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Abstract: A structural optimization criterion for linear mechanical systems subject to random vibrations is presented for 
supporting engineer’s design. It is based on a multiobjective approach whose Objective Function (OF) vector is done by 
stochastic reliability performance and structural cost indices. The first ones are structural reliabilities, and are evaluated 
for one or more failure types; they are related to designer’s required performances defined in the pre-design phase. The 
second OF vector indices concerned cost or similar deterministic measures. The reliability based performance criteria here 
proposed is properly able to take into account the design required performances and so it is an efficient support for struc-
tural engineering decision making. The proposed criteria is different from other used conventional optimum design for 
random vibrating structure, that are based on minimizing displacement or on acceleration variance of main structure re-
sponses, but are not able to consider explicitly the required performances against structural failure. 

As example of proposed criteria, the multiobjective optimum design of a Tuned Mass Damper (TMD) has been devel-
oped, for a typical seismic design problem; it deals with control of structural vibrations induced on a multi-storey building 
structure excited by non stationary base acceleration random process. A numerical application of this specific problem has 
been done with reference to a three storey building, and a sensitivity analysis is carried out. Its results are shown in a use-
ful manner for TMD design decision support. 
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1. INTRODUCTION 

Design making in structural engineering consists in ap-
plying the solution which best satisfies the required perform-
ance minimising the required recourses. Many engineers use 
a typical approach based on indirect or intuitive methods 
which depend on past experiences, subconscious motives, 
incomplete logical schemes, random selections and some-
times intuitive simplified mechanical schemes also. Such 
methods may be extremely pragmatic and applicable, but do 
not generally offer high optimal performance solutions, that 
means they are able to satisfy the given design requirement 
without effectively minimizing the required resources. An 
alternative method in structural design is based on the Opti-
mal Structural Design (OSD), which consists in applying 
only logical mathematical process expressed in support of 
decision making. The standard Single Objective Optimiza-
tion (SOO) consists in minimizing or maximising one Objec-
tive Function (OF) capable of describing system perform-
ances. In addition it may be necessary to satisfy given con-
straints. The OF is defined by construction and/or failure 
costs, total weight or one structural performance index. This 
alternative approach can provide at least one single optimal 
solution. The Multi-Objective Optimization (MOO) ap-
proach is founded on an OF vector whose dimension is 
greater than one, and whose elements are different structural  
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costs and performance indices. Unlike the SOO, the MOO 
produces a set of possible solutions and designer must select 
only the possible one that better agrees with his own deci-
sions. With reference to structural problems where dynamic 
loads are intrinsically random, both OF and constraints may 
be expressed by probabilistic entities, like covariances, spec-
tral moments, probability of failures and similar [1]. In this 
field a wide class of structural engineering problems exists; 
it deals with structural systems thought and designed to sus-
tain dynamic actions which can be suitably modelled as cas-
ual events rather than deterministic ones such as earthquakes, 
winds pressure, sea waves and rotating machinery induced 
vibrations. Structural responses to these actions are casual 
processes, so the random vibration theory is the most reliable 
way to assess structural answer in a probabilistic manner. 
Random dynamic analysis seems to be the most useful 
method to obtained suitable information concerning structure 
response and reliability (for example in [2]). In the field of 
structural engineering probabilistic methodologies have 
gained an increasing importance and now they are frequently 
used in order to assess structural safety problems. Probabilis-
tic approaches can take into consideration structural parame-
ters or loads and uncertain effects on structural answer in all 
cases where mechanical and excitation parameters are intrin-
sically random quantities. Even if this method may consid-
erably increase the difficulties in analysis, it is the only one 
which can offer some essential design information that is not 
usually directly available by more conventional and less 
complicate deterministic approaches. These reasons are the 
result of 60 years of experiences in the field of structural 
dynamics; they caused the replacement of the deterministic 
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approach ( in which forces and structural responses are as-
sumed as exactly known quantities) with the stochastic one, 
that allows to a more representative and detailed structural 
answer and safety evaluation. In the meantime, optimization 
methods have gained an increasing importance within struc-
tural design, typically based on the implicit assumption that 
all involved variables are deterministic. This “conventional” 
approach could fail when the real uncertain nature of some 
structural parameters is properly considered, reducing the 
optimal performance or at least making unfeasible the ex-
pected optimal goal. In the last decades, different approaches 
have been proposed using probabilistic methodologies due to 
computational and conceptual difficulties which properly 
treat uncertainty in structural optimization. The use of prob-
abilistic methodologies has been proposed also. In standard 
reliability based on design optimization (RBDO) [3, 4] the 
objective function is minimized under probabilistic con-
straints instead of conventional deterministic ones. The sug-
gested approaches for RDBO are essentially referred to time-
invariant cases (see for example [5-7]). Only few contribu-
tions deal with time-variant aspects [4, 8], in which reliabil-
ity is determined by the out-crossing approach and by the 
context of well-known FORM or SORM. 

