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Abstract: This paper presents an efficient numerical procedure for the rapid design of arbitrary-shaped composite steel-
concrete cross-sections that are subjected to biaxial bending and axial force. The design procedure allows cross-sections to 
be designed by solving directly for the reinforcement required to provide a cross-section with adequate strength. The new 
numerical procedure developed in this paper shows very good stability in the presence of strain softening effect exhibited 
by the concrete in compression and tension and convergence stability is not affected by the shape of stress-strain relation-
ships of concrete, the type and amount of reinforcements or the residual stress distribution in encased steel elements. A 
computer program was developed, aimed at obtaining the ultimate strength capacity and reinforcement required by rein-
forced and composite cross-sections subjected to combined biaxial bending and axial load. In order to illustrate the pro-
posed method and its accuracy and efficiency, this program was used to study several representative examples, which 
have been studied previously by other researchers. The examples run and the comparisons made prove the effectiveness of 
the proposed numerical procedure. 
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1. INTRODUCTION AND RESEARCH SIGNIFI-
CANCE 

 With the rapid advancement of computer technology, 
research works are currently in full swing to develop 
advanced nonlinear inelastic analysis methods of 3D 
frameworks, that involve accurate predictions of inelastic 
limit states up to or beyond structural collapse, and integrate 
them into the new and more rational advanced analysis and 
pushover design procedures. One of the key issues in 
developing such procedures represents the high accuracy and 
computational efficiency evaluation of elasto-plastic 
behavior of cross-sections subjected to axial force and 
biaxial bending moments [1, 2]. The inelastic response of 
cross-sections can be represented by either moment-
curvature diagrams for fixed values of axial force (M-N-) or 
interaction diagrams that express, at failure, the interaction 
between the axial load and bending moments about major 
and minor principal axes of the cross-section.  

 In recent years, some methods have been presented for 
the ultimate strength analysis of various concrete and com-
posite steel-concrete sections. [3, 4, 6, 8, 10-16, 18]. These 
analyses are based on assumption that all structural and rein-
forcement parameters are specified and, under given  
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external loads either the cross section reaches its failure 
(ultimate strength analysis) or inelastic behavior of cross-
section is revealed (moment-curvature analysis). On the 
other hand, procedures for solving directly for the reinforce-
ment required to provide a cross-section with adequate 
strength (sectional design analysis) are essential in practical 
design avoiding the iterative approach of design generally 
emphasizing to establish that the ultimate strength of a sec-
tion with known reinforcement is adequate.  

 Numerical procedures that allow the design of steel rein-
forcements for sections subjected to biaxial bending and 
axial force have been proposed in several papers [5, 7, 9, 17]. 
Dundar and Sahin [5] presented a procedure based on the 
Newton-Raphson method for dimensioning of arbitrarily 
shaped reinforced concrete sections, subjected to combined 
biaxial bending and axial compression. In their analysis the 
distribution of concrete stress is assumed to be rectangular 
according to Whitney’s rectangular block. Rodrigues and 
Ochoa [7] extended this method for the more general cases 
when the concrete in compression is modelled using the 
explicit nonlinear stress-strain relationships. Chen et al. [9] 
proposed an iterative quasi-Newton procedure based on the 
Regula-Falsi numerical scheme for the rapid sectional design 
of short concrete-encased composite columns of arbitrary 
cross-section subjected to biaxial bending. This algorithm is 
limited to fully confined concrete. More recently, Pallares  
et al. [17], present a new iterative algorithm to design the 
steel reinforcement of concrete sections subjected to axial 
forces and biaxial bending. This method is based on the 
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ultimate strains proposed by Eurocode-2 for sections under 
uniaxial bending and is limited also to fully confined con-
crete. For all these algorithms, problems of convergence may 
arise especially when starting or initial values (i.e. the pa-
rameters that define the strain profile over the cross-section) 
are not properly selected, and they may become unstable 
near the state of pure compression or tension. Moreover, all 
the above methods do not take into account the tension stiff-
ening effect for concrete, strain-softening effect exhibited by 
the concrete in compression and residual stresses for encased 
steel section. 

 In this paper a new procedure based on Newton iterative 
method is proposed to design the required reinforcement for 
composite steel-concrete cross-sections subjected to axial 
force and biaxial bending moments. Moreover, procedure 
developed by the author in [18] for construction of moment 
capacity contours and interaction diagrams is enhanced by 
inclusion of concrete tension stiffening effect, multiple 
stress-strain relationships for concrete in compression, 
prestressed reinforced concrete sections and various distribu-
tion of residual stresses for encased steel section. Residual 
stresses in structural steel component are due to uneven 
cooling of component parts during the rolling process. 
However, only a few works available in the literature have 
addressed this effect on the carrying capacity of composite 
steel-concrete cross-sections. Studies of Virdi and Dowiing 
[20] and Shrabek and Mirza [19] indicate that the residual 
stresses can affect the strength of composite columns. For 
this reason, residual stresses were accounted for in encased 
steel sections used for the ultimate strength capacity 
evaluation of composite steel-concrete cross-sections and 
two types of residual stress patterns, EC2 and AISC-LRFD 
distribution, can be taken into account in the present formu-
lation. 

 The method proposed herein, for design of cross-
sections, consists of computing the required reinforcement 
area (Atot) supposing that all structural parameters are speci-
fied and, under given external loads, the cross section 
reaches its failure either in tension or compression. The 
problem is formulated by means of three equilibrium equa-
tions for the section. The condition of ultimate limit state is 
enforced by a compatibility equation imposing the maximum 
strain on the section to be equal to the limit strain of the 
corresponding material. These nonlinear equations are ma-
nipulated so that one of them is uncoupled and the Newton 
iterative strategy is applied only to the remaining coupled 
equilibrium equations in which total reinforcement steel area 
Atot, and the ultimate sectional curvatures x and y represent 
the unknowns. 

