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Abstract: A series of borehole instrumented drilling tests have been performed at two separate sites in London. However, 

these data contain noise which makes interpretation difficult. A study was thus carried out to explore the possibility of us-

ing signal processing techniques to remove noise from the instrumented borehole drilling data. The study began by exam-

ining the most common methods used to detect noise in a signal. Three types of filter: moving average, median and But-

terworth filters were compared. Filtering weight for moving average filter, filtering order for median filter, and cut-off 

frequency for Butterworth filter were then proposed for each of the drilling parameters. The effects of standardized and 

non-standardized drilling procedures on the drilling data were also demonstrated by using cross-correlation functions for 

groups of standardized and non-standardized tests.  

INTRODUCTION  

The concept of instrumented drilling has long been ap-
plied in the oil and gas industry, but it is still a comparatively 
new concept in on-shore geotechnical engineering. The first 
on-shore application was via a device called ENPASOL in 
the early 1970s [1]. It is a system that is capable of recording 
various drilling parameters, such as bit torque, bit down-
thrust and drilling speed. It is typically used on rotary de-
structive drilling rigs and can sometimes be of use on coring 
rigs. In the latter case, the main use is to complete the core 
description in case of poor recovery.  

The aim of instrumented drilling is to capitalize on the 
“fine” data, which is available whenever holes are drilled. In 
tunneling projects, for example, it has become common to 
install grout tubes, ‘Tube-a-Manchettes’, during the pre-
construction phase of the project, so that grout injections can 
later be conducted to suppress settlements caused by ground 
loss. The drilling parameters obtained from the grout holes 
may then be used either to confirm local stratigraphy or to 
determine the appropriate grout to be used [2, 3]. As a result, 
the method has also been deployed in continental Europe 
specifically as a ground investigation tool, especially for soil 
improvement projects [4, 5]. 

An instrumented drilling machine uses a set of pressure 

transducers placed at various locations of the hydraulic cir-

cuits of the machine in order to measure mud pressure, 

torque, downthrust and holdback. The measurements are 

affected by machine vibrations, which contribute largely to 

the random content of drilling signals. Proper filtering of the 

noise perturbations, correcting data corrupted by faulty 

equipment, and compensating for any environmental effects 

such as temperature and humidity are required to extract best 

information from the raw signal for local soil characterisa-

tion. It may also be possible to interpret the noise and  
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characterise the machine vibrations since they can be related 
to the interaction between the soil and the drilling bit.  

The aim of this paper is to explore the use of standard 
signal processing techniques to assess useful signals ob-
scured by random noise. Firstly, we will briefly describe the 
background of the two field tests conducted in central Lon-
don. Secondly, we will show how spectral analysis and auto-
correlation can be used to detect random noise in a signal. 
Thirdly, after quantifying the noise, we will explore the use 
of three digital filters to reduce the noise in the raw signal. A 
parametric study will also be performed to find out the corre-
sponding filtering weight or order for each of the drilling 
parameters. Finally, cross-correlation will be used to demon-
strate the repeatability and reliability of the drilling data ob-
tained from the two sites. It is not the intention of this paper 
to show the interpretation of the instrumented drilling data; 
this topic has been dealt with in [6, 7]. 

FIELD TESTS 

Field tests had been performed at two locations in Lon-
don (Site A and B). For the purpose of ground investigation 
work six instrumented drilling tests have been conducted on 
Site A. All the tests were conducted using a hydraulically 
operated and crawler mounted rotary drilling rig and they 
were vertically drilled to a depth of 30 m. Drilling rods used 
were 90 mm diameter API rods with a 101 mm diameter 
blade and/or tricone bit. To record drilling parameters the 
drilling rig was equipped with devices such as pressure 
transducers and a movement transmitter sensor.  

