-
bine branches. 
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1. INTRODUCTION  

 In many instances, biomass can be regarded as a renew-
able and sustainable energy source. This is particularly true 
for countries, such as Brazil, with tropical climate combined 
with large areas available for crops. The country already has 
a tradition on the use of sugar-cane bagasse as well crops 
residues as supplementary source for electrical power gen-
eration. In addition, the surplus of energy from mills which 
is commercialized to local electrical grids is increasing.  

 The current power-generation units installed in most of 
large mills still employ Rankine-based cycles. Despite apply-
ing boilers that generate steam at very high pressure, the 
efficiencies of those units remain in the neighbourhood of 
20% efficiency. Most studies for a technical leap are based 
on BIG/GT (Biomass Integrated Gasification/Gas Turbine) 
technology [1-8]. On the other hand, when applied to process 
where fibrous fuels such as sugar-cane bagasse should be fed 
into a pressurized vessel, several hurdles are imposed. For 
instance, cascade feedings are the usual proposal for that, but 
those rely on the assembling and correct operation of several 
hoppers kept under inert gas atmosphere. Such is too expen-
sive not to mention prone to interruptions due to many com-
bined parts which have to operate flawless. Usually, the fi-
brous bagasse forms domes inside the hoppers and that pre-
vents the continuous feeding to rotating valves or screws. 
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Some solutions for that can be applied, but are also cumber-
some and not free of problems as well. 

 The alternative of feeding by pupping fuel slurry has 
been proposed, but that is not feasible for sugar bagasse gasi-
fication processes because it would add more water to the 
already very wet fuel, which leaves the mill with 50% mois-
ture. Even if relatively low-water slurries could be achieved, 
one may end with fuel containing 60 to 70% water to be fed 
into the reactor. No gasification process can economically 
overcome the loss of efficiency due to the amount of energy 
required to evaporate those amounts of water in the reactor.  

 Glycerol is a by-product of biodiesel production, which is 
increasing fast in many countries. Therefore, the application 
of that residue to compose slurries has been considered. 
Nonetheless, such would take away the mill’s autonomy in 
terms of producing power based just on its own resources. 

 However, boilers can operate well with slurry-feeding 
because the oxygen excess can be lowered to near the 
stoichiometric limit and sustainable combustion achieved. 
The basic simplified scheme of the proposed process is 
shown in Fig. (1). 

 The combustion chamber operates at high pressure there-
fore producing a flue gas that can be injected into gas tur-
bines while super-heated steam drives steam turbines.  

 The present work is one among a series of investigations 
to determine the best configuration of the whole process in 
order to achieve the highest exergetic efficiency. The studies 
are beginning and more points or possibilities would be 
added. This particular stage shows that the proposed process 
might lead to higher efficiencies than the achieved by more 
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Fig. (1). Simplified scheme of the studied power generation process. 

conventional ones. Future studies would improve on the pre-
sent results and may also point to technological hurdles that 
need to be overcome in order to reach at a reliable process. 

2. MATERIAL AND METHODS 

 The basic assumptions for the present study were: 

1. Typical large sugar mill consuming 2 million ton. of 
sugar cane per year, which provides 28% on bagasse 
with 50% moisture. That would lead to fuel input around 
180 MW that can be consumed by the boiler. Having in 
mind timing for maintenance and other random factors, 
the input around 150 MW was assumed. 

2. Bagasse leaves the mill with 50% moisture. 

3. Using such moist bagasse, preliminary and simple tests 
show that 40% water slurries (or a mixture with 40% of 
water and 60% of moist bagasse) could be pumped into 
a pressurized vessel. However, to be conservative, the 
value of 50% added water slurry has been applied. Fu-
ture works will concentrate on thicker slurries, if that 
could be achieved. 

4. Maximum temperature of gas injected into the turbines 
was set as 700 K. This is to ensure proper cleaning of 
flue gas, including conditions for complete condensation 
of alkaline. There are some discussions on this point in 
the literature [9] and the chosen value seems to be con-
servative. 