 The proposed approach is advantageous with respect to 
the existing ones [5, 7, 9, 17], in that the solution is obtained 
by solving just three coupled nonlinear equations and the 
convergence stability is not sensitive to the initial/starting 
values of the basic variables involved in the iterative process. 
Furthermore in the proposed approach only one variable 
(Atot) requires an initial value to set up the iterative process, 
the iterative procedure starts with ultimate curvatures x=0, 
y =0. In most of the existing methods the convergence sta-
bility is governed by a good choice of the initial values of the 
basic variables which are not always simple to choose. This 

method, as compared to other iterative methods used in the 
solution of nonlinear equations for design of cross-sections, 
is very stable and convergence is very fast, the proposed 
iterative procedure has converged for many different prob-
lems in six to seven iterations, despite the quality of the 
initial value chosen for total required reinforcement area Atot.  

 Some studies [5] indicate that a negative value for rein-
forcement area Atot, that could be obtained as a solution of 
nonlinear equilibrium equations, corresponds to an unneces-
sarily big section and consequently the reinforcement is not 
necessary. This is a controversial issue, because both posi-
tive and negative values for the reinforcement could repre-
sent mathematical solution of the nonlinear equilibrium 
equations and consequently, convergence to a negative solu-
tion could not lead necessarily to the conclusion that the 
reinforcement is not required.  

 The stability and rapid convergence of the proposed 
approach are also due to the fact that the Jacobian’s of the 
nonlinear system of equations is explicitly computed 
whereas in the methods proposed by Dundar and Sahin [5] 
and Rodrigues and Ochoa [7], the partial derivatives, in-
volved in determination of the Jacobian matrix, can be only 
approximately expressed in terms of finite differences.  

2. MATHEMATICAL FORMULATION 

2.1. Basic Assumptions and Constitutive Material Models 

 Consider the cross-section subjected to the action of the 
external bending moments about both global axes and axial 
force as shown in Fig. (1). The cross-section may assume 
any shape with multiple polygonal or circular openings. It is 
assumed that plane section remains plane after deformation. 
This implies a perfect bond between the steel and concrete 
components of a composite concrete-steel cross section. 
Shear and torsional interaction effects are not accounted for 
in the concrete constitutive model.  

 Thus the resultant strain distribution corresponding to the 
curvatures about global axes ={x, y} and the axial com-
pressive strain 0 can be expressed at a generic point, in 
concrete matrix, fiber of structural steel or ordinary rein-
forced bars, of coordinates  in a linear form as: yx,

xy yx   0  (1) 

Behavior of concrete in compression 

 Two stress-strain relationships are taken into account, in 
the present investigation, to model the compressive behavior 
of concrete. The first constitutive relation [7] to model the 
concrete under compression is represented by a combination 
of a second-degree parabola (for ascending part) and a 
straight line (for descending part), Eq.(2), as depicted in Fig. 
(2a): 
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Fig. (1). Model of arbitrary composite cross-section. 
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Fig. (2). Stress-strain relationships for concrete in compression: (a) combination of second-degree parabola and straight line; (b) EC2 stress-
strain law. 
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where  represents the degree of confinement in the concrete 
and allows for the modelling of strain-softening, creep and 
confinement in concrete by simply varying the crushing 
strain c0, ultimate compressive strain cu and  respectively. 
The second constitutive relationship to model compressive 
behavior of concrete is the stress-strain law prescribed by 
Eurocode 2 [14], as depicted in Fig. (2b): 
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Fig. (3). Stress-strain relationships for concrete in tension. 

and where fc
’’ represents the concrete cylindrical compressive 

strength, c0 the crushing strain, cu the ultimate compressive 
strain and Ec denotes the modulus of elasticity of concrete in 
compression. 

Behavior of concrete in tension 

 Tension stiffening is an important phenomenon that 
should be included for an accurate analysis of sections under 
biaxial bending and axial load. Neglecting tension strength 
of concrete could lead to a loss in the smoothness of mo-
ment-curvature curves due to the sudden drop in stress from 
the cracking strength to zero at the onset cracking. In addi-
tion, tension stiffening results in a small change in peak 
strength, but this is usually negligible. The model to account 
for tension stiffening, developed by Vecchio & Collins [21] 
is taken into account in the present investigation. The model 
of concrete in tension can be given in the following analyti-
cal form (Fig. 3): 
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where Et denotes the modulus of elasticity of concrete in 
tension; fcr represents the tensile strength of concrete; cr is 
the concrete cracking strain; 1 is a factor that takes into 
account the bounding characteristics of the reinforcement 
and 2 represents a factor that takes into account the effects 
of load duration and cyclic loads. As illustrated in Fig. (3) 
slow rate of tension softening is assumed for the concrete in 
tension. 

Behavior of steel reinforcement 

 Elastic-perfect plastic stress-strain relationships, both in 
tension and in compression, are assumed for the structural 
steel and the conventional reinforcing bars. Residual stresses 

may be incorporated in the analysis. The magnitude and 
distribution of residual stresses in hot-rolled members de-
pend on the type of cross-section and manufacturing proc-
esses and different patterns are proposed. In the US, the 
residual stress is considered constant in the web although 
when the depth of a wide flange section is large, it varies 
more or less parabolically. Another possible residual stress 
pattern in the web is the one simplified by a linear variation 
as used in European calibration frames (Fig. 4).  