For Site B, thousands of ‘tubes-a-manchettes’ holes were 
drilled for grouting purpose. Out of these, a total of 300 
holes were drilled using the instrumented borehole drilling 
machine as the grouting contractor had decided to design 
their grout properties based directly on the drilling informa-
tion. These holes were drilled using different types of ma-
chine (e.g. KLEMM 804 and SM 305). The drilling depth 
was about 15m for this site. 

Drilling method affects the drilling process and the qual-

ity of the data; hence, some of the drilling operation was 

standardized. For Site A, all the drilling were conducted un-
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der a constant drilling fluid flow rate, a constant drill head 

rotational speed of 120 rpm, a constant net downthrust, and a 

constant drilling speed; hence the test at Site A is defined 

here as standardized test. For Site B, the drilling fluid flow 

rate, the drill head rotational speed, the net downthrust and 

the drilling speed were inconsistent from hole to hole; hence, 

the test in Site B is defined here as non-standardized test. 

The drilling parameters recorded were: depth of drilling, 

drilling fluid or mud pressure, torque, downthrust, holdback 

pressure, drilling speed, rotation speed and time to drill 5 

mm. The holdback pressure was discounted from the total 

downthrust to obtain the net or effective downthrust. Ana-

logue signals from some of these instruments were converted 

into digital signals via a junction box. The digital signals 

were then stored in a real time drilling data acquisition sys-

tem that was attached to the drilling rig. The stored data can 

then be retrieved for further processing. A typical output 

obtained from the instrumented drilling is plotted in Fig. (1), 

annotated with regard to the stratigraphy revealed in cores. 

The raw data have obviously been affected by noise, repre-

sented by many spikes in Fig. (1). In general, the following 

observations can be made: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1). A typical instrumented borehole drilling ‘raw’ data (first 8 

m was drilled with casing; soil layers were determined from rotary 

coring samples). 

(1) Mud pump pressure in the sand and gravel layer (Terrace 

Gravel) was less noisy and has a lower average value 
than in the clay layer (London clay), Fig. 1(a). 

(2) A higher and noisier torque was more likely to be seen in 

the sand and gravel layer than in the clay layer, Fig. 1(b). 

(3) A reasonably constant downthrust had been provided, as 

shown in Fig. (1(c)). The spikes in the signal are related 
to the rod change. 

(4) Likewise, Fig. 1(d) also shows that a relatively constant 

rotation speed was also provided, although the data was 
severely affected by noise, especially in the Terrace 

gravel layer and the Lambeth group (mixed layers of 

sands and clays). 

(5) A higher drilling speed was more likely to be encoun-
tered in the sand and gravel layer than the clay layer, Fig. 
1(e). Noisy data can be seen in the sand and gravel. 

(6) Time to drill 5mm, Fig. 1(f), was the reciprocal of the 
average drilling speed over 5mm; the longer the drilling 
time, the harder the formation being drilled. Here, noisy 
data could also be seen in the clay layer. 

NOISE DETECTION FOR FIELD DATA  

Although it seemed that the observed noise coming from 
machine vibrations could be used to correlate with the 
ground properties, it was decided in this study to eliminate 
the random noise from the raw data as the first step of data 
interpretation. Because the drilling data were recorded by the 
data acquisition system without any analogue filter, we 
adopted digital filtering to separate the noise from the signal. 
In signal processing, there are two common methods to de-
tect noise in a signal: spectral analysis and auto-correlation 
analysis. 

Spectral Analysis 

One useful procedure to detect noise is to compute the 
spectral density, which can be obtained by performing Fou-
rier transforms on a particular signal. The essential concept 
of the Fourier technique is that a periodic function can be 
broken down into its harmonic components and that a peri-
odic function may be synthesized by adding together its 
harmonic components. The spectral density is simply a 
measure of how much energy is contained within its har-
monic components. Estimation of spectral density is useful 
in a variety of applications; the concept of the power spectral 
density function is central to the random vibration theory 
that has been used for many years in the study of dynamic 
systems. It has also been used extensively in the detection of 
signals buried in wide-band noise [8].  