5. Turbine and compressor isentropic efficiencies equal to 
87%. 

6. Pump isentropic efficiencies assumed as 95%. 

7. Minimum temperature difference between parallel 
streams entering or leaving heat-exchangers is taken as 
10 K. 

8. Pressure in the fluidized bed chamber set as 2 MPa. That 
value was chosen to be well within the range of pressure 
for the flue-gas to be injected into commercial gas tur-
bines. 

9. Pressure inside the tubes immersed in the boiler bed and 
freeboard set as 10 MPa. This is also within the range of 
commercially available boilers. 

10. Particle size distribution of feeding bagasse. The choice 
was set in order to achieve an area-volume average par-
ticle diameter around 1 mm, which is assumed to be eas-
ily obtainable by simple gridding or cutting equipment.  

11. Internal diameter of the boiler at the bed section as 9 m. 
This value was reached after a first series of simulation 
to keep the fluidization within usual values of superficial 
velocity.  

12. Bed depth as 5 m, which provides plenty room for tube 
banks immersed in that region. 

13. Internal diameter of the boiler at the freeboard section as 
12 m. Such value was reached after few series of simu-
lations to ensure enough decrease of superficial velocity 
in the freeboard to facilitate the inertial separation of 
particles. 

14. Freeboard height set as 10 m, which also provides plenty 
room for tube banks immersed in the freeboard as well 
above Transport Disengaging Height (TDH). 

15. Internal and external diameter of tubes immersed in the 
bed and freeboard set as 30 and 40 mm, respectively. 
These values seem to be reasonable within the range of 
possibilities for such tubes and allow usual half-life for 
the tubes immersed in fluidized beds. 

16. To simplify, in each bank all tubes were assumed in the 
horizontal position with staggered arrangement and 100 
mm between centres. 
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17. Tube lengths in 2 banks immersed in the bed set as 7.0 
m and the third as 5.0 m. The tube lengths of those im-
mersed in the freeboard were set as 9.0 m. 

18. Two banks of tubes in the bed are linked to another set 
in the freeboard. This is to ensure that most of the phase 
change would take place in the tubes immersed in the 
bed leaving the super-heating to the sections in the free-
board. 

19. A series of 20 cyclones (300mm i.d. each) would allow 
recirculation of particles collected at the top of the free-
board to the bed. 

 Of course, those assumptions—especially from 8 to 17--
could be modified or set as variables in future studies. In 
addition, the minimum water content in the slurry should 
also be verified and perhaps decreased from the level as-
sumed at item 3. 

 The simulation tools employed in the present investiga-
tion were the Comprehensive Simulator for Fluidized and 
Moving Beds (CeSFaMBTM)1 and IPES (Industrial Plant and 
Equipment Simulator). Details of those models and respec-
tive simulation programs can be found in the literature [10-
28]. 

                                                 
1 Former CSFMB© , www.csfmb.com 

 The strategy used here was: 

1) Propose a workable configuration for the pressurized 
fluidized-bed boiler. After many simulation tests, a basic 
geometry was reached. The values are listed above along 
the assumed parameters. 

2) Using CeSFaMB©, try various options to achieve rela-
tively high exergy efficiency for the boiler. Of course, 
many variables related to the boiler geometry or configu-
ration and operational conditions could be chosen. Never-
theless, to simplify the work of this first study, the fol-
lowing were taken as variables: 

a. Number of tube banks and number of tubes in each 
bank. CeSFaMB© automatically verifies if the ge-
ometry of any proposed arrangement is physically 
possible within the available volumes set for the 
bed and freeboard. 

b. Mass flow of air injected through the distributor at 
bed base. CeSFaMB© checks if the combustion can 
be maintained and steady-state regime is achieved 
within the boundaries of bubbling bed fluidization. 