A simplified approach in structural optimization dynamic 
problems consists in assuming that loads are the only uncer-
tain sources, when they have a clear un-deterministic nature 
as in the cases of earthquakes or wind actions: these loads 
are suitably modelled by stochastic processes and the stan-
dard random vibrations theory can be adopted if all the other 
involved quantities are assumed as deterministic. Structural 
response characterization is so completely described by sto-
chastic processes with deterministic parameters. With refer-
ence to seismic engineering and seismic protection devices, a 
first optimum design procedure was developed by Wirshing 
and Campbell [9], for structures equipped with absorbers. 
The standard selected for the best design was an uncon-
strained minimization of the maximum of a suitable struc-
tural response parameter. Structural answers were obtained 
by statistical analysis of numerical integration of motion 
equations starting from generated accelerations. Constanti-
nou and Tadjabaksh ([10-12]) developed an optimum design 
criterion for the seismic protection of structures with an ad-
ditional first story damping device. The input was modelled 
by a stationary white noise Gaussian process and the adopted 
objective function was the system variance displacement. 
More recently Takewaki [13] proposed a specific and more 
complete stochastic approach, aimed to stiffness-damping 
simultaneous optimization. The sum of mean squares of re-
sponse due to a stationary random excitation was minimized 
under constraints on total stiffness capacity and total damp-
ing capacity. An alternative interesting stochastic method for 
optimum design of damping devices in seismic protection 
was proposed by Park et al. [14] to minimize the total build-
ing life-cycle cost. It was based on a stochastic dynamic ap-
proach for failure probability evaluation; meanwhile the 
objective function was defined in a deterministic way. The 
standard stochastic optimization problem was also formu-
lated by adopting the location and the amount of the viscous 
elastic dampers [15] or the structural shape [16] as design 
variables. The constraints were related to failure probability 
associated to the crossing of the maximum inter-storey drifts 
over a specific barrier level. The failure was evaluated by 

means of the first crossing theory in non-stationary condi-
tions. A complete stochastically defined optimum design 
method is also proposed by Marano et al. [17], in which a 
reliability based optimum criterion was developed adopting a 
covariance approach. Both O.F. and constraints are defined 
in a stochastic way, where these latter impose a limit to the 
failure probability associated to the first threshold crossing 
of structural displacement over a given value. A reliability 
based methodology for the robust optimal design of uncer-
tain linear structural systems subjected to stochastic dynamic 
loads was also presented by Papadimitriou et al. in [18] and 
[19] Safety system referred to structural displacements was 
used as structural performance index, under stationary white 
noise input conditions . The methods that authors proposed 
deals also with robust solution evaluating both mean and 
covariance of OF, by using a multiobjective optimization 
robust design. 

Moreover all the proposed methodologies for the optimi-
zation methods of seismic devices are founded on the mini-
mization of a single OF that quantifies the protected systems 
response reduction in respect to the unprotected configura-
tion. Moreover, the OFs are expressed in terms of covari-
ance, and their main limitation is the lack of information 
about final structural performance which is unknown when 
expressed in terms of reliability. For instance, in case of vi-
bration protection devices the ratio between protected and 
unprotected structural displacement (or inertial acceleration) 
covariance is common used as OF. It is not at all possible to 
evaluate if a given required performance, commonly ex-
pressed as a limitation on maximum main system displace-
ment or on similar response measures, is really achieved by 
using the protection strategy adopted even if it is possible to 
indicate immediately the advantages in adopting a specific 
seismic protection device.  

For this specific reason the present work is focused on 
the structural optimum design standard that directly involved 
a performance based design (PBD) in the random vibrating 
structural problem. Without loss in generalities, the optimum 
design of a control device of vibrations is analysed as a case 
study regarding structures subject to seismic actions. Moreo-
ver we have to take into account that several objective func-
tions (OFs) are involved in design decisions differently from 
conventional optimization (single objective function). These 
functions are often in conflict with each other and for them it 
is not possible to define a universally approved standard for 
“optimum” design as occurs in single objective optimization. 
For this reason, Pareto dominance and Pareto optimality are 
very important notion in MOO problems, because they are 
able not only to furnish a single defined optimal solution (as 
in SOO), but they also gives a set of possible optimal solu-
tions satisfying, at the same time, with different perform-
ances, all designers objectives.  

In this work a MOO procedure is adopted for the opti-
mum design of seismic devices for linear structures subject 
to random seismic loads. This procedure adopts a bi-
dimensional objective function vector, defined by using both 
standard deterministic cost and structural survival probability 
indices. An example is developed with the first OF element 
assumed as a deterministic device cost, and the second one is 
the system failure probability. The failure is defined as the 
first crossing out of an admissible domain of one structural 
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response during all seismic actions; so it is the allowable top 
floor displacement, but other structural responses could be 
easily used. 

The reliability evaluation is developed by using the state 
space covariance analysis and the Poisson hypothesis is 
adopted in order to evaluate the mean threshold crossing rate 
for the safe domain. The device seen for seismic protection 
is the standard Tuned Mass Damper (TMD). A single TMD 
located at the top of a multi degree of freedom linear system, 
which models a multi-storey building, is analysed. In detail 
the base acceleration representing seismic actions is gener-
ally modelled by a filtered white noise of a non stationary 
stochastic process that is able to give a quite realistic seismic 
loads model. In the optimization problem the design vector 
collects the TMD mechanical parameters i.e. frequency, the 
mass and damping ratio. As stated before the main innova-
tion of the proposed approach consists in adopting the Per-
formance Based Seismic Design (PBSD) in a MOO problem 
for the optimum design of a TMD in accord with modern 
seismic technical codes.  