Spectral density can be computed as amplitude or power 
(taken as the square of the amplitude). The amplitude spec-
trum was chosen for this study. The amplitude spectrum for 
each drilling signal was calculated using Matlab

®
 [9]. The 

transformation length was taken to be the data length even 
though it was recommended that a transformation length 
with a power of 2 should be adopted for fast execution [10]. 
In order to eliminate the false ripple in the spectrum, a ‘Han-
ning’ window was employed and its length was set to be 
equal to the length of the Fourier transform [8]. According to 
[8], the effect of windowing in the frequency domain is that 
the spectrum is only usefully available between zero fre-
quency and half the sampling frequency (Nyquist fre-
quency). 

Signals and the buried noise are normally recorded with 
respect to time and a Fourier transform calculates the spec-
tral density of the signal and presents it in the frequency do-
main where the unit is Hertz (Hz). However, the drilling sig-
nals were recorded at a constant depth interval of 5mm, 
which implied that the time interval required to register each 
signal was not uniform. It might be possible to do some in-
terpolation to obtain a uniform time interval but this is not so 
advisable as interpolation might give us misleading results. 
Hence, in the following analysis, we shall perform the Fou-
rier transform analysis with respect to depth. The unit of the 
frequency is 1/meter (m

-1
) with a sampling frequency of 
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1/0.005 = 200 m
-1

. For a data record of 30 m drilling, there 
were therefore 6000 points sampled. It must be pointed out 
that the sampling frequency does not affect the estimation of 
the spectral density, it was only used to scale the frequency 
axis (Nyquist = 100m

-1
) for the graph plotting. 

Borehole drilling data taken from Sites A and B were 
analyzed using spectral analysis. The amplitude spectrum for 
each drilling parameters (mud pressure, torque, thrust, rota-
tion, speed, holdback pressure, and time) are plotted in Fig. 
(2) for one of the Site A data. In general, all plots look simi-
lar to the amplitude spectrum density (ASD) plot for white 
noise with no discernible peak, except in the low frequency 
range. This indicates that the drilling signals mainly consist 
of low frequency harmonic components and white noise. 
Severe noise was recorded in the rotation speed signal (Fig. 
2(e)), where there was no obvious peak (harmonic compo-
nent) at all throughout the whole frequency range. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. (2). Amplitude spectrum density for each raw drilling parame-

ter. 

Auto-Correlation  

The second technique that is also commonly used to de-
tect noise is auto-correlation analysis. The auto-correlation 
function arises when a signal is correlated with itself. It is 
useful to identify time-scales within a signal where repetitive 
appearance of a pattern or feature occurs. It may be more 
effective for revealing the presence of wide-band periodic 
signals that have less distinctive waveforms. If the signal is 
defined as a finite energy sequence x[n], Eqn. (1) below rep-
resents the auto-correlation function (ACF):  

=

+=
n

xx knxnxkr ][][][           (1) 

where the sequence is compared with the same sequence that 

is advanced by k units. The values of k are often referred to 

as lags. 

Auto-correlation was also performed on the drilling pa-
rameters taken from sites A and B. Each of the ACF quanti-
ties, normalized against its maximum value, is plotted 
against ‘lag’ (sample spacing) in Fig. (3) for one of the Site 
A data. Since the depth data were equally spaced, we could 
infer depth, if desired, from the ‘lag’ axis (depth = ‘lag’ x 

0.005m). A triangular shape shows that when the lag in-
creases (meaning two depth instants further apart), the two 
quantities remain perfectly correlated. The reason was that a 
constant signal of given duration (here, 6000 points) was 
regarded as being preceded and succeeded by zeros. When it 
was multiplied by the same signal with a lag, some of the 
extreme zeros cancel the original signal. This occurred in-
creasingly until the lag equals to the signal length. The plot 
towards the left and right hand ends was never be so accurate 
because the number of data points that was actually used to 
compute the correlation for large lags was significantly less 
than when the lag was small. When the lag was zero, the 
auto-correlation was a maximum and just gives the variance 
in the reading. This makes physical sense since we were try-
ing to correlate two quantities that have the same exact value 
all the time, i.e. perfectly correlated. Also, the correlation 
plot should be symmetrical about the origin if the data was 
real valued (not complex numbers). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (3). Normalized auto-correlation function for each raw drilling 

parameter. 

