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Abstract: The Heavy Weight Deflectometer (HWD) test is one of the most widely used tests for assessing the structural 

integrity of airport pavements in a non-destructive manner. The elastic moduli of the individual pavement layers predicted 

from the HWD deflection measurements through inverse engineering analysis are effective indicators of pavement layer 

condition. The primary objective of this study was to develop a tool for backcalculating non-linear pavement layer moduli 

from HWD data using Artificial Neural Networks (ANN) for rapid structural evaluation of airfield pavements. A multi-

layer, feed-forward backpropagation ANN which uses an error-backpropagation algorithm was trained to approximate the 

HWD backcalculation function. The synthetic database generated using an axisymmetric pavement finite-element 

program was used to train the ANN. Using the ANN, the Asphalt Concrete (AC) moduli and subgrade moduli were 

successfully predicted. Apart from the moduli, an attempt was made to predict the critical pavement structural responses 

using ANN models. The final product was used in backcalculating pavement layer moduli and predicting subgrade 

deviator stresses from actual field data acquired at the Federal Aviation Administration’s National Airport Pavement Test 

Facility (NAPTF).  

INTRODUCTION  

 The Falling Weight Deflectometer (FWD) test is one of 
the most widely used tests for assessing the structural 
integrity of roads in a non-destructive manner. In the case of 
airfields, a Heavy Weight Deflectometer (HWD) test, which 
is similar to a FWD test, but using higher load levels, is 
used. In an FWD/HWD test, an impulse load is applied to 
the pavement surface by dropping a weight onto a circular 
metal plate and the resultant pavement surface deflections 
are measured directly beneath the plate and at several radial 
offsets. The deflection of a pavement represents an overall 
“system response” of the pavement layers to an applied load. 
A conventional Asphalt Concrete (AC) pavement is typically 
made up of three layers: a surface layer paved with AC mix, 
a base or/and subbase layer made up of crushed stone, and a 
subgrade layer made up of natural soil. When a wheel load is 
applied on an AC pavement, the pavement layers deflect 
nearly vertically to form a basin . The FWD/HWD test tries 
to replicate the force history and deflection magnitudes of a 
moving truck tire/aircraft tire. 

 The deflected shape of the basin is predominantly a 
function of the thickness of the pavement layers, the moduli 
of individual layers, and the magnitude of the load. 
“Backcalculation” is the accepted term used to identify a 
process whereby the elastic (Young’s) moduli of individual 
pavement layers are estimated based upon measured 
FWD/HWD surface deflections. As there are no closed-form 
solutions to accomplish this task, a mathematical model of 
the pavement system (called a forward model) is constructed 
and used to compute theoretical surface deflections with 
assumed initial layer moduli values at the appropriate  
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FWD/HWD loads. Through a series of iterations, the layer 
moduli are changed, and the calculated deflections are then 
compared to the measured deflections until a match is 
obtained within tolerance limits. Most of the commercial 
backcalculation programs currently in use (e.g. WESDEF, 
BISDEF) utilize an Elastic Layer Program (ELP) as the 
forward model to compute the surface deflections. For 
example, WESDEF uses WESLEA and BISDEF uses 
BISAR. 

 The ELPs consider the pavement as an elastic multi-
layered media, and assume that pavement materials are 
linear-elastic, homogeneous and isotropic. However, in 
reality, it has been found that certain pavement materials do 
not show linear stress-strain relation under cyclic loading. 
The non-linearity or stress-dependency of resilient modulus 
for unbound granular materials and cohesive fine-grained 
subgrade soils is well documented in literature [1,2]. Un-
bound granular materials used in the base/subbase layer of 
an AC pavement show “stress-hardening” behavior (increase 
in resilient modulus with increasing hydrostatic stress) and 
cohesive subgrade soils show “stress-softening” behavior 
(reduction in resilient moduli with increased deviator stress). 
Therefore, the layer modulus is no longer a constant value, 
but a function of the stress state. Also, the ELPs do not 
account for the available shear strength of these unbound 
materials and frequently predict tensile stresses at the bottom 
of unbound granular layers which exceeds the available 
strength. Thus, the pavement layer moduli values predicted 
using ELP-based backcalculation programs are not very 
realistic. 