In general, the purpose of installing a TMD is to guaran-
tee a suitable level of protection in the primary structure in 
order to assure an adequate safety level, both for the struc-
ture and its contents, towards a defined limit state. Moreover, 
TMD is introduced with the aim to reduce the discomfort to 
occupants and/or to limit the damage of equipments in par-
ticular into high rise buildings, especially when moderate 
(and frequent) seismic loads are taken into account in design 
process. This last aspect is becoming of extreme actuality in 
civil engineering. Recent earthquakes have in fact shown that 
the damage in equipments and in buildings contents can have 
large economic consequences. For instance, in high rise 
buildings, a localised damage in several acceleration sensi-
tive non structural systems (suspend ceilings, light fixture, 
fire suppression piping systems, computer systems, emer-
gency power generation systems, elevators, etc.) can affect 
the functionality of large portion of the building. Therefore, 
structural seismic design should be applied not only in order 
to guarantee the life safety and to prevent structural collapse, 
but also in order to control the damage level and the behav-
iour of components and systems.  

So that for a specific class of buildings, where are located 
strategic equipments or activities, it is fundamental guaran-
tee, under given design earthquakes, not only structural sur-
vival (that deals with non liner structural analysis) but also 
specific limitation for maximum deformation, that essen-
tially limited in a linear behaviour; this is for assurance an 
operatively level also after seismic events. 

This concept is the base of Performance Based Seismic 
Design: different documents (i.e. SEAOC Vision 2000  
[20, 30]) have specified in detail different performance levels 
required to structures. 

In Table 1 one can observe that, for example, for frequent 
and occasional earthquakes, performance objectives are fully 
operational and operational. In these performance levels, the 
structure typically remains in the elastic range and control 
structure vibrations level can be efficiently obtain by adopt-
ing the TMD strategy.  

The proposed approach, unlike the SOO one, is able to 
give pre-design information; it is extremely useful as in ini-

tial designer decisions and as the level of failure probability 
reduction by using a specific seismic control strategy. Using 
the MOO proposed in this work, the designer has the control 
of performances and costs in different Pareto front locations, 
and so he can define solution types to be adopted according 
to sensibilities and decisions. With more details and with 
reference to a TMD device, a suitable information for de-
signer is the minimum mass ratio (that is defined as the ratio 
between TMD and main structural masses), necessary to 
increase reliability under a given level structure. This is a 
fundamental element for deciding if this mass ratio could be 
practically used or not. As an application of the proposed 
strategy, a multi degree of freedom system, representing a 
multi-storey plane frame in a simplified way, is protected by 
a TMD against earthquake loads. The TMD optimal solution 
has been obtained for different levels of admissible top floor 
maximum lateral displacement. 
Table 1. Earthquake probability and performance objective 

(SEAOC Vision 2000) 

 
 
 
 
 
 
 
 
 
 
 
 
 

2. STOCHASTIC ANALYSIS OF MULTI-DEGREE OF 
FREEDOM LINEAR SYSTEM SUBJECT TO RAN-
DOM LOADS 

For a generic linear n degrees of freedom system, excited 
by a forcing vector    f (t),  whose related stochastic process is 
the Gaussian with null mean value stochastic vector ( ),tF  
the well known differential matrix motion equation is:  

    M&&y(t)+C&y(t)+Ky(t) = f (t)           (1) 

where ,M C  and K  are, respectively, the deterministic 
mass, the damping and stiffness matrices and ( )ty&& , ( )ty& , 
( )ty  consists in the acceleration, velocity and displacement 

vectors, whose related stochastic processes are ( )t&&Y , ( )t&Y  
and ( )tY . 

The motion equation (1) can be written as a first order 
differential matrix equation, by introducing the space state 
vector ( )tz : 

    
&z t( ) = Az t( ) + f (t)
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where:  
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The covariance matrix ( )tR  related to the space state 
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And it can be evaluated by means of the Lyapunov Co-
variance Matrix Equation (see for example [21, 28]), whose 
the expression is: 

( ) ( ) ( ) ( )T
t t t t= +R AR R A B& +          (5) 

where 
( )

T
T

t = +B fz zf
) )

. 
Furthermore, with the aim of finding the best design un-

der a given stochastic load process, the 
b
n  elements design 

vector b will be introduced to determine shape, sections or 
other mechanical structural features and, hence, to produce 
the actual value of the stiffness, mass and damping matrices. 