In terms of borehole drilling data, a broad triangle like 
Fig. (3(c)) would indicate that the downthrust has a reasona-
bly constant value throughout the test since it was intended 
to be kept constant during the test. Localized effects, around 
the crest and towards the ends of the ACF triangles, have 
been observed in the torque parameter (Fig. 3(b)). This was 
caused by different torque values in the Terrace Gravel layer, 
London Clay layer and Lambeth Group layers. The localiza-
tion effects were even greater in the drilling speed parameter, 
Fig. 3(d), where the ACF curve decreased quickly from 1 to 
0.08, remained constant for about 12 m, and then increased 
again to 0.2 before falling to zero. The localization effects 
indicated that there were 3 discernible ranges of drilling 
speed throughout the depth, as confirmed in Fig. (1(e)), 
where the average speed was 2.9 m/min in the Terrace Gra-
vel layer, 0.25 m/min in the London Clay layer, and 2.2 m/ 
min in the Lambeth Group layer. The mud pressure parame-
ter also has a localization effect but not as clearly defined as 
the torque and drilling speed parameters. The parameters 
with localization effect can be used to identify soil layers. 

The sharp spike at zero lag in drilling speed, rotation 
speed and time, Fig. 3(d) to (f), reveal that these data are 
affected by a lot of noise. The very sharp spike at zero lag 
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together with low normalized ACF value means that the ro-
tation speed was severely affected by white noise, showing a 
very weak self-correlation. Perhaps, no significant statistical 
correlation should be expected between the rotation speed 
parameter and the shifted version of itself, Fig. 3(e). The 
rotation speed was kept constant but the small sharp spikes 
that coincided with the rod changes distorted the ACF value. 
This was represented by the normalized ACF that remains at 
unity for zero lag, and becomes much smaller elsewhere. 

FILTERING OF FIELD DATA 

Since all the drilling data reported were obtained using 
systems that did not have a built-in analogue filter, digital 
filters were adopted here to filter the noise from the raw data. 
The advantages of digital filters are: (i) they are software 
programmable, (ii) they are stable and predictable, (iii) they 
do not drift with temperature or humidity, and (iv) they have 
superior performance-to-cost ratio. Signal processing tool-
boxes, which come with software such as Matlab, are all 
capable of performing this task. There are two types of digi-
tal filter: one that is used to remove noise in the time-domain 
and one that is used to remove noise in the frequency-
domain.  

Moving Average Filter 

A moving average filter can be used to remove noise 
from a signal in time-domain. In particular, high-frequency 
noise in a signal can be reduced by running a moving aver-
age filter [11]. Consider a set of points in discrete time that 
represents a straight line. The smoothed i-th value of the 
signal is computed from the original noisy signal x as an 
average of neighboring values around i. The averaging of 
neighbors around the i-th discrete element gives the value of 
xi exactly. If random noise is added to the initial points, the 
averaging operation tends to cancel the noise [11]. The for-
ward moving average equation is given by: 

=

+=
0

pn

nini xy            (2) 

where p is an integer number representing a filtering weight 

and  is defined as the ‘kernel’ that contains the weights to 

be applied to neighboring elements. The sum of all weights 

in a smoothing kernel must be equal to one ( n=1). In the-

ory, we can define i i+1  i+2, and so on, however, for 

simplicity we will only use a simple moving average filter 

with i = i+1 = i+2 = 1/p in the following analysis. 