 ILLI-PAVE is a two-dimensional axi-symmetric pave-
ment finite-element (FE) software developed at the Univer-
sity of Illinois at Urbana-Champaign [3]. It incorporates 
stress-sensitive material models and it provides a more 
realistic representation of the pavement structure and its 
response to loading. The primary objective of this study was 
to develop a tool for backcalculating non-linear pavement 
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layer moduli from FWD/HWD data using Artificial Neural 
Networks (ANN). The reason for using ANN to accomplish 
this task is that once trained, they offer mathematical 
solutions that can be easily calculated in real-time on even 
the basic personal computers, unlike conventional backcal-
culation programs. Also, ANN can learn a backcalculation 
function that is based on much more realistic models of 
pavement response (e.g., ILLI-PAVE) than are used in 
traditional-basin matching programs.  

 ANNs have been successfully used in the past for the 
backcalculation of flexible pavement moduli from FWD data 
[4]. However, they did not account for realistic pavement 
layer properties as ELP-generated synthetic database was 
used to train the ANN. Therefore, ILLI-PAVE was used in 
this study to develop the synthetic database which accounts 
for the nonlinearity in unbound material behavior. A multi-
layer, feed-forward network which uses an error-backpro-
pagation algorithm (LMS minimization) was trained to 
approximate the HWD backcalculation function. The final 
product was used in backcalculating pavement layer moduli 
from actual field data acquired at the National Airport 
Pavement Test Facility (NAPTF). The NAPTF was cons-
tructed to generate full-scale testing data to support the 
investigation of the performance of airport pavements 
subjected to new generation aircrafts. The results from this 
study were compared with those obtained using a traditional 
ELP-based backcalculation program. It is noted that this is a 
preliminary study specifically targeted towards the backcal-
culation of pavement layer moduli from HWD data acquired 
at the NAPTF. 

 Recent research studies at the Iowa State University and 
University of Illinois have focused on the development of 
ANN based flexible pavement analysis models to predict 
critical pavement responses and layer moduli [5]. Resear-
chers have successfully demonstrated the use of ANNs 
trained with ILLI-PAVE results as pavement structural 
analysis tools for the rapid and accurate prediction of critical 
responses and deflection profiles of flexible pavements 
subjected to typical highway loadings [5]. The current study 
described in this paper focused on the development of ANN-
based models for the rapid non-destructive evaluation of 
airport flexible pavements subjected to new-generation, 
heavy aircrafts such as Boeing B-777. 

DATABASE GENERATION FOR ANN TRAINING 
AND TESTING 

 A conventional airport flexible pavement section was 
modeled as a five-layered (AC layer, base layer, subbase 
layer, subgrade layer and a sand layer as constructed in 
conventional NAPTF test sections), two-dimensional, axi-
symmetric FE structure. A typical HWD test is performed by 
dropping a 36,000-lb load on the top of circular plate with a 
radius of 6 inches resting on the surface of the pavement. 
The loading duration is about 30 ms. Deflections are 
typically measured at offsets of 0-,12-,24-,36-,48- and 60-
inches from the center of loading plate. The effect of HWD 
loading was simulated in ILLI-PAVE.  

 The AC layer and the sand layer were treated as linear 
elastic material. Stress-dependent elastic models along with 
Mohr-Coulomb failure criteria were applied for the base, 

subbase and subgrade layers. The ‘stress-hardening’ K-  
model was used for the base and subbase layers: 
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where MR is resilient modulus (psi),  is bulk stress (psi) and 
K and n are statistical parameters. The following relationship 
exists between K and n (R

2
 = 0.68, SEE = 0.22) [6]: 
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where MR is resilient modulus (psi), d is applied deviator 
stress (psi), and K1 and K2 are statistically determined 
coefficients from laboratory tests. 