With reference to define a PBD index in a stochastic 
way, the mechanical safety or reliability ( )r T  at time T  is 
a natural solution. It is defined as the failure survival prob-
ability, in which the failure is a partial or total damage in the 
interval[ ]0,T . With reference to a variety of interpretations 

(generally not only of a mechanical nature) of this condition, 
it is obvious that the definition of failure plays a central role 
in the reliability evaluation. Usually, the collapse can be as-
sociated to the threshold crossing probability and it is more 
precisely determined by the first time crossing of a structural 
response parameter s(t) through a given threshold value ! . 
Due to the essential casual nature of actions, a random dy-
namic analysis is necessary and the natural way of testing the 
structural integrity is to evaluate the probability whether or 
not a structure may have a failure during its lifetime. Then, 
mechanical safety or reliability r  at a fixed time T  is de-
fined as a failure survival probability, where the failure is a 
partial or total static damage in a given time [ ]0,T . So it is 

clear that the failure definition is very important for reliabil-
ity evaluation. Normally, only two different kinds of me-
chanical failure are considered: the fatigue failure, due to 
cumulative damage, and the threshold crossing one, deter-
mined by the first time crossing of a structural response pa-
rameter s , through a given threshold value ! . This study 
deals with threshold crossing failure. Regarding a generic 
mechanical system subject to a stochastic process, the reli-
ability ( )r T  defined as the survival probability when ex-
ceeding the given threshold value ! , under the assumption 

that the initial survival probability is equal to one 

( )(0) 1r =  , is given by 

{ }0
( , ) exp ( , , )

T

r b T h t dt!= "# b          (6) 

The hazard function ( , )h t!  is represented as the prob-
ability of having a threshold crossing, in a unit time and in 
the absence of previous threshold crossing. Its exact formu-
lation is still an open question. For a single degree of free-
dom system in the Rice’s original formulation [22], the haz-
ard function has the following general form: 

0
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where ( , | ( ))
SS
p s s Q t&

&  is the joint probability density of 

( )S t  and ( )S t&  processes, ( )Q t  is the condition of excur-
sions absent from the fixed barrier !  before the time t . Dif-
ficulties related to the determination of this joint probability 
often impose the use of approximate solutions, one of the 
most commonly used is the replacement of the conditional 
probability of failure with the unconditional probabil-
ity ( , )

SS
p s s&

& . By means of this assumption, the hazard func-

tion ( , )h t!  is replaced by the threshold crossing rate 

( , )
S
v t!+ , that depends on vector ( )

T

S S& covariance matrix 

elements in approximate form. Regarding the vector of  
response functions of interest ( )S t  in reliability evaluation, 
the general form to express the function of the state  
space vector ( )Z t  by the linear transformation 
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and the covariance matrix in structural response parameters 
space state SZ  is 
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3. OPTIMIZATION CRITERIA 

In all engineering fields, designers attempt to find solu-
tions that conjugate performance and satisfaction of several 
requirements. Designers can obtain the optimum within the 
imposed conditions by using standard optimization tech-
niques. In the field of structural engineering, structures de-
signed in this way are safer, more reliable and less expensive 
than the traditional designed ones. Generally speaking, the 
structural optimization problem could be formulated as the 
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selection of a set of design variables (that are the design pa-
rameters that characterize structural configuration), collected 
in the so above called design vector (DV) b , over a possible 
admissible domain 

 
!

b . With reference to SOO problem, the 
optimal DV is able to minimize a given OF and satisfy the 
assigned constraint conditions. Deterministic-based optimi-
zation is aimed to minimize structural weight or volume sub-
ject to given deterministic constraints generally referred to 
stresses and/or displacements. Moreover, probabilistic con-
straints are based on design, related to structural performance 
in case of reliability. Afterwards reliability theory is intro-
duced into structural engineering and optimization with the 
aim of considering all existing sources of uncertainty in a 
more rational way. These sources can influence the structural 
response as well as the circumstance that the loadings ap-
plied to a structure are not exactly known. Therefore, the 
reliability is recognized as a performance constraint in struc-
tural engineering and so an optimum design should generally 
balance both cost and performance concerning structural 
reliability. In SOO probabilistic constraints usually define 
the feasible region of the design space by restricting the 
probability that a deterministic constraint is violated within 
the allowable probability of violation. 

Moreover, in many real engineering problems several 
“efficiency” indexes (as in SOO) are involved, they could be 
related to structural cost or weight, structural performances 
and other similar standards. Each of these indices is typically 
conflicting with the others, and it is not possible to define an 
universal approved criteria of “optimum” as in SOO, where 
optimization is achieved by assuming that one “efficiency” 
index must be minimised and that the other ones must be 
considered as problem constraints. Moreover, this kind of 
choice is questionable. The above mentioned question 
strongly depends on designer opinion and experience. On the 
contrary the multiobjective optimization gives the opportu-
nity to the designer to evaluate a set of possible solutions 
which satisfies more than one indices but with different per-
formances. The definitions of these solutions are usually 
known as the Pareto dominance and Pareto optimality crite-
rion, and constitute a fundamental point in the MOOPs. Re-
garding the Pareto optimality definition, it is assumed that a 
design vector *

b is Pareto optimal that would decrease some 
criterion without causing a simultaneous increase in other 
one criterion, if no feasible vector b exists. Unfortunately, 
this concept almost always don’t give a single solution, but a 
set of solutions called the Pareto optimal set. The vector *

b  
corresponding to the solutions included in the Pareto optimal 
set are called non-dominated. Essentially, defining the ge-
neric “efficiency” index as ( )

i
OF b , a typical minimization-

based MOOP is assumed as 
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b!!
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and it defined the two objective vectors: 
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,...,j j jMb OF b OF b=v        (12) 