 Assuming that the residual strain can be linearized for 
individual zones in the steel section the total strain in a point 
can be computed as: 

ryx xy   0  (6) 

where r represents a linear residual strain field.  

2.2 Formulation of the proposed design procedure 

 An iterative procedure based on Newton method is pro-
posed to design a cross-section subjected to axial force (N) 
and biaxial bending moments (Mx,, My). The method pro-
posed herein consists of computing the required conventional 
reinforcement area (Atot) supposing that all structural pa-
rameters are specified and, under given external loads, the 
cross section reach its failure either to maximum strains 

h

  b

t

w +  r t

+  r t

-  c

+   c +   c

P e n tr u  2.1
b

h
  = 0 .5

P e n tr u  2.1
b

h
  = 0 .3

a )  E C 3

 thwtb

tb
rt

crc








2

3,0





b )  A I S C - L R F D

- r c

 

Fig. (4). Residual stress patterns. 
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attained at the outer compressed point of the concrete section 
or to maximum strains attained in the most tensioned steel 
fibre.  

 Consider an irregular composite section as shown in Fig. 
(1) subjected to axial force and biaxial bending moments. 
The global x, y -axes of the cross section could have their 
origin either in the elastic or plastic centroid of the cross-
section. The conventional reinforcement layout is given as 
percentage (i) of the total reinforcement steel area (Atot) in 
each location. At ultimate strength capacity the equilibrium 
is satisfied when the external forces are equal to the internal 
ones and either in the most compressed or tensioned steel 
fibre the ultimate strain is attained. These conditions can be 
represented mathematically in terms of the following nonlin-
ear system of equations as: 
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in which Atot, yx  ,,0  represent the unknowns, the surface 

integral is extended over concrete and structural steel areas 
(Acs), Nrs represents the number of conventional steel rein-
forcement bars. In the above equations the first three rela-
tions represent the basic equations of equilibrium for the 
axial load N and the biaxial bending moments Mx,, My re-
spectively. The last equation represents the ultimate strength 
capacity condition, that is, in the most compressed or most 
tensioned point the ultimate strain is attained; in this equa-
tion  yxcx  , and  yxcy  ,  represent the coordinates of 

the point in which this condition is imposed. The coordinates 
of the “constrained” point can be always determined for each 
inclination of the neutral axis defined by the parameters x 
and y, and u represents the ultimate strain either in most 
compressed concrete point or in most tensioned steel fibre. 
The stresses in Equations (7) are calculated using the fiber 
strains and the constitutive relations. 

 For each inclination of the neutral axis defined by the 
parameters x and y the farthest point on the compression 
side (or the most tensioned reinforcement steel bar) is deter-
mined (i.e. the point with co-ordinates xc, yc). We assume 
that at this point the failure condition is met: 

ucycx xy  0  (8) 

 Hence, the axial strain  can be expressed as: 0

 cycxu xy  0  (9) 

 Taking into account Eq.(1), the resulting strain distribu-
tion corresponding to the curvatures x and y can be ex-
pressed in linear form as: 

     cycxuyx xxyy    ,  (10) 

 In this way, substituting the strain distribution given by 
the Eq.(10) in the basic equations of equilibrium, the un-
known 0 together with the failure constraint equation can 
be eliminated from the nonlinear system (7). Thus, the 
nonlinear system of equations (7) is reduced to an only three 
basic equations of equilibrium as: 
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in which the unknowns, total reinforcement steel area Atot, 
and the ultimate sectional curvatures x and y, can be ob-
tained iteratively following the Newton method. In this re-
spect, the system (13) can be rewritten in terms of non-linear 
system of equations in the following general form: 

  0ffXF  extint  (12) 

where the external biaxial loading vector is: 
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and the internal forces vector, computed as function of the 
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 According to the Newton iterative method, the iterative 
changes of unknowns vector X can be written as: 

    0,
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where F’ represents the Jacobian of the nonlinear system 
(13) and can be expressed as: 
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 Explicitly the expressions of the Jacobian’s coefficients 
are: 
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 These coefficients are expressed in terms of the tangent 
modulus of elasticity Et, total reinforcement steel area Atot 
and the coordinates xc, yc of the “constrained” point. As 
already mentioned, during the iterative process, for each 
inclination of the neutral axis defined by the current curva-
tures, x and y, the coordinates of the constrained point can 
be always determined and consequently the stiffness matrix 
coefficients can be evaluated. The iterative procedure starts 
with curvatures x=0, y =0. At the very first iteration, start-
ing with the initial curvatures x=0 and y=0 the Jacobian F’ 
could become singular, because in this case the strain profile 
over the cross-section is uniform with maximum ultimate 
strain in compression or tension, which implies zero tangent 
modulus of elasticity. In this case one can simply start the 
iteration process with the secant modulus of elasticity in the 
evaluation of the tangent stiffness coefficients of the cross-
section. For the next iterations an adaptive-descent algorithm 
[22] is applied in order to avoid the convergence difficulties 
related to negative-definition of the Jacobian matrix that can 
occur during the iterative process. Adaptive descent is a 
technique which switches to a secant matrix if convergence 
difficulties are encountered, and switches back to the full 
tangent as the solution convergences, resulting in the desired 
rapid convergence rate.  