 The thickness of the AC, base, subbase, subgrade and 
sand layers were held at constant values of 5, 8, 12, 95, and 
120 inches respectively. These layer thicknesses are for a 
conventional AC pavement section (referred to as “MFC”) 
constructed at the NAPTF. The elastic modulus of the sand 
layer was fixed at 45,000 psi. Pavement surface deflections 
were computed at spacings of 0 (D0), 12 (D12), 24 (D24), 36 
(D36), 48 (D48), and 60 (D60) inches from the load center. 
Apart from the deflection basins, the strains at the bottom of 
the AC layer ( AC) and on top of the subgrade ( SG), major 
and minor stresses ( 1 and 3) and deviatoric stress on top of 
subgrade ( D) were also computed. The importance of these 
parameters in the context of airport flexible pavement design 
is discussed later. 

 Deflection Basin Parameters (DBPs) derived from 

FWD/HWD deflection measurements are shown to be good 

indicators of selected pavement properties and conditions 

[7]. Recently, DBPs were used in developing new relation-

ships between selected pavement layer condition indicators 

and FWD deflections by applying regression and ANN 

techniques [8]. The DBPs considered in this study are shown 

in Table 1. Each DBP supposedly represents the condition of 

specific pavement layers. For example, AUPP is sensitive to 

the AC layer properties whereas BCI and AI4 are expected to 

reflect the condition of subgrade. Some of these DBPs were 

included as inputs for training the ANN apart from the 6 
independent deflection measurements (D0 to D60). 

 A total of 5,000 data sets were generated by varying the 
AC and subgrade layer moduli, the ‘Kb’-‘nb’ and ‘Ks’-‘ns’ 
values (note that K and n are related) for the base and 
subbase layers respectively. Of the total number of data sets, 
3,750 data vectors were used in training the ANN and the 
rest 1,250 data vectors were utilized for the testing the 
network after the training was completed. The ranges of 
layer properties used in training the ANN are summarized in 
Table 2. 

 In order for the network weights to compare the features 
to one another more easily, it is generally desirable to reduce 
each feature in the data set to zero mean and an appro-
ximately equal variance, usually unity. But, in this case, as 
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the data was well controlled, all the features were reduced to 
similar orders of magnitude. Also, it is crucial that the 
training and test data both represent sampling from the same 
statistical distribution, which is also taken care of in this 
study. 

Table 1. Deflection Basin Parameters (DBPs) Used in this 

Study 

Deflection Basin Parameter 

(DBP) 
Formula 

AREA AREA = 6(D0 + 2D12 + 2D24 + D36)/D0 

Area Under Pavement  

Profile (AUPP) 
AUPP = (5D0 – 2D12 – 2D24 – D36)/2 

Area Index AI4 = (D36 + D48)/2D0 

Base Curvature Index (BCI) BCI = D24 – D36 BCI2 = D60 – D48 

Base Damage Index (BDI) BDI = D12 – D24 

Deflection Ratio DR = D12/D0 

Shape Factors F1 = (D0 – D24)/D12 F2 = (D12 – D36)/D24 

NETWORK ARCHITECTURE 

 A generalized n-layer feedforward artificial neural 
network which uses an error-backpropogation algorithm [9] 
was implemented in the Visual Basic (VB 6.0) programming 
language. The program can allow for a general number of 
inputs, hidden layers, hidden layer elements, and output 
layer elements. Two hidden layers were found to be suffi-
cient in solving a problem of this size and therefore the 
architecture was reduced to a four-layer feedforward net-
work. A four-layer feedforward network consists of a set of 
sensory units (source nodes) that constitute the input layer, 
two hidden layer of computation nodes, and an output layer 
of computation nodes. The following notation is generally 
used to refer to a particular type of architecture that has two 
hidden layers: (# inputs)-(# hidden neurons)-(# hidden 
neurons)-(# outputs). For example, the notation 10-40-40-3 
refers to an ANN architecture that takes in 10 inputs 
(features), has 2 hidden layers consisting of 40 neurons each, 
and produces 3 outputs. 

 An ANN-based backcalculation procedure was 
developed to approximate the FWD/HWD backcalculation 
function. Using the ILLI-PAVE synthetic database, the ANN 

was trained to learn the relation between the synthetic 
deflection basins (inputs) and the pavement layer moduli 
(outputs).  