3). Using IPES and the best results for the boiler operation, 
simulate the steam and gas branches, as shown in Fig. 
(2). Basic parameters regarding the operation of equip-

Fig. (2). Scheme of the proposed process. Equipment symbols: C = compressor, GT = gas turbine, H = heat-exchanger, M = mixer, P = pump 
or pumps, S = splitter, ST = steam turbine, V = valve 
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ment and properties at streams are listed in the next sec-
tion. 

4) Improve the gas and steam branches having maximum 
exergy as objective. 

3. RESULTS  

 The information obtained after the above procedure are 
summarized at the following tables. 

 As mentioned above, CeSFaMB simulation software was 
applied to maximize the exergy efficiency for that boiler. 
The resulting basic configuration as well operational parame-
ters are summarized in Table 1. 

 After a series of search and optimizations using IPES 
simulator, a reasonable composition of equipment have been 
achieved. The conditions and properties of streams in such 
process are shown in Table 2, while Table 3 summarizes the 
overall energy balance. 

Table 1. Summary of Boiler Operational Conditions 

CONDITION OR PARAMETER VALUE 

Mass flow of dry bagasse 9.0 kg/s 

Mass flow of injected air 56.0 kg/s 

Mass flow of flue-gas 91.73 kg/s 

Mass flow of elutriated solids 22.54 kg/s 

Fluidization voidage (bed middle) 0.6061 

Fluidization superficial velocity (bed middle) 0.1982 m/s 

Bed dynamic volume 318.1 m3 

Circulation flux of carbonaceous (bed middle) 0.702x104 kg/(m2 s) 

Mixing index in the bed 1.000 

Tar flow at the top of the freeboard 0.000 kg/s 

Total carbon conversion 97.79 % 

Input energy rate due to fuel 152.66 MW 

Total energy rate input 194.77 MW 

Total flow of produced steam 31.50 kg/s 

Total energy rate transferred to tubes 83.20 MW 

Mass held in the bed 9.96x104 kg 

Average residence time of particles based on feeding rate 46.10 mim 

TDH 4.26 m 

Temperature at the distributor surface 871.11 K 

Average temperature at bed middle 871.18 K 

Average temperature at the freeboard top 871.06 K 

Average temperature of recycling particles 869.06 K 

Entering exergy flow 795.12 MW 

Exergy flow carried by flue-gas 84.19 MW 

Exergy flow carried by steam 50.99 MW 

Leaving exergy flow 135.18 MW 

Ratio between leaving and entering exergy flows 17.00 % 
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Table 2. Summary of Stream Properties 