 The initial approximation for Atot can be chosen by the 
user of the computer program, and represents the only pa-
rameter that controls the convergence process either to a  
 

positive or negative solution for the total reinforcements. It is  
important to note that from mathematical point of view both 
positive and negative values for the reinforcement could 
represent solutions of the nonlinear equilibrium equations. If 
the initial value of Atot is taken to be 0.005Ag (i.e. Ag is gross 
cross-sectional area) it is observed that the iterative process 
described above has converged, to the positive solution, for 
many different problems in six to seven iterations. However, 
it was found that, sometimes, the iterative algorithm may 
converge to a negative value for the reinforcement steel area. 
In this case, using a trial and error process, the user has to 
restart the process with different initial values for total rein-
forcement steel area and searched for, in this way, the posi-
tive, and real solution of the problem. Alternatively, in order 
to avoid the convergence to a negative solution, during the 
iterative process, if the third variable Atot has a negative 
value, this value is changed with a positive one and the itera-
tion continue further with this value. With this procedure we 
have observed that the iterative process converges always to 
the positive solution, and the convergence stability is not 
affected by the quality of the initial approximation of the 
total reinforcement. On the other hand, if the iterative algo-
rithm diverges this means that the section selected, subjected 
to axial force (N) and biaxial bending moments (Mx,, My), is 
an unnecessarily big one and does not require any reinforce-
ments. 

 The convergence criterion is expressed as a ratio of the 
norm of the out-of-balance force vector to the norm of the 
applied load. So the solution is assumed to have converged 
if: 

TOL
extextT

T


ff

FF  (18) 

where TOL is the specified computational tolerance, usually 
taken as 1E-4. As it was stated previously, the failure of the 
cross section can be controlled either by the most com-
pressed concrete point or the most tensioned steel reinforce-
ment bar. For a compression axial force, the iterative process 
is started with control in compression, whereas for a tension 
axial force the design of the cross-section is conducted start-
ing the iterative process imposing the failure of the cross 
section in tension.  

 During the iterative process these controlled points are 
automatically interchanged. For instance, assuming that the 
current iterations are conducted with the most compressed 
point (Fig. 5) the strains profiles are defined by the same 
ultimate compressive strain and by different strains at the 
level of the most tensioned point. After the strains in the 
most tensioned point equal or exceed the tensile steel strain 
at failure, the control point becomes the most tensioned 
point, and the process continues similarly, but with the coor-
dinates of this point and associated ultimate steel strain. Fig. 
(5) presents different types of strain profiles during this 
process, defined by the either ultimate compressive strain 
(1,2,...) or by the ultimate steel strain (1’,2’,...). Fig. (6) 
shows a simplified flowchart of this analysis algorithm. 
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Fig. (5). Strains profile at failure. 
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Fig. (6). Flowchart for design procedure. 

2.3. Evaluation of Tangent Stiffness and Stress Resultant 

 Based on Green's theorem, the integration of the stress 
resultant and stiffness coefficients over the cross-section will 
be transformed into line integrals along the perimeter of the 
cross-section. For this purpose, it is necessary to transform 
the variables first, so that the stress field is uniform in a 
particular direction, given by the current position of the neu-
tral axis [23]. This is achieved by rotating the reference axes 
x, y to ,  oriented parallel to and perpendicular to the neu-
tral axis, respectively (Fig. 1) such that: 
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
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
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cossin

sincos

y

x
 (19) 

where tan =y /x. Based on this transformation, the internal 
forces carried by the concrete and structural steel areas (Acs) 
can be obtained by the following expressions: 
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 (20) 

where Nint, M,int and M,int are the internal axial force and 
bending moments about the  and  axis respectively and 
can be obtained by the following expressions: 
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 The tangent stiffness matrix coefficients are computed in 
the same way [18]. As the integration area contour is ap-
proximated by a polygon, the integral over the perimeter L, 
can be obtained by decomposing this integral side by side 
along the perimeter: 
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where nL is the number of sides that forms the integration 
area. The sides are defined by the  co-ordinates of the end-
points as shown in Fig. (1). When the integration area is a 
circle with radius R, the integral over the perimeter L can be 
obtained by decomposing this integral as: 
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 (23) 

 This leads to a significant saving in imputing the data to 
describe the circular shapes, without the need to decompose 
the circular shapes as a series of straight lines and approxi-
mate the correct solution when circular boundaries are in-
volved. In order to perform the integral on a determined side 
of the contour (Li), polygonal or circular, of the integration 
area, an adaptive interpolatory Gauss-Lobatto method is used 
[18].  

 The conventional steel reinforcements are assumed to be 
discrete points with effective area, co-ordinates and stresses. 
To avoid double counting of the concrete area that is dis-
placed by the steel bars, the concrete stress at the centroid of 
the steel bars is subtracted from the reinforcement bar force. 
In order to identify the various regions in a complex cross-
section with different material properties each region with 
assigned material properties is treated separately [16]. In this 
way, any composite cross-section with different material 
properties can be integrated without difficulties.  

 The magnitude and distribution of residual stresses in 
hot-rolled members depend on the type of cross section and 
manufacturing processes and different patterns are proposed. 
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In the US, the residual stress is considered constant in the 
web although, when the depth of a wide flange section is 
large, it varies more or less parabolically. Another possible 
residual stress pattern in the web is the one simplified by a 
linear variation as used in European calibration frames. The 
effect of residual stresses may be included in the analysis 
providing that the residual stress can be linearized for indi-
vidual zones in the steel section associated to variations of 
residual stresses throghout the height of cross-section. For 
instance assuming the EC3 distribution of residual stresses 
the cross-section has to be divided in six regions as depicted 
in Fig. (7). In this way for each region the total strain in can 
be expressed as: 

ryx εxyε  0  (24) 

where r represents a linear residual strain field which can be 
expressed for each particularly region as: 

yaxaar 321   (25) 