 To track the performance of the network a Root Mean 

Squared Error (RMSE) at the end of each epoch was 

calculated. An epoch is defined as one full presentation of all 

the training vectors to the network. The RMSE at the end of 

each epoch defined as: 
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 Where dj is the desired response for the input training 
vector Xj, and N is the total number of input vectors 
presented to the network for training. In order for the 
network to ‘learn’ the problem smoothly, a monotonic 
decrease in the RMSE is expected with increase in the 
number of epochs. 

 Separate ANN models were used for each desired output 
rather than using the same architecture to determine all the 
outputs together. The most effective set of input features for 
each ANN model were determined based on both engine-
ering judgment and the experience gained through past 
research studies conducted at the University of Illinois. 
Parametric analyses were performed by systematically 
varying the choice and number of inputs and number of 
hidden neurons to identify the best-performance networks. 
As it was found that the prediction accuracy of the network 
remained the same for hidden layers greater than or equal to 
two, the number of hidden layers was fixed at two for all 
runs. The learning curve (RMSE Vs number of epochs) and 
the testing RMSE were studied in order to arrive at the best 
networks. 

 A range of (-0.2, +0.2) was used for random initialization 
of all synaptic weight vectors in the network. The presence 
of a nonlinear activation function, (.) in the hidden layer(s) 
is important because, otherwise, the input-output relation of 
the network could be reduced to that of a single-layer 
perceptron. The computation of the  (local gradient) for 
each neuron of the multilayer perceptron requires that the 
function (.) be continuous. For this problem, an asymmetric 
hyperbolic tangent function (tanh) was chosen as the 
nonlinear activation function at the output end of all hidden 
neurons. Since, the final outputs (layer moduli) are real 
values rather than binary outputs, a linear combiner model 

Table 2. Ranges of Layer Properties Used to Train the ANN 

Pavement Layer Thickness (in.) Elastic Layer Modulus (ksi) Poisson’s Ratio 

Asphalt Concrete 5 100 – 2,000 0.35 

Base 8 Kb: 1.6 – 20 nb: 0.2 – 0.8 0.35 

Subbase 12 Ks: 1.6 – 20 ns: 0.2 – 0.8 0.35 

Subgrade 95 1.6 – 20 0.45 

Sand 120 45 0.4 
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was used for neurons in the output layer, thus omitting the 
nonlinear activation function. A smooth learning curve was 
achieved with a learning-rate parameter of 0.001. 

 A Summary of the sensitivity analyses performed to 
select the best-performance networks for predicting AC 

modulus (EAC) and subgrade modulus (ERi) in MFC section 
are shown in Table 3. Similarly, the best-performance 
networks for predicting nb and ns in MFC section are 
highlighted in Table 4. The base and subbase layer moduli 
were the hardest to predict. The difficulty associated with 

Table 3. Summary of Sensitivity Analyses for Predicting AC and Subgrade Moduli 

Trial Testing RMSE 

 

Input Output Network Architecture No. of Epochs 

EAC (ksi) ERi (ksi) 

1 D0 ~ D72 EAC, ERi 7-40-40-2 7,500 91 1.7 

2 D0 ~ D72 EAC, ERi 7-40-40-2 10,000 96 1.7 

3 D0 ~ D60 EAC, ERi 6-40-40-2 7,500 120 1.3 

4 D0 ~ D60 EAC, ERi 6-40-40-2 10,000 74 2.2 

5 D0 ~ D60 EAC 6-30-30-1 10,000 86 - 

6 D0 ~ D60 EAC 6-40-40-1 10,000 110 - 

7 D0 ~ D60 EAC 6-40-40-1 15,000 69 - 

8 D0 ~ D60 ERi 6-30-30-1 10,000 - 2.0 

9 D0 ~ D60 ERi 6-40-40-1 15,000 - 1.0 

10 D0 ~ D60, BCI, AI4 ERi 8-20-20-1 10,000 - 1.2 

11 D0 ~ D60, BCI, AI4 ERi 8-30-30-1 10,000 - 1.1 

11 D0 ~ D60, BCI, AI4 ERi 8-40-40-1 10,000 - 0.9 

12 D0 ~ D60, BCI, AI4 ERi 8-40-40-1 15,000 - 0.8 

 
Table 4. Summary of Sensitivity Analyses for Predicting Base/subbase Moduli Parameters 