STREAM  TEMPERATURE (K)  PRESSURE (kPa)  MASS FLOW (kg/s)  ENTROPY (kJ/kg K)  ENTHALPY (kJ/kg)a 

1  871.00  10000.0  10.50  10.441  -12352.0 

2  869.46  10000.0  10.50  10.436  -12355.0 

3  865.10  10000.0  10.50  10.424  -12366.0 

4  868.52  10000.0  31.50  10.434  -12358.0 

5  635.84  2100.0  31.50  10.523  -12804.0 

6  635.84  2100.0  4.92  10.523  -12804.0 

7  635.84  2100.0  26.58  10.523  -12804.0 

8  458.87  437.0  26.58  10.614  -13137.0 

9  841.00  437.0  26.58  11.864  -12345.0 

10  660.51  123.0  26.58  11.939  -12725.0 

11  660.51  123.0  0.57  11.939  -12725.0 

12  660.51  123.0  26.01  11.939  -12725.0 

13  560.97  54.0  26.01  11.989  -12926.0 

14  560.97  54.0  0.65  11.989  -12926.0 

15  560.97  54.0  25.36  11.989  -12926.0 

16  471.41  23.0  25.36  12.040  -13103.0 

17  471.41  23.0  0.51  12.040  -13103.0 

18  471.41  23.0  24.85  12.040  -13103.0 

19  378.11  8.0  24.85  12.103  -13282.0 

20  313.00  8.0  24.85  2.3903  -15843.0 

21  311.02  8.0  26.01  2.3637  -15851.0 

22  311.02  123.0  26.01  2.3637  -15851.0 

23  322.90  123.0  26.01  2.5210  -15801.0 

24  338.55  123.0  26.01  2.7199  -15736.0 

25  356.42  54.0  0.65  3.0182  -15637.0 

26  314.72  8.0  0.65  3.1763  -15637.0 

27  336.28  23.0  0.51  2.7787  -15721.0 

28  314.72  8.0  0.51  2.8525  -15721.0 

29  298.00  103.0  300.0  2.1844  -15906.0 

30  347.04  102.0  300.0  2.8242  -15700.0 

31  372.30  123.0  31.50  3.1205  -15593.0 

32  372.57  10000.0  31.50  3.1236  -15582.0 

33  452.92  10000.0  31.50  3.9573  -15238.0 

34  487.90  2100.0  4.92  4.3399  -15074.0 

35  378.68  123.0  4.92  4.8435  -15074.0 

36  298.00  101.325  56.00  6.7402  -0.21044 
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Table 2. Contd….. 

STREAM  TEMPERATURE (K)  PRESSURE (kPa)  MASS FLOW (kg/s)  ENTROPY (kJ/kg K)  ENTHALPY (kJ/kg)a 

37  765.67  2020.0  56.00  6.8602  490.80 

38  851.06  2000.0  91.73  8.1986  -5481.4 

39  692.89  2000.0  91.73  7.8914  -5718.1 

40  367.73  105.0  91.73  8.0156  -6159.0 

41  298.00  103.0  300.0  2.1844  -15906.0 

a: Enthalpy values include the formation and sensible terms 
 

Table 3. Overall Power Balance 

Total entering enthalpy rate  -0.56638x1010 W 

Total leaving enthalpy rate  -0.57274 x1010 W 

Total entering exergy rate  0.29352 x109 W 

Total leaving exergy rate  0.23647 x109W 

Power input  27.862  MW 

Power output 

Net power output 

87.636  MW 

59.774 MW 

Rate of heat exchanged with environment  13.307  MW 

Total variation of exergy 

Rate of energy input due to fuel 

30.662  MW 

152.66 MW 

Efficiency based on 1st Lawa  39.155 % 

Efficiency based on 2nd Lawb  20.387  % 

a: defined as (net rate of useful power out)/(total energy rate in) 
b: defined as (net rate of useful power out)/(total exergy rate in) 

4. DISCUSSION 

 The efficiencies of present mills operating with high-
pressurized boilers and using 50% moisture bagasse stay 
around 20%. Therefore, the present stage of studies managed 
to show that efficiency levels well above those values are 
possible. In addition, the proposed process can lead to even 
higher efficiencies. Among the various points to be investi-
gated in that direction are: 

a. Confirm if slurries that might be pumped could be 
achieved with lower contents of water than the assumed 
here. As mentioned before, there are indications that 
40% and even 30% slurries could be pumped. This 
would substantially increase the efficiency of the present 
process. 

b. Increases in the fluidized-bed pressure. 

c. Increases in the steam pressure. 

d. Use of more elaborate cycles or process for the steam and 
gas-turbine branches. 

5. CONCLUSIONS 

 The concept for an advanced thermoelectric power-
generation process has been tested through rigorous simula-

tions. It would allow the use of moist bagasse as taken from 
the mill and avoid cumbersome and expensive cascade feed-
ing systems, usually necessary to operate BIG/GT concepts. 

 This second round of simulations led to efficiency values 
well above of those achieved by existing units installed at 
sugar-alcohol plants.  

 The next round of studies would confirm the minimum 
limits of water content in bagasse slurries as well include 
pressures in the fluidized bed and inside tubes as variables. 
In addition, improvements on the strategies of gas and steam 
turbine branches will be tried.  
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