 Next, the integration of the stress resultant and stiffness 
coefficients over the steel cross-section will be transformed 
into line integrals along the perimeter of the cross-section as 
already described, but in this case the reference axes are 
rotated for each region using the following value for angle :  

3

2tan
a

a

x

y








  (26) 

3. COMPUTATIONAL EXAMPLES 

 Based on the analysis algorithm just described, a com-
puter program ASEP has been developed to study the biaxial 
strength behavior of arbitrary composite concrete-steel cross 
sections. It combines the analysis routine with a graphic 
routine to display the final results. The computational engine 
was written using Compaq Visual Fortran. The graphical 
interface was created using Microsoft Visual Basic 6. Dy-
namic Link Libraries (DLL) are used to communicate be-
tween interface and engine. The many options included make 
it a user friendly computer program. The graphical interface 
allows for easy generation of cross-sectional shapes and 
reinforcement bars, graphical representation of the data, and 
plotting of the complete stress field over the cross-section, 
instantaneous position of neutral axis, interaction and mo-
ment capacity contour diagrams, etc.  

 The accuracy and computational advantages of the nu-
merical procedure developed here has been evaluated using 
several selected benchmark problems analyzed previously by 
other researchers using different numerical methods. Fur-
thermore new parametric studies and computational exam-
ples are given in order to demonstrate the effectiveness of 
the ultimate strength capacity evaluation procedure described 
in the previous paper published by the author [18].  

3.1. Example 1: Composite Steel-concrete Cross-section 
with Arbitrary Shape 

 The composite steel-concrete cross-section depicted in 
Fig. (8), consists of the concrete matrix, fifteen reinforce-
ment bars of diameter 18 mm, a structural steel element and 
a circular opening. Characteristic strengths for concrete, 
structural steel and reinforcement bars are f”c=30Mpa, 
fst=355Mpa and fs=460Mpa, respectively. These characteris-
tic strengths are reduced by dividing them with the corre-
sponding safety factors c=1.50, st=1.10 and s=1.15. The 
stress-strain curve for concrete which consists of a parabolic 
and linear-horizontal- part was used in the calculation, with 
the crushing strain 0=0.002 and ultimate strain cu=0.0035. 
The Young modulus for all steel sections was 200 GPa while 
the maximum strain was u=1%. A bi-linear elasto-perfect 
plastic stress-strain relationship for the reinforcement bars 
and structural steel, both in tension and in compression, is 
assumed. The strain softening effect for the concrete in com-
pression is taken into account, in the present approach, 
through the parameter . This is an example proposed and 
analyzed by Chen et al. [9] and later studied by Charalm-
pakis and Koumousis [16], Rosati et.al [13] and others.  

 In order to verify the stability of the proposed method a 
series of analyses have been conducted to determine the 
influence of confinement, stress-strain relationships for con-
crete in compression and residual stresses for encased struc-
tural steel element over ultimate strength capacity of the 
cross-section. 

X

 Y

 x

  y

 PC

 

Fig. (8). Example 1. Composite steel-concrete cross-section. 

 

Fig. (7). Division of structural steel. Incorporation of residual 
stresses. 
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 The effects of confinement in the concrete were investi-
gated for different values of degree of confinement. As it can 
be seen in Fig. (9) by reducing the confinement in the con-
crete the interaction curves indicate lower capacities and the 
non-convexity of the diagrams is more pronounced. The 
bending moments are computed about the geometric cen-
troidal axes for a compressive axial force N=10000 kN and a 
very restrictive equilibrium tolerance has been considered, 
Tol=1E-10. It is important to underline that, for all points, 
represented in the moment capacity diagrams depicted in 
Figure 9, the strain field fulfils the ultimate value for con-
crete in compression and satisfies the equilibrium conditions. 
This numerical test illustrates the efficiency of the proposed 
approach and convergence stability.  

 Fig. (10) shows the moment capacity contours with dif-
ferent values of axial compressive load and different stress-
strain relationships for concrete in compression. In the model 
described by the Eq. 2 the strain softening effect for the 
concrete in compression is taken into account considering 
the parameter =0.15. As it can be seen the EC2 model 
(given by the Eq. 3) indicates lower capacity of cross section 
and also non-convexity of diagrams. These diagrams are 
computed about the geometric centroidal axes of the cross-
section and no convergence difficulties have been encoun-
tered. 

 Let us consider this cross-section subjected to biaxial 
bending to carry the following design loads: N=4120 kN, 
Mx=210.5 kN and My=863.5 kNm. The distribution of the 
steel reinforcing bars is shown in Fig. (10), and we consider 
that all rebars have the same diameter. The procedure de-
scribed at section 2.2 is used to find the required total steel 
reinforcement for the cross-section to achieve an adequate 
resistance for the design loads. As shown in Table 1 the 
iterative process of design was started with x =0 and y=0, 
and Atot=0.005Ag=215 cm2. The equilibrium tolerance has 
been taken as 1E-4. After only five iterations, the total area 
required of the rebars was found to be Atot=34.347 cm2. Con-
sequently, the required diameter of the selected rebar is 

cm
N

A

b

tot
req 71.12 

  which compare very well with the 

required bar diameter reported by Chen et.al. [9], 
req=1.78cm. Reinforcement bars of diameter 18 mm are 
thus suitable for this cross-section. In the above computa-
tional example, the axial force and bending moments are 

represented about the plastic centroidal axes of the cross-
section. When the design loads are represented about the 
geometric centroid the total area required of the rebars was 

 

Fig. (9). Moment capacity contours with compressive axial load 
N=10000 kN for different values of degree of confinement. 