It is vital to have a zero-phase filtering for all kinds of 
digital filter. This can be done by processing the input data in 
both forward and reverse directions. After filtering in the 
forward direction, it reverses the filtered sequence and runs it 
back through the filter. Hence, the reverse moving average is 
now represented by: 

+

=

+=

p

n

nini xy

0

           (3) 

The resulting sequence has precisely zero-phase distor-
tion and double the filter order.  

For parametric study, a moving average filter with filter-
ing weight, p, of 5, 10 and 20 were selected to filter the time 

parameter of the drilling data (Fig. 4(a) to (c)). The corre-
sponding kernel values, , are thus 1/5, 1/10 and 1/20. It can 
be seen that as p increases, the data become smoother, Fig. 
4(d) to (f). The selection of p and hence,  was critical for 
noise control. If p was very big (long), smoothing would 
remove significant low frequency components, Fig. 4(c), 
which might be relevant to the signal; if p was too small 
(short), only the highest frequency noise would be removed 
and there was a possibility that some noise would still re-
main, Fig. 4(a).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (4). Moving average filter with filtering weight p: (a) 5; (b) 10; 

(c) 20; and (d)-(f) the corresponding filtered value for time.  

Median Filter 

A median filter can also be used to filter noise in the 

time-domain. The median, yi, is essentially the ‘middle’ 

value of a set of data values when they are sorted in ascend-

ing or descending order. Matlab applies an order k, one-

dimensional median filter to the signal. When k is odd, yi is 

the median of ]2/)1([]2/)1([ ,..., + kiki xx . On the other hand, 

when k is even, yi is the median of 

]12/[]12/[]2/[ ,...,, ++ kikiki xxx . Hence, in both cases, the 

median does not use all the data values in its calculation. 

When the filtering order, k, is odd it only uses one data value 

(the middle one); when k is even it uses the two middle val-

ues. The median is thus, unlike the mean or average value, a 

relatively stable measure and is not affected by the extreme 

values.  

For a comparison with the moving average filter, a me-
dian filter with filtering orders of 5, 10 and 20 was used to 
process the time parameter data (Fig. 5(a) to (c)). The corre-
sponding filtered results are presented in Fig. 5(d) to (f). 
Again, it can be seen that the higher the filtering order the 
smoother the result is. 

Butterworth Filter 

A Butterworth filter is generally used to control noise in 
frequency-domain. There are three classical types of Butter-
worth filter: low-pass, high-pass and band-pass. A low-pass 
filter keeps frequency components below the cut-off fre-
quency while frequency components above the cut-off fre-
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quency are rejected. It is usually used in suppressing high-
frequency noise. A high-pass filter lets the high-frequency 
components “pass” while the frequencies below the cut-off 
frequency are rejected. It is used to remove the static compo-
nent or zero-frequency offset in a signal. The combination of 
low- and high-pass filters is a band-pass filter. It is used to 
preserve a certain threshold of frequency while nullify oth-
ers. It seems that the drilling data may be represented by low 
frequency components (Fig. 2); therefore, the most suitable 
filter to be used is the low-pass filter. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (5). Median filter with filtering order k: (a) 5; (b) 10; (c) 20; 

and (d)-(f) the corresponding filtered value for time. 

Here, a 3
rd

 order low-pass Butterworth digital filter was 
used to filter the noise from the drilling raw signals. Cut-off 
frequencies of 20/100, 10/100 and 5/100 m

-1
 were chosen to 

filter the time parameter (Fig. 6(a) to (c)). The cut-off fre-
quency must be a number between 0 and 1, where 1 corre-
sponds to half the sampling frequency. The Butterworth re-
sults are plotted in (Fig. 6(d) to (f)) and it shows that the 
higher the cut-off frequency the more the original data 
(which also includes low frequency noise) would be pre-
served.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (6). Butterworth filter with cut-off frequency: (a) 20; (b) 10; 

(c) 5; and (d)-(f) the corresponding filtered value for time. 