Testing RMSE 

Trial Input Output Network Architecture No. of Epochs 

nb ns 

1 D0 ~ D72, BCI, BDI nb, ns 9-40-40-2 10,000 0.133 0.137 

2 D0 ~ D72, BCI, BDI nb, ns 9-40-40-2 15,000 0.128 0.128 

3 D0 ~ D72, BCI, BDI nb 9-40-40-1 10,000 0.513 - 

4 D0 ~ D60, BCI, SCI nb 8-40-40-1 15,000 0.523 - 

5 BCI, BDI nb 2-40-40-1 5,000 0.181 - 

6 D0 ~ D60, AUPP nb 7-20-20-1 15,000 0.149 - 

7 D0 ~ D60, AUPP, EAC nb 8-10-1 10,000 0.171 - 

8 D0 ~ D60, AUPP, EAC, D1/D0 nb 9-10-1 10,000 0.130 - 

9 D0 ~ D60, AUPP, EAC, D1/D0 nb 9-10-1 20,000 0.125 - 

10 D0 ~ D60, BCI, BDI ns 8-20-20-1 5,000 - 0.186 

11 D0 ~ D60, BCI, BDI ns 8-40-40-1 5,000 - 0.184 

12 D0 ~ D60, BCI, BDI ns 8-50-50-1 5,000 - 0.489 

13 D0 ~ D60, BCI, F1 ns 8-40-40-1 10,000 - 0.141 

14 D0 ~ D60, EAC, ERi nb, ns 8-40-40-2 10,000 0.130 0.135 

15 D0 ~ D60, EAC, ERi ns 8-40-40-1 10,000  - 0.136 
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backcalculating the base layer modulus, especially if a thin 
AC layer is used, is a well recognized problem [4]. For this 
problem, it is sufficient to predict either ‘n’ or ‘k’ for base 
and subbase layers as both these moduli parameters are 
related to one another as discussed before. Note that the best-
performance network for predicting nb contains ANN-
predicted EAC as one of the inputs to the network.  

 The most common inputs for mechanistic analysis of 
airport flexible pavement performance include:  

(1) AC, tensile strain at the bottom of the asphalt layer,  

(2) SG, vertical compressive strain on top of the subgrade, 
and  

(3) SSR, Subgrade Stress Ratio defined as follows: 

u

d

q
SSR =

            (5) 

where d is deviator stress on top of the subgrade and qu is 

the unconfined compressive strength of subgrade cohesive 

soils. Distress modes normally considered in flexible 

pavement analysis and design are fatigue cracking and 

rutting [10]. Classical flexible pavement design procedures 

are based on limiting the vertical compressive strain on top 

of the subgrade (subgrade rutting failure criteria) and the 

tensile strain at the bottom of the lowest AC layer (AC 

fatigue failure criteria).  

 Using the results from ILLI-PAVE finite element ana-
lyses, researchers have showed that the SSR is a good indi-
cator of the subgrade condition [11]. The philosophy of the 
SSR criterion is to ensure that the pavement exhibits stable 
subgrade permanent deformation performance. The SSR cri-
terion has been successfully utilized in the develop-ment of 
ILLI-PAVE based flexible highway pave-ment design 
procedures for the Illinois Department of Trans-portation 
[12]. The SSR-based subgrade criteria has been proposed for 
airport flexible pavement design [11].  

 Using the synthetic deflection basins generated by ILLI-
PAVE and the derived DBPs, the possibility of developing 
ANN-based models for predicting AC, SG, and d was 
explored. Initial analyses showed that predicting these layer 
condition indicators were extremely difficult. Of the three, 

AC was the most difficult to predict. Table 5 summarizes the 
results of sensitivity analyses in selecting the best-perfo-
rmance networks for predicting AC, SG, and d. Based on 
the magnitude of the testing RMSE for the selected networks 
(highlighted in the Table), it can be said that the prediction 
accuracy is reasonable, if not good.  

DISCUSSION OF RESULTS 

 Table 6 displays the summary of all the best-performance 
ANN-based prediction models identified by the parametric 
analyses in this study. The training progresses of the best-
performance networks are captured in Figs. 1 to 6.  