 

Fig. (10). Moment capacity contours with different values of axial 
compressive load and different stress-strain relationships of con-
crete. 

Table 1. Example 1. Main Parameters Involved in the Design of Composite Steel-concrete Section 

Iteration x y Atot  [cm2] Error (Eq. 18) 

Initial 0.000 0.000 0.005Ag=215 1.000 

1 2.977E-5 7.197E-5 144.835 1.08254 

2 2.9187E-5 7.9279E-5 20.168 0.8347 

3 2.9093E-5 8.6250E-5 33.351 0.1060 

4 2.9003E-5 8.5837E-5 34.350 0.010026 

5 2.9000E-5 8.5850E-5 34.347 0.000082 
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found to be Atot=15.674 cm2. This result has been obtained 
after only six iterations. For this case the reference [9] does 
not present comparative results. 

 The effect of residual stresses over strength capacity of 
cross-section is presented in Table 2 and Fig. (11). Table 2 
presents the variations of total reinforcement area consider-
ing different values of compressive axial load and two types 
of residual stress patterns, EC3 and AISC-LRFD respec-

tively, for structural steel element. As it can be seen the 
presence of residual stresses increases the total reinforcement 
steel area as axial compressive load is increased. Fig. (11) 
presents the moment capacity contours for different values of 
axial compressive load with and without the presence of 
residual stresses. The bending moments are computed about 
the plastic centroidal axes for different values of compres-
sive axial force (N=4120, 6000kN, 8000kN, 10000kN). The 

 

Fig. (11). Moment capacity contours with different values of compressive axial load and different residual stress patterns for encased steel 
section. 

Table 2. Example 1: Influence of Residual Stresses Over Total Reinforcement Steel Area (Mx=210.5 kN and My=863.5 kNm) 

N [kN] Atot [cm2] (Without Residual Stresses) Atot [cm2] (EC3 Distribution) Atot [cm2] (AISC-LRFD Distribution) 

1000 58.82 58.28 57.69 

3000 41.55 42.47 42.18 

5000 31.19 41.85 36.64 

6000 33.41 50.83 42.37 

8000 61.01 86.60 71.25 

9000 84.16 110.38 93.57 

10000 110.43 136.37 118.83 
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strain softening effect for the concrete in compression is not 
taken into account (=0). As it can be seen the residual 
stresses indicates lower capacity of cross section, and this 
effect is more pronounced as axial load increases.  

3.2. Example 2: Rectangular Composite Steel-concrete 
Section. Influence of Residual Stresses 

 In order to evaluate the effects of residual stresses over 
ultimate strength capacity, of composite steel-concrete cross 
section, the moment-capacity contours diagrams are deter-
mined for a very common composite cross- section under 
biaxial loading: rectangular cross-section with symmetrically 
placed structural steel. The cross-section consists of a con-
crete core and a symmetrically placed USA wide flange 
section W12x120 (Fig. 12). 

 Characteristic strength for concrete in compression is 
f’’c= 20 MPa and the stress-strain curve which consists of a 
parabolic and linear part was used in the calculation (Eq.2), 
with crushing strain 0=0.002, ultimate strain cu=0.0035. 
The strain softening of concrete is taken into account with 
=0.15. The Young modulus for encased structural steel and 
reinforcements is 200 GPa. A bi-linear elasto-perfect plastic 

stress-strain relationship for the reinforcement bars and 
structural steel, both in tension and in compression, is as-
sumed with the yield strength fy= 300 MPa.  

 

Fig. (12). Rectangular composite steel-concrete cross-section. 

 

 Fig. (13) presents the moment capacity contours for dif-
ferent values of axial compressive load with and without the 
presence of residual stresses. As it can be seen the residual 
stresses indicates lower capacity of cross section, and this 
effect is more pronounced as axial load increases especially 
in the case of EC3 distribution for residual stresses.  

 

Fig. (13). Moment capacity contours with different values of axial compressive load and different residual stress patterns for encased steel 
section. 
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3.3. Example 3: Reinforced Concrete Box Cross-section 

 The box cross-section, depicted in Fig. (14a), consists of 
the concrete matrix and sixteen reinforcement bars, all rebars 
having the same diameter. This section is subjected to the 
following design loads: N=2541.7 kN, Mx=645.6 kNm, and 
My=322.8 kNm. Characteristic strengths for concrete and 
reinforcement bars are: , fy=413.69 MPa 
respectively. 

MPa443.23" cf

 The stress-strain curve for concrete which consists of a 
parabolic and linear-descending- part was used in the calcu-
lation, with the crushing strain 0=0.002 and ultimate strain 
cu=0.0038. The Young modulus for reinforcing bars was 
200GPa while the maximum strain was u=1%. A bi-linear 
elasto-perfect plastic stress-strain relationship for the rein-
forcement bars, both in tension and in compression, is as-
sumed. The strain softening effect for the concrete in com-
pression is taken into account, in the present approach, 
through the parameter . This problem was also solved by 
Rodrigues & Ochoa [7]. The procedure described at section 
2.2 is used to find the required total steel reinforcement for 
the cross-section to achieve an adequate resistance for the 
above mentioned design loads. The strain softening parame-
ter =0.15 for the concrete in compression has been consid-
ered in analysis.  