Fig. 7(a) shows the comparison of the time data after ap-
plying the moving average filter (p = 20) and median filter (k 
= 20), while Fig. 7(b) shows the comparison of the time data 
after applying the median filter (k = 20) and Butterworth 
filter (cut-off frequency = 5/100). In general, it can be seen 
that the median filter was capable of getting rid of more 
‘spikes’ than the moving average and the Butterworth filters. 
However, the median filter did not use all the available in-
formation contained in the original data during filtering, 
which might be unwelcome in certain situations, but this was 
good for our drilling data, which contains sharp spikes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (7). Comparison of time data filtered by: (a) moving average 

filter with p = 20 (black dashed-line) and median filter with k = 20 

(red solid-line); (b) Butterworth filter with cut-off frequency of 

5/100 (black dashed-line) and median filter with k = 20 (red solid-

line). Black circles denote the ‘spikes’ left in the data filtered by (a) 

moving average filter, and (b) Butterworth filter. 

Which Filters 

It is hard to recommend a unique filter together with its 

filtering weight (moving average), order (median) or cut-off 

frequency (Butterworth) for each of the drilling signal. A 
parametric study, to find out the weight, order and cut-off 

frequency for each of the above-mentioned filter was thus 

carried out. Noise is deemed to be completely filtered when 
the spike in the normalized ACF plot, Fig. (3), at zero lag is 

diminished. A typical result, using the median filter on each 

of the drilling parameters together with the corresponding 
normalized ACF, are presented in Fig. (8). The disappear-

ance of the original sharp spike in the drilling speed, rotation 

speed and time signals in the normalized ACF plots shows 
that the noise in these signals was substantially removed, in 

particular for the rotation speed. As for mud pressure, torque 

and downthrust, the filtering order was determined after 
most of the spikes disappeared from the original signal. 

This exercise was performed for the entire Site A tests 
and a global value of the filtering weight, order and cut-off 
frequency for each of the drilling parameters is derived. 
They are summarized in Table 1. A low filtering weight or 
order but high cut-off frequency reveals that signals for mud 
pressure, torque, down-thrust and holdback contain less 
noise than the drilling speed, rotation speed and time signals. 
It seems that the outputs of the instrumentation for mud pres-
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sure, torque, downthrust, and holdback are less sensitive to 
the machine/environmental noise. 

CHECK OF TEST REPEATABILITY USING CROSS-

CORRELATION  

Instrumented drilling is a relatively new ground investi-
gation tool; therefore, it is vital to check the repeatability of 
the drilling data. There may be several ways to check the 
repeatability of a test. Perhaps, the most direct way is to per-
form a few tests at a homogeneous site and then compare the 
test data, while the indirect way is to use the cross-
correlation function. Cross-correlation function (CCF) is 
capable of indicating similarity of two signals as a function 
of the delay between them. Here, the CCF was used to check 
the similarity of the drilling data obtained from sites A and 
B. As mentioned earlier, tests performed at Site A were stan-
dardized test because these tests were performed using the 

same testing procedures, instrumentation and equipment. On 
the other hand, tests performed at Site B were non-
standardized because they were performed using unspecified 
by generically similar testing procedures, different instru-
mentation and equipment. 

The cross-correlation of two signal sequences x[n] and 
y[n] is a third sequence rxy[k], defined as: 

=

=
n

xy knynxkr ][][][           (4) 

where the second sequence y[n] is delayed by k units relative 

to the first sequence x[n], and the sum of the product terms 

is then evaluated. This is done for all values of k. To obtain a 

better comparison, the cross-correlation result is normalized 

against the auto-correlation values (Eq. 1) of both signals 

being compared as follow: 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (8). Determination of filtering order of median filter for drilling parameter and their corresponding normalized auto-correlation function 

(NACF). 