Table 5. Summary of Sensitivity Analyses for Predicting Pavement Critical Responses 

Testing RMSE 

Trial Input Output Network Architecture No. of Epochs 

d (psi) SG (Microstrain) AC (Microstrain) 

1 D0 ~ D5 d  6-20-20-1 5,000 9.79E-01   

2 D0 ~ D5 d  6-20-20-1 20,000 9.68E-01   

3 D0 ~ D5 d  6-40-40-1 10,000 9.47E-01   

5 D0 ~ D5 SG 6-40-40-1 5,000  1519  

6 D0 ~ D5, BDI SG 7-10-10-1 10,000  225  

7 D0 ~ D60, BDI SG 7-20-20-1 5,000  490  

8 D0 ~ D60, BDI SG 7-40-40-1 10,000  206  

4 D0 ~ D60 SG 6-20-20-1 10,000  132  

5 D0 ~ D60, BDI, SCI AC 8-10-10-1 20,000   153 

6 D0 ~ D60, BDI, SCI AC 8-12-12-1 10,000   313 

7 D0 ~ D60, BDI, SCI AC 8-15-15-1 10,000   112 

8 D0 ~ D60, BDI, SCI AC 8-20-20-1 15,000   274 

9 D0 ~ D60, BDI, EAC AC 8-10-1 10,000   102 

10 D0 ~ D60, AUPP, EAC AC 8-10-1 15,000   54 

11 D0 ~ D60, AUPP, EAC AC 8-10-1 20,000   81 

12 D0 ~ D60, AUPP, EAC AC 8-15-1 10,000   85 

13 D0 ~ D60, AUPP, EAC AC 8-10-10-1 10,000     92 
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Fig. (1). Training curve for AC modulus.  

 

 

 

 

 

 

 

 

 

Fig. (2). Training curves for nb and ns. 

 

 

 

 

 

 

 

 

 

Fig. (3). Training curve for subgrade modulus.  

 

 

 

 

 

 

 

 

 

Fig. (4). Training curve for d.  

 

 

 

 

 

 

 

 

 
 

Fig. (5). Training curve for SG.  

 

 

 

 

 

 

 

 

 

Fig. (6). Training curve for AC.  

Table 6. Summary of Best-performance ANN Prediction Models 

Output Inputs Network Architecture Testing RMSE 

Eac D0 ~ D60 6-40-40-1 69 ksi 

Eri D0 ~ D60, BCI, AI4 8-40-40-1 0.8 ksi 

nb D0 ~ D60, AUPP, EAC, D12 /D0 9-10-1 0.125 

ns D0 ~ D60, EAC, ERi 8-40-40-1 0.136 

d D0 ~ D60 6-40-40-1 0.947 psi 

SG D0 ~ D60 6-20-20-1 0.132 millistrain 

AC D0 ~ D60, AUPP, EAC 8-10-1 53.7 microstrain 
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 In Figs. 7 to 11, the target and ANN-predicted values are 

compared for all the output variables using the 1,250 test 

data vectors. Except for base and subbase moduli para-

meters, very good agreement is found between the target and 

ANN-predicted values for all output variables. Further 

research is required to identify the appropriate input vari-

ables and the required network architecture to successfully 

predict the base and subbase moduli parameters.  

 

 

 

 

 

 

 

 

 

 

Fig. (7). Prediction of AC modulus.  

 

 

 

 

 

 

 

 

 

 

 

Fig. (8). Prediction of subgrade modulus, ERi. 

 

 

 

 

 

 

 

 

 

 

 

Fig. (9). Prediction of subgrade deviator stress, d. 

 

 

 

 

 

 

 

 

 

 

Fig. (10). Prediction of vertical subgrade compressive strain, SG.  

 

 

 

 

 

 

 

 

 

 

Fig. (11). Prediction of horizontal tensile AC strain, AC. 

ANN APPLICATION TO FIELD DATA 

 One of the major reasons for developing this backcal-

culation procedure is to reliably evaluate the structural 

integrity of the NAPTF pavement test sections as they were 

subjected to traffic loading. The NAPTF is located at the 

Federal Aviation Administration (FAA) William J. Hughes 

Technical Center, Atlantic City International Airport, New 

Jersey. The NAPTF test pavement area is 900-foot long and 

60-foot wide and it includes six AC pavement sections. One 

of them is a conventional-base AC pavement built over a 

medium-strength subgrade which was modeled in this study. 