 As shown in Table 3 the iterative process of design was 
started with x =0 and y=0, and Atot=0.005Ag=12.25 cm2. 
The equilibrium tolerance has been taken as 1E-4. After only 
six iterations, the total area required of the rebars was found 
to be Atot=40.586 cm2. This means that the area required of 
the selected rebar is 2.536 cm2 which compare very well 
with the required area, 2.535 cm2, reported by Rodrigues & 

Ochoa [7]. Fig. (14.b) shows the plastic status of the cross-
section associated to the equilibrium between external design 
loads and internal forces with the total reinforcing area ob-
tained after six iterations. If the effect of tension stiffening is 
taken into account, considering resistance of tensioned con-
crete with Et=33000 MPa, tensile strength fcr=0.234 MPa, 
concrete cracking strain cr=0.000071 and 1=1, 2=0.75, the 
total area required was found, in only five iterations, to be 
Atot=37.875 cm2 which is with 7% smaller than the case in 
which tension stiffening effect was ignored. For this case the 
reference [7] does not present comparative results. The influ-
ence of the initial values assumed for total reinforcement 
area over convergence process is illustrated in Table 4.  

 As it can be seen, even under a very restrictive tolerance 
(Tol=1E-10) and with initial values chosen very far from the 
solution, the iterative procedure converge without difficulties 
in a few iterations. Moreover the number of iterations is not 
influenced by the quality of the initial approximation chosen 
for total reinforcement area. 

 Fig. (15) shows the corresponding interaction curves for 
both Mx and My of this section for =26.56 (My/Mx =tan()) 
with and without tension stiffening effect. Fig. (16) shows 
the moment capacity diagrams for N=2541.7 kN considering 
different levels of confinement. Rebars of diameter 
3/4”1.90 cm has been considered in these analyses. As it 
can be seen, by reducing the confinement in the concrete 
(=0.15, 0.50) the interaction curves indicate lower capaci-
ties (Fig. 16) and the non-convexity of the diagrams is more 
pronounced, and also, near the compressive axial load capac-
ity multiple solutions exist in the N-M space when the strain 
softening is modelled, =0.15 (Fig. 15). For all these points 
the strain field fulfils the ultimate value for concrete in com-

 

Fig. (14). Example 3. (a) Biaxially loaded box cross-section; (b) Plastic status of section under design loads and Atot=40.586 cm2. 

Table 3. Example 3: Main Parameters Involved in the Iterative Process 

Iteration x y Atot   [cm2] Error (Eq. 20) 

Initial 0.000 0.000 0.005Ag=12.25 1.000 

1 1.089E-4 5.576E-5 115.41 1.000146 

2 6.426E-5 5.264E-5 30.816 0.599621 

3 7.102E-5 4.550E-5 39.682 0.173854 

4 7.084E-5 4.559E-5 40.556 0.007475 

5 7.0834E-5 4.5583E-5 40.585 0.000266 

6 7.08345E-5 4.5583E-5 40.586 0.00000856 
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pression and also the equilibrium conditions. 

 The effects of confinement and creep in the concrete over 
the total steel reinforcing area are presented in Tables 5 and 
6. The section is subjected to the same design loads as in the 
previously computation. As it can be seen in Table 5 by 
reducing the confinement in the concrete (i.e. by increasing 
the value of  in descending branch of compressed concrete 
stress-strain curve) the total reinforcing area increases. No 
convergence problems have been experienced by the pro-
posed approach, a maximum of seven iterations have been 
required to determine the reinforcement area for the case 
when =0.5. The effect of creep of the concrete has been 
investigated by varying the value of crushing strain c0. The 
ultimate strain in the compressed concrete is considered 
as: . As shown in Table 6 the total reinforce-

ment steel area decreases in amount as the concrete creep 
increases. No convergence problems have been experienced, 
in all situations, the iterative procedure has converged in 
only six iterations.  

090.1 ccu  

3.4. Example 4: Reinforced Concrete Staircase Cross-
section 

 The staircase core section, depicted in Fig. (17a), consists 
of the concrete matrix and 84 reinforcement bars with the 
same diameter. This section is subjected to biaxial bending 
and has to be designed to carry out the following design 
loads: N=7731.1 kN, Mx=10737.0 kNm, and My=11725.5 
kNm. Characteristic strengths for concrete and reinforcement 

bars are: , fy=220.1 MPa respectively.  MPa46.23" cf

 The stress-strain curve for concrete which consists of a 
parabolic and linear-horizontal- part (=0) was used in the 
calculation, with the crushing strain c0=0.002 and ultimate 
strain cu=0.003. The Young modulus for reinforcing bars 
was 290 GPa while the maximum strain was u=2%. A bi-
linear elasto-perfect plastic stress-strain relationship for the 
reinforcement bars, both in tension and in compression, is 
assumed. This problem was also solved by Dundar and Sahin 
[5]. In their analysis the distribution of concrete stress is 

Table 4. Example 3: Convergence Stability (Tol=1E-10) 

Atot (initial) No. Iterations 

0.01 7 

10 7 

100 7 

1000 9 

10000 10 

-10 7 

-100 7 

-1000 9 

-10000 10 

Table 5. Example 3: Confinement effect over Atot 

 Atot [cm2] No. of Iterations 

0 37.521 5 

0.15 40.586 6 

0.30 43.788 7 

0.50 48.428 7 

Table 6. Example 3: Creep effect over Atot 

c0 (u=1.9c0) Atot [cm2] No. of Iterations 

0.002 40.586 6 

0.003 36.307 6 

0.004 35.189 6 

0.005 34.578 6 

0.007 34.115 6 

 

Fig. (15). Biaxial interaction curves for box cross-section =26.56. 
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Fig. (16). Moment capacitiy contours of box cross-section with compressive axial force N=2541.7 kN. 