Table 1. Filter Weight, Order and Cut-off Frequency 

Drilling Parameters Weight of Moving Average Filter (p) Order of Median Filter (k) Cut-off Frequency of Butterworth Filter 

Mud pressure 5 5 8/100 

Torque 10 10 10/100 

Thrust 10 10 10/100 

Hold-back 10 10 10/100 

Drilling speed 25 25 2/100 

Rotation speed 30 30 2/100 

Time to drill 5mm 25 25 2/100 
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where subscript x is a drilling parameter and subscript y is 

the same drilling parameter but from the other test. For ex-

ample, the torque parameter of test A1 was compared with 
the torque parameter of test A2, A1 with A4, etc. A good 

cross-correlation of any two tests is defined by a triangular 

shape of CCF profile and a close to unity CCF value at zero 
lag.  

Standardised Test at Site A 

Cross-correlation was performed for each of the drilling 
parameters of tests A1, A2 and A4 in Fig. (9). Qualitatively, 
the overlapping or near-overlapping of CCF profiles in mud 
pressure and torque, Figs. 9(a) and (b), show that there was 
some consistency in the quality of the data between each of 
these standardized tests. From the quantitative point of view, 
the normalized cross-correlation value for mud pressure, 
torque and net thrust was about 0.7, which meant that these 
results were still not perfectly correlated. However, there 
was an even poorer correlation between the drilling speed 
data, Figs. 9(d), which only has a maximum normalized CCF 
value of about 0.4. In this case, the data might not be so con-
sistent. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (9). Cross-correlation function to examine the similarity of Site 

A data. Solid-line: correlation between A1 and A2; dashed-line: 

between A1 and A3; dotted-line: between A2 and A4. 

Non-Standardised Test at Site B 

The drilling tests performed at Site B were non-

standardized ones. The machine, the instrumentation and the 

drilling procedures were not standardized like the Site A test. 

The quality of these non-standardized data could be com-

pared using the cross-correlation function. Three vertically 

drilled tests, B1, B2 and B3, which were only a few meters 

away from each other, were randomly selected for this 

analysis. If these were standardized tests, a high degree of 

similarity between these tests would have been expected, as 

for the Site A data. However, from their normalized CCF 

results plotted in (Fig. 10), except for the torque in (Fig. 

10(b)), the CCF profiles for each of the drilling parameters 

did not overlap each other, i.e. inconsistencies exist in the 

mud pressure, drilling speed and time parameters. The non-

symmetrical envelope for the net thrust, Fig. 10(c), revealed 

that it was not controlled properly. The non-overlapping and 

non-symmetrical envelopes were even more severe for the 

drilling speed and time parameters, Figs. 10(d) and (e). 

These data were thus unreliable than they needed be. The 

unreliability and inconsistency must be caused by the non-

standardized method of drilling. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (10). Cross-correlation function to examine the similarity of 

Site B data. Solid-line: correlation between B1 and B2; dashed-line: 

between B1 and B3; dotted-line: between B2 and B3. 

CONCLUSIONS 

The aims of this study were to check the consistency of 

the data and to detect and remove the noise buried in drilling 

data. Signal processing techniques, spectral analysis and 

auto-correlation were used to detect the existence of un-

wanted noise in the data. The analysis shows that most of the 

drilling data were affected by noise; the drilling speed, rota-

tion speed and time data seem to contain more noise than the 

other parameters. Fortunately, the noise could be removed by 

using an appropriate digital filter. The use of time-domain 

filters such as the moving average and median filters were 

deemed to be adequate for this purpose; and its filtering 

weight, order or cut-off frequency could also be determined 

from the auto-correlation analysis. Using cross-correlation, it 

was found that the results obtained from the standardized 

tests were more consistent than the non-standardized tests. 

This shows that proper standardization needs to be adopted 

for any instrumented drilling data to be useful for subsequent 

data interpretation. 
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