This test section is referred to as the “MFC”. The test 

sections were subjected to a six-wheel dual-tridem aircraft 

landing gear (Boeing 777) in one lane and a four-wheel dual-

tandem landing gear (Boeing 747) in the other lane 

simultaneously. The wheel loads were set at 45,000 lbs and 

the speed was 5 mph during trafficking. The test sections 

were trafficked to “failure”. According to the NAPTF failure 

criterion, pavements were considered to be failed when there 

is a 1-inch surface upheaval adjacent to the traffic lane. The 

MFC test section was the first one to “fail” at 12,952 load 

repetitions exhibiting 3 to 3.5 inches of rutting and severe 

cracking. All NAPTF test data referred in this research can 

be downloaded from the FAA Airport Technology website: 

http://www.airporttech.tc.faa.gov.  
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 During the NAPTF traffic test program, HWD tests were 
conducted at various times to monitor the effect of time and 
traffic on the structural condition of the pavement. Tests 
were conducted on B777 traffic lane, B747 traffic lane and 
the untrafficked Centerline (C/L). Using the HWD test data 
acquired at the NAPTF for the MFC test section, the AC 
moduli and subgrade moduli were backcalculated with the 
best-performance ANNs. The results were then compared 
with those obtained using BAKFAA, an ELP-based backcal-
culation program. The BAKFAA program was developed 
under the sponsorship of the FAA Airport Technology 
Branch and is based on the LEAF layered elastic comput-
ation program. A stiff layer with a modulus of 1,000,000 psi 
and a Poisson’s ratio of 0.50 was used in backcalculation 
process. The plots comparing the results of ANN-based 
approach with those of BAKFAA are shown in Fig. 12 for 
AC modulus and in Fig. 13 for subgrade modulus. 

 

 

 

 

 

 

 

 

 

 

 

Fig. (12). Comparison of ANN-predicted AC moduli with 

BAKFAA AC moduli (Field Data).  

 

 

 

 

 

 

 

 

 

 

 

 
Fig. (13). Comparison of ANN-predicted subgrade moduli with 

BAKFAA subgrade moduli (Field Data).  

 In the Figures, “B777-” and “B747-” in the legend refer 
to B777 traffic lane and B747 traffic lane respectively. One 
of the objectives of the NAPTF traffic test program was to 
compare the damaging effect of B777 and B747 landing 
gears on airport pavements. In these Figures, the changes in 
layer moduli in B777 traffic lane and B747 traffic lane are 

due to both traffic loading as well as variation in temperature 
and climate. The changes in pavement material properties in 
the pavement Centerline (C/L) are only due to environmental 
effects as the C/L was not subjected to trafficking.  

 In Fig. 12, the variation in pavement temperature over the 
duration of trafficking program is indicated. Studies have 
shown that the AC modulus is very sensitive to pavement 
temperature. Therefore, the pavement temperature is plotted 
as well in Fig. 12 on the secondary Y-axis. The AC modulus 
Vs N trend is similar for both ANN-predicted and 
FAABACKCAL results. The ANN-model seems to be more 
sensitive to traffic loading effects and temperature effects 
which is reflected in the sharp decrease in AC moduli with 
rise in temperature and number of load repetitions. The B747 
traffic lane is slightly more distressed in terms of reduction 
in elastic moduli compared to the B777 traffic lane. This is 
captured by the ANN-model. This result was confirmed by 
the NAPTF rutting study results [13]. The NAPTF trench 
study results showed that the subgrade layer contributed 
significantly to the total pavement rutting in the MFC test 
section. The ANN-model shows an overall decreasing trend 
in subgrade moduli with increasing number of load 
repetitions, whereas the moduli values backcalculated using 
BAKFAA remain more or less the same throughout the 
trafficking program (see Fig. 13). 