 

Fig. (17). Example 4. (a) Staircase core section; (b) Plastic status of section under design loads and Atot=316.579 cm2. 

assumed to be rectangular with a main stress of 

  MPa46.23" cf

 As shown in Table 7 the iterative process of design was 
started with x =0 and y=0, and Atot=0.005Ag=92.62 cm2. 
The equilibrium tolerance has been taken as 1E-4. After only 
seven iterations, the numerical procedure converges to the 
solution Atot=316.579 cm2. This result is in very close 
agreement with solution Atot=316.257 cm2 obtained by 
Dundar and Sahin [5]. Fig. (17b) shows the plastic status of 
the cross-section associated to the equilibrium between ex-
ternal design loads and internal forces with the total reinforc-
ing area obtained after seven iterations. Fig. (18) presents the 
influence of the initial value of Atot over convergence proc-
ess. As it can be seen, starting the iterative process with 
Atot=0.01Ag =185.22 cm2 the numerical procedure converges, 
in 13 iterations, to the negative solution Atot=-2226.85 cm2, 
whereas choosing as initial values Atot=0.005Ag or a very 
small value, Atot=0.0001, the iterative process converges to 
the positive and real solution for this case. 

 In order to avoid the convergence to a negative value, the 
second approach implemented in the computer program has 
been tested. As already described, during the iterative proc-
ess when a negative value for Atot occurred this value is used 
as a positive value for the next iterations.  

 Table 8 shows the behavior of this procedure with differ-
ent initial values for total reinforcement area. As it can be 
seen the iterative process converges, in a few iterations, 
always to the positive solution, and the convergence stability 
is not affected by the quality of the initial approximation of 
the total reinforcement. Fig. (19) shows the corresponding 
moment capacity contour of this section, considering the 
reinforcement bars with diameter of 2.19 cm, the compres-
sive axial force N=7731.1 kN and different levels of 
confinement. Nonconvexity of the moment capacity 
diagrams is revealed even in this case by reducing the con-
finement in the concrete. 
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Table 7. Example 4: Main Parameters Involved in the Iterative Process 

Iteration x y Atot [cm2] Error (Eq. 18) 

Initial 0.000 0.000 0.005Ac=92.62 1.000 

1 -5.644E-6 -7.830E-6 -2858.381 1.006109 

2 -1.376E-5 -6.785E-5 -940.168 0.249642 

3 -2.048E-5 -1.466E-5 -124.761 0.331049 

4 -2.460E-5 -1.814E-5 310.799 0.183181 

5 -2.333E-5 -1.772E-5 315.943 0.0357735 

6 -2.335E-5 -1.773E-5 316.572 0.0001169 

7 -2.3352E-5 -1.7732E-5 316.579 0.0000232 

 

Fig. (18). Influence of the initial value of Atot over convergence process. 

 

Fig. (19). Moment capacity contours for staircase cross-section with compressive axial force N=7731.1 kN. 

 Table 9 presents the variations of the total steel rein-
forcement area, Atot, and the plastic status of the cross-
section, considering different levels of the axial load. The 
bending moments have the same values as in the previously 

studied staircase core section (Mx=10737.0 kNm, and 
My=11725.5 kNm). No convergence problems have been 
encountered using the proposed approach; a low number of 
iterations have been required to establish the equilibrium, 
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4. CONCLUSIONS 

despite the fact that, in all cases, the iterative process has 
been started with curvatures x =0 and y =0, and a very 
restrictive equilibrium tolerance (i.e tol=1E-5), has been 
considered. 

 A new computer method has been developed for the 
rapid design of composite steel-concrete cross-sections sub-
jected to axial force and biaxial bending. The iterative algo-
rithm, proposed herein, to design the steel reinforcement of 
composite steel-concrete sections under biaxial bending and 
axial force, as compared to other iterative methods, is very 
stable and the convergence is very fast. Convergence is as-
sured for any load case, and is not sensitive to the ini-
tial/starting values, to how the origin of the reference loading 
axes is chosen or to the strain softening effect for concrete in 
compression or tension and residual stress distribution in 
encased steel elements. To the best knowledge of the author 
there are no divergence-proof procedures in the literature, 
and the proposed procedure represents a first attempt in this 
direction to develop automatic procedure for design of cross-
sections. 

 Due to presence of residual stresses, for encased steel 
section, a reduction of capacity strength of composite steel-

Table 8. Example 4: Convergence Stability (Tol=1E-10) 

Atot (initial) No. Iterations 

-10000 9 

-1000 10 

10000 9 

1000 10 

0.01 9 

100000 10 

-100000 10 

Table 9. Example 4: Variations of the Total Steel Reinforcement Area with Different Levels of the Axial Load 

N [kN] Atot [cm2] No. of Iterations Plastic Status 

1000 559.741 6 

 

10000 242.105 5 

 

20000 12.814 4 

  

30000 110.903 4 

  

40000 505.181 6 

  

50000 987.723 7 

  

-1000 636.151 6 

  

-10000 994.658 7 

  

-20000 1409.775 7 
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concrete cross-section was observed. The influence of resid-
ual stresses on the carrying capacity of cross- sections is 
most effective with higher axial load levels. From the 
numerical tests it may be concluded that the influence of the 
residual stress on the carrying capacity and inelastic behavior 
during the loading process is important and must be 
considered in the valuable advanced analysis of composite 
cross-sections. 

 The method has been verified by comparing the predicted 
results with the established results available from the litera-
ture and also numerous parametric studies have been per-
formed in order to certify the convergence stability of the 
proposed approach. It can be concluded that the proposed 
numerical method proves to be reliable and accurate for 
practical applications in the design of composite steel-
concrete beam-columns and can be implemented in the ad-
vanced analysis techniques of 3D composite frame struc-
tures.  
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