( ) ( ) ( ){ }1
,...,k k kM

b OF b OF b=v        (13) 

where vector ( )jbv is said to dominate vector ( )kbv  (de-

noted by ( ) ( )j kb bv vp
). Moreover, if no feasible solution 

( )kbv  that dominates solution ( )jbv exists, the ( )jbv  is 
classified as a non-dominated or Pareto optimal solution. In 
other terms, the candidate solution 

  
b j ! !

b
 is a Pareto op-

timal solution only and if: 

( ) ( ):k k j
b

b b b! "Ù v vp         (14) 

More simply, 
  
b j ! !

b
 is a Pareto optimal solution if a 

feasible vector 
  
bk ! !

b
 which would decrease some crite-

rion without causing a simultaneous increase in at least one 
other standard [23] does not exist. Unfortunately, the Pa-
reto optimum almost always does not give a single solution 
but rather a set of solutions and it cannot proceed in an ana-
lytical way. The collection of all Pareto optimal solutions 
are know as the Pareto optimal set or Pareto efficient set. 
Instead, the corresponding objective vectors are described as 
the Pareto front or Trade-off surface. Normally, the decision 
about the “best solution” to be adopted is formulated by the 
so-called (human) decision maker (DM). The case in which 
the DM doesn’t have any role and a generic Pareto optimal 
solution is considered acceptable (no–preference based 
methods) is extremely rare. On the other hand, several pref-
erence–based methods exist in literature, although this par-
ticular aspect of research tends to have been somewhat over-
looked. A more general definition of the preference–based 
method considers that the preference information influences 
the search [23, 24]. Thus, in a priori methods, DM’s prefer-
ences are incorporated before the search begins. Therefore, 
based on the DM’s preferences, it is possible to avoid pro-
ducing the whole Pareto optimal set. In progressive meth-
ods, the DM’s preferences are incorporated during the 
search. This scheme offers the sure advantage of driving the 
search process, but the DM may be unsure of his/her prefer-
ences at the beginning of the procedure and may be informed 
and influenced by information that becomes available during 
the quest. A final classification of the methods includes the 
one “a posteriori”. In this case, the optimiser carries out the 
Pareto optimal set and the DM chooses a solution (“search 
first and decide later”). Many researchers view these ap-
proaches as standard so that, in the greater part of the cir-
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cumstances, a MOOP is considered resolved only when all 
Pareto optimal solutions are individualized. For instance, an 
extremely diffused a posteriori approach is denominated as 
Aggregating functions in which multiple objectives are com-
bined into a single one. In this field, the Weighed Sum 
Method is frequently adopted [25]. It consists in a single 
linear combination of individual objectives, so a scalar pa-
rameter (so-called weighting coefficient) is used with differ-
ent values to define the Pareto front. This method, as well as 
others Aggregating functions techniques, are not efficient for 
MOOPs because they are not able to find multiple solutions 
in a single run and multiple runs do not guarantee the defini-
tion of the true Pareto front [26]. Moreover, in the category 
of a posteriori approaches, Evolutionary Multi-Objective 
Optimization is widely used. In [27] an algorithm is pro-
posed to find constrained Pareto-optimal solutions based on 
the characteristics of a biological immune system (Con-
strained Multi-Objective Immune Algorithm, CMOIA). In 
the field of EMOO, the most adopted algorithms are the 
Multiple Objective Genetic Algorithm (MOGA) [28] and the 
Nondominated Sorting in Genetic Algorithm (NSGA) [29]. 

In this case, the MOOP is defined by: 

find 
 
b ! !

b
         (15) 

which minimizes  ( )OF , tb         (16) 

the OF vector is defined as: 

( ) ( ){ }1 2( , ) , , ,OF t OF t OF t=b b b        (17) 

Where ( ) ( )2 , Pr ( ( , )) 0 |OF t G T! != " <b S b       (18) 

4. MULTIOBJECTIVE PERFORMANCE RELIABI-
LITY OPTIMIZATION OF TMD IN SEISMIC  
PROTECTION 

Traditional optimum design of TMD is based on pro-
tected system mean-square response minimizing (see for 
example [30]). In this study, a performance reliability opti-
mum design is developed for a tuned mass damper posi-
tioned on a simple one degree of freedom linear structural 
system. The innovation of this approach is in considering 
that the optimization has to be performed by satisfying a 
design performance expressed in a full stochastic way by a 
limitation on failure probability. It is well-known that a 
TMD can be designed to control only a single structural 
model . Given the properties of the mode which needs to be 
controlled, the problem is essentially the same as designing a 
TMD for a SDOF structure. Therefore, structure is described 
by means of a single degree of freedom system and is 
equipped with a linear single tuned mass damper with the 
aim of reducing undesirable vibrations levels caused by dy-
namic loads acting at its foundation, and here modelled by 
means of a general filtered white noise stationary stochastic 
process. 

In order to improve TMD efficiency it is imperative to 
define the optimum mechanical parameters (i.e. the optimum 
tuning frequency, damping and mass ratio) of TMD. Al-

though the basic design concept of TMD is quite simple, the 
parameters of TMD system must be obtained through an 
optimal design procedure in order to satisfy performance 
requirements. For these reasons, the determination of opti-
mal design parameters of TMD has become very crucial to 
enhance the control effectiveness. 