 During the NAPTF construction, 2-inch Pressure Cells 
(PCs) were installed on top of the subgrade to measure the 
vertical stresses induced by the test gear during trafficking. 
Using the 2-inch PC data, vertical subgrade stresses were 
determined for the B777 traffic lane and B747 traffic lane as 
a function of the number of load repetitions (N). These 
values were converted to Subgrade Stress Ratios (SSRs) by 
dividing the vertical load-induced subgrade stresses by the 
unconfined compressive strength (Qu) which was determined 
to be 26.1 psi based on laboratory testing. The vertical load-
induced subgrade stresses were assumed to be approximately 
equal to the deviator stress on top of subgrade ( d) in 
calculating the SSRs. Subgrade deviator stresses ( d) were 
also computed from the HWD deflection basins using the 
ANN prediction model and were converted to SSRs using 
the same procedure mentioned above.  

 The ANN results are compared with the actual PC results 
in Fig. 14. It is noted that the orders of magnitudes are 
different for PC results and the ANN results although the 
trends are similar. This is because the ANN results are based 
on results from HWD tests which apply a 36,000-lb (36-kip) 
load on a 12-inch diameter plate on the pavement. Whereas, 
the PCs measure actual subgrade stresses induced by moving 
wheel loads of B777 gear (6-wheel) and B747 gear (4-wheel) 
with 45,000-lb (45-kip) on each wheel. Future research will 
focus on the feasibility of translating the 36-kip based ANN 
results to match the actual PC results. However, the ANN 
results capture the trend in the variation of subgrade stressed 
with N. The results also confirm that the B747 traffic lane 
was more distressed compared to the B777 traffic lane as a 
result of trafficking. 

SUMMARY AND CONCLUSIONS 

 The Heavy Weight Deflectometer (HWD) test is one of 
the most widely used tests for assessing the structural 
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integrity of airport pavements in a non-destructive manner. 
In this test, an impulse load is applied to the pavement 
surface by dropping a weight onto a circular metal plate and 
the resultant pavement surface deflections are measured 
directly beneath the plate and at several radial offsets. 
Backcalculation is the accepted term used to identify a 
process whereby the elastic (Young’s) moduli of individual 
pavement layers are estimated based upon measured HWD 
surface deflections. The elastic moduli of the individual 
pavement layers are effective indicators of layer condition. 
They are also necessary inputs to mechanistic-based analysis 
and design of pavements.  

 

 

 

 

 

 

 

 

 

 

 

Fig. (14). Comparison of ANN-predicted subgrade stresses with 

PC-measured subgrade stresses (field data).  

 The ELP-based backcalculation programs do not account 
for the stress-dependency of unbound granular materials 
(used in the base and subbase layers) and fine-grained 
cohesive soils (used in the subgrade layer) and therefore do 
not produce realistic results. ILLI-PAVE is a pavement 
finite-element software that incorporates stress-sensitive 
material models and it provides a more realistic represent-
ation of the pavement structure and its response to loading. 
The primary objective of this study was to develop a tool for 
backcalculating non-linear pavement layer moduli from 
FWD/HWD data using Artificial Neural Networks (ANN). A 
multi-layer, feed-forward network which uses an error-
backpropagation algorithm was trained to approximate the 
HWD backcalculation function. The ILLI-PAVE generated 
synthetic database was used to train the ANN. Using the 
ANN, we were successfully able to predict the AC moduli 
and subgrade moduli. Apart from the moduli, the critical 
pavement responses such as subgrade deviator stress and 
horizontal AC tensile strain were also successfully predicted 
using the ANNs. The final product was used in backcal-
culating pavement layer moduli and in predicting SSRs from 
actual field data acquired at the National Airport Pavement 
Test Facility (NAPTF).�Although this is a preliminary study 
with a narrow scope, the results are very encouraging.  

 Future studies would incorporate a wide range of 
pavement layer properties in the training dataset which 
would improve the generalization capabilities of the ANN. 
They would consider all four (two conventional-base and 

two asphalt-stabilized base) flexible test sections constructed 
at the NAPTF. The results would be used in studying the 
comparative effect of B777 and B747 gears on the moduli 
values. Further research is required to identify the appro-
priate input variables and the required network architecture 
to successfully predict the base and subbase moduli para-
meters.  
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