A performance reliability based optimization is adopted 
to carry out an optimum TMD design. More precisely, a 
minimum of the mass ratio, that is the ratio of the added 
mass on the one of the structure, is investigated, together 
with the minimization of a performance index on structural 
reliability. The choice of the mass ratio as function to be 
minimized depends on the fact that this quantity can be 
strictly related to the total cost of the vibration control de-
vice. In general it is evident that, the limitation of the TMD 
mass is a primary necessity of the designer, both in mechani-
cal and in civil engineering. Of course the increase of TMD 
mass will raise location volume, total structure vertical dead 
load, and will grow in stiffness and damping connections and 
similar, so a primary strategy in TMD design is to evaluate 
the minimum mass that this device needs to satisfy the given 
required performances. Moreover, this aspect is directly re-
lated to the circumstance that in the usual range of mass ratio 
between TMD and primary structure, by increasing this pa-
rameter, vibrations control efficiency will augment. This 
tendency is not strictly monotonic, because a minimum ex-
ists, and corresponds to the optimal mass ratio, but the value 
is usually too greater to be realistically and economically 
applicable in applied engineering [17]. 

The second OF vector element which is expressed as a 
structure reliability performance index is related to the fail-
ure probability associated to the crossing of the protected 
system displacement over an allowable limit, and is a func-
tion of designer decision. The minimum reliability level util-
ized in order to define the constraint is also assigned accord-
ing to designer’s decisions which depend on the risk level 
assumed as being acceptable for each given condition. 

5. STATE SPACE MODEL OF THE SYSTEM 

A standard way in modelling TMD is by a mass-dashpot-
spring system (the secondary system) attached to the top of a 
linear MDoF system (Fig. 1). Its main scope is to reduce 
unacceptable vibrations on the main structural system and 
therefore on the damage level and failure probability. In this 
specific case, the base excitation action on the building is 
treated as a non stationary filtered stochastic process. It is 
quite important to represent the evolutionary nature of re-
sponse processes, given the effect that this characteristic has 
on structural reliability. A simpler and less computing cost 
could be obtained by treating the process as a stationary one, 
but it could overestimate the real final reliability, so that the 
engineering decision based on the optimization criteria could 
be strongly diverse from the real physical phenomenon. 
Therefore, a time modulated input process is here adopted 
for base acceleration description, and the system motion 
equations in Fig. 1 are: 

( ) ( ) ( )
b

t t t X+ + = !MX CX KX Mr&& & &&        (19) 

where ,M C  and K  are, respectively, the deterministic 
mass, damping and stiffness (n+1)x(n+1) matrices. The 
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(n+1) vectors ( )1 2
.....

T

n T
x x x x=X , 

( )1 2
.....

T

n T
x x x x=X& & & & &  and ( )1 2

.....
T

n T
x x x x=X&& && && && &&  col-

lect the displacements, velocities and accelerations of n 
floors and of the TMD relative to the ground, and finally 

( )1...1
T

=r .  

The TMD mechanical characteristics are described by pa-
rameters 

T
m , 

T
k  and 

T
c , respectively, the mass, the stiff-

ness and the damping of the TMD. 
By adding the filter motion equation in equation (19) we 

obtain:  
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Introducing the space state vector 

( )
T

f fX X=Z X X& & ,         (21) 

in the state space, equation (20) becomes  

= +Z AZ F&           (22) 

where the system matrix A  is  
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0 I
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! "
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(23) 

and the two sub-matrices (n+2)(n+2) HK and HC are (:) 
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In this work the non-stationary Kanai-Tajimi (K-T) sto-
chastic seismic model [31] is used to describe the earthquake 
ground acceleration. This model has found wide application 
in random vibration analysis of structures because it provides 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1). Schematic model of a MDoF structural system equipped with a TMD. 
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a simple way to describe ground motions characterized by a 
single dominant frequency. The model is obtained by the use 
of a simple filtered white noise linear oscillator, which, in its 
original formulation, treats earthquakes as stationary random 
processes. However, accelerograms clearly show their 
strongly non-stationary nature both in amplitude and fre-
quency contents, so a generalized no stationary K-T model is 
given by enveloping the stationary input stochastic process 
(in this case a stationary Gaussian white noise process 
( )w t which is supposed to be generated at the bed rock) 

through a deterministic temporal modulation function ( )t!  
which controls the time amplitude variation without affect-
ing the earthquake frequency content. 

Following the above considerations, the total accelera-
tion ( )bX t&& , acting at the base of the structure, is given by 
summing the contribute of inertial force ( )fX t&&  of the K-T 
filter and the time-modulated white noise excitation 
( ) ( )t w t! , as follows 

2

( ) ( ) ( ) ( )

( ) 2 ( ) ( ) ( ) ( )

b f

f f f f f f

X t X t t w t

X t X t X t t w t

!

" # # !

$ = +%
&

+ + = '%(

&& &&

&& &
    (26) 

where ( )fX t  is the displacement response of the K-T filter, 

f!  is the K-T filter natural frequency and f!  is the K-T 
filter damping coefficient.  

Regarding the modulation function ( )t! , different for-
mulations have been proposed in literature. In this paper, the 
one suggested by Jennings [32] is used and has the following 
form: 
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where 
2 1d

t t t= !  is the time interval where the peak excita-
tion is constant. Parameters are assumed as 1 3(sec)t = , 
2 15(sec)t =  and 10.4(sec )! "

= . 

The Power Spectral Density (PSD) intensity constant 
0
S  

can be related to the standard deviation 
b
x

!
&&

 of ground 
acceleration by means of the following relation: 
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and assuming 3
b
x

PGA !=
&&

, the relation between PGA and 
spectral density is: 
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where f!  and f!  are the damping ratio and pulsation fre-
quency of the filter. 

In the present study, a stochastic model is considered for 
a typical earthquake expected on the ground, having moder-
ate-high flexibility to perform the sensitivity analysis. The 
given earthquake is characterized by an energy content con-
centrated in the range of 1-4 Hz with PGA equal to 0.35 (g) 
(value that generally represents a ground motion of high in-
tensity). In the K-T model the values are: 3f! "=  
(rad/sec), 0.45f! =  and 

0
175.5S =  (m2/sec3). 

The Liapunov equation, whose solution supplies the sys-
tem response covariance has the same form of equation (5). 

As stated above, a performance reliability criterion is 
here adopted in order to perform the optimum design of a 
TMD device in the protection of a general multi - storey 
building subject to a filtered non-stationary base acceleration 
input process. The structural required performance concerns 
structure reliability associated to the maximum lateral build-
ing displacement. The possibility to satisfy a demanded limi-
tation of maximum lateral displacement has been investi-
gated with a TMD device placed at the top storey of the buil-
ding whose cost has to be limited by minimising its mass. 

The optimum design is aimed to define TMD mechanical 
characteristics which are the frequency 

T
!  and the damping 

ratio ; they are collected in the design vector 
   
b = !

T
,"

T

#
$

%
&

T
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Fig. (2). Jenning’s modulating function. 
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Indicating with 
m
! the mass ratio, it is defined as the 

TMD mass respect to the total building: 

1

f

TMD
m n

i

i

m

m

!

=

=

"
          (30) 

where nf is the total floors number and mi is the mass of each 
storey.  

A possible strategy that could be adopted for the struc-
tural optimization of TMD mechanical parameters is the 
minimization of 

m
!  and of the system failure probability, 

here related to the crossing of the top storey lateral dis-
placement over a fixed allowable value. In this case, indicat-
ing with ( ), ,f admP x Tb  the structure failure probability at 
time T (the end of structural vibrations), it is assumed that 
the conventional structural failure takes place when the 
building top storey lateral displacement 

n
x  crosses a fixed 

threshold value
adm
x . This performance index (or its com-

plementary reliability ( , , ) 1adm fr x T P= !b  ) must be evalu-
ated, with respect to the first exceeding of a threshold value 
adm
x . At the beginning of the seismic action, keeping in 
mind the assumption that ( , ,0) 1

adm
r x =b n, the approximate 

Poisson formulation for a symmetric barrier gives: 

0
2 ( , , )

( , , ) 1 e

T

admx d

f admP x T
! " "+# $

= #
b

b        (31) 

where, assuming that the above stochastic processes are 
Gaussian with null mean values (see for example [14, 33]0), 
the threshold crossing rate ( , , )

adm
v x t
+
b  is : 
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( , )
n
X

t! b  and ( , )
n
X

t! b&
 are the standard deviations of 

( , )
n
X tb  and ( , )

n
X tb&  and ( , )

n n
X X

t! b&
 is their correla-

tion factor. 
Hence, the MOO problem is defined by collecting in an 

OF vector both the deterministic cost index and the reliabil-
ity measure(,) so that the multiobjective optimal criteria 
could be stated as: 

find 
d

!b Ù          (38) 

which minimizes  ( ) ( ){ }, , ,m fOF T P T!=b b       (39) 

obtaining a numerical problem that can be solved with above 
mentioned methods. Due to the relatively regular solution of 
the problem, the standard weight method has been here 
adopted in the Pareto optimal set definition. 

6. NUMERICAL RESULTS 

A numerical application of proposed optimization criteria 
for TMD is developed in this section. It deals with a three 
floors building model subject to nonstationary process that 
models real earthquake phenomena. Mechanical characteris-
tics, regarding the storey masses and the lateral stiffness of 
the main structure with three degrees of freedom are reported 
in Table 2. The damping matrix is assumed as proportional 
by using the first and second natural frequencies. Modal sys-
tem natural periods are reported in Fig 3.  

As above stated the optimum design of TMD is aimed to 

evaluate the design vector 
   
b = !

T
,"

T

#
$

%
&

T

which simultane-

ously minimizes the performances expressed by , which re-
quires that system failure must be lower than a given limit, 
depending on the specific violated limit state. A Pareto opti-
mum front is obtained by solving the original problem.  

The plot of the objective functions whose non-dominated 
vectors are in the Pareto optimal set is called the Pareto 
front. It has been obtained, for the present example, by ob-
taining the minimum probability of failure for different mass 
ratio values in a given interval of interest from the engineer-
ing point of view. It is well known that only limited or small 
values of this parameters are realistically utilizable in civil 
engineering TMD applications. By using this way, a standard 
single OF optimization criteria has been used to get Pareto 
front points. In more details, a Matlab genetic algorithm has 
been used for this goal. 
Table. 2 

System 
Parameters 

First Floor Second Floor Third Floor  

Mass 
6

5 10•  
6

4 10•  6
3 10•  (kg) 

Stiffness 
3

6 10•  
 
6•10

3
 

3
4.2 10•  (N/m) 
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Fig. 4 shows the Pareto fronts. The minimized mass ratio 
m
!  is plotted on the x-axis and corresponds by Pareto stan-

dard to the minimum of failure probability fP , plotted on the 

y-axis. The other optimum TMD parameters, 
T

!  and 
T
! , 

are respectively plotted in Figs. 5 and 6. Different coloured 
lines in Figs. (4), (5) and (6) correspond to the various ad-
missible structural roof displacements

adm
x which correspond 

to 8 and 9 cm. Therefore the obtained results can be adopted 
to develop a performance – reliability based optimum design 
of TMD. The optimum solution b is more precisely obtained 
, with a limit 

fP
% ; it minimizes 

m
!  and satisfies the required 

performance (for example the horizontal line for 2
10fP is

!%  

which corresponds to 
min

0.99r = ). It can be observed that 
in terms of reliability a higher performance level in terms of 
reliability requires a higher mass ratio. Moreover, it is possi-
ble to deduce that for some values of maximum roof dis-
placement, the optimality cannot be reached by using a 
TMD. This means that a solution does not always exist. On 
the other hand, in some cases, the required performance is 
attained without using the TMD vibrations control strategy. 
It is obvious that different results depend on the particular 
values of fP

%  and 
adm
x . Therefore, the proposed method 

represents a useful support for designer decisions, offering a 
complete and clear scenario of all possible solutions regard-
ing both limit displacements and required reliability. 

The optimum design of the values of vector elements are 
reported in Figs. 5 and 6. In the first figure the optimum 
TMD frequency ratio is reported on the y-axis, i.e. the ratio 
of the optimum TMD frequency opt

TMD
!  with respect to the 

structural frequency
s

! . The x-axis gives the optimum mass 
ratio µ . In the second figure, the optimum TMD damping 

ratio opt

TMD
!  is plotted on the y-axis, whereas the x-axis fur-

nishes the optimum mass ratio
m
! . 

In these two figures it can be deduced that all optimum 
solutions depend only on the mass ratio and not on the ad-
missible displacement

adm
x . This result is quite reasonable 

giving that the optimum solution is essentially related to the 
mass ratio, and in any case it tends to find the couple of op-
timal TMD mechanical parameters able to maximize the 
vibrations reduction. On the contrary, the failure level for a 
given mass ratio depends passively on the admissible dis-
placement only, so that the optimal solution is not directly 
related to failure probability. This is a quite important re-
sults, because it implies that optimal solutions in terms of 
TMD parameters are independent from the system failure 
probability and mass ratio adopted. On the contrary it de-
pends directly only on admissible displacement and adopted 
mass ratio, ones that the optimal opt

TMD
!  and opt

TMD
!  has been 

defined.  

Moreover, by observing these figures, it is possible to no-
tice that when 

m
!  grows, two different trends can be noticed 

for the DV elements. Firstly, the optimum TMD frequency 
ratio (i.e. the ratio of the optimum TMD frequency opt

TMD
!  

respect to the structural frequency
s

! ), decreases to a low 
similar to a linear one. It starts from a value quite close to 
0.95 (TMD is nearly about in resonance with the main struc-
ture) and reaches values of about 0.70. On the contrary, the 
optimum TMD damping ratio opt

TMD
!  grows up as the mass 
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ratio increases, from 0.07 up to about 0.21 (for 
m
! =0.10), 

with an approximately parabolic law.  

CONCLUSIONS 

In this work has been focused a reliability performance 
based optimum design criteria, with reference to linear elas-
tic multi-degree of freedom when they are structures subject 
to random loads. Unlike other design methods, that are 
founded on minimizing system mean-square response, in this 
proposed criteria, a reliability-based performance index is 
considered, with the aim of be more useful and efficient in 
supporting design engineering decisions. This approach has 
been adopted for defining a MOO criteria also founded on 

system performance reliability. The optimum design of me-
chanical characteristics of TMD has been analysed as a case 
of study. The criterion selected for the optimum design is 
based on the minimization of the mass of the vibrations con-
trol device and on a performance reliability associated to the 
system displacement crossing beyond a given allowable dis-
placement.  

The original one-dimensional optimum design has been 
transformed into a multi-dimensional criterion. Then the 
Pareto fronts have been obtained. The sensitivity analysis 
carried out by varying the admissible displacement, have 
shows that the optimum solution not always exists, and that 
in some cases the required performance is extracted without 

 

 

 

 

 

 

 

 

 

 

 

Fig. (4). Pareto fronts for different admissible displacements. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (5). Optimum TMD frequency ratio for different admissible displacements. 
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using the TMD strategy. The results obtained can be used as 
a suitable decision making support for designers in evaluat-
ing the efficiency of TMD systems to obtain assigned re-
quired performances in vibrations control. It has been ob-
served that optimal solutions of TMD parameters are inde-
pendent from system failure probability and mass ratio. On 
the contrary, those two parameters are strongly correlated 
each other, ones that optimal TMD frequency and damping 
ratio are defined. 
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Fig. (6). Optimum TMD damping ratio for different admissible displacements. 
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