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Abstract: Groundwater seepage through cracks in the sewerage pipeline is a major maintenance issue in most cities’ 
sewer networks. The more the sewer pipes crack – and the wider these cracks are – the worse the rainfall seepage problem 
becomes.  

The total volume of rainwater seepage into the sewer pipes for a catchment is correlated with deterioration and can there-
fore be used to estimate the rate of deterioration. This paper describes a monitoring system that can be used to identify 
significant trends in sewer deterioration.  

Effective monitoring by asset managers can highlight the need for early maintenance such as removing tree roots from 
pipe cracks and patching the cracks.  
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1. INTRODUCTION 

 Maintaining the pipelines in a sewerage system has be-
come a major asset management challenge for most cities. 
Ageing pipes need constant repair and maintenance as cracks 
appear and tree roots exploit these cracks for nutrients.  

 The “uncertainties regarding long-term performance and 
the lack of indicators for system failure” have been indicated 
as major barriers to meet maintenance responsibilities [1]. A 
monitoring system that can offer early warning of significant 
deterioration can assist asset managers in targeting the main-
tenance effort and thus help prevent system failures. It can 
also offer a way of estimating the value of the maintenance 
effort in terms of reduced infiltration (seepage). Early inter-
vention may also reduce overall maintenance costs.  

 Several authors have looked at assessment of sewer leak-
age using exfiltration [2,3]. In this paper, deterioration in a 
catchment system in Sydney Australia is measured by the 
amount of rainfall that gets into the sewerage system. A 
common rainfall event is used across all years to estimate 
seepage with the aim of tracking deterioration trends over a 
number of years. 

 Some studies have examined the factors influencing dete-
rioration in pipes and have used closed-circuit television 
(CCTV) to observe infiltration and determine the severity of 
defects [4,5]. However, the sewer network in Sydney does 
not have the benefit of CCTV cameras in the sewer and so 
this approach was not possible for the application in this  
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paper. Sewer deterioration is estimated here by accounting 
for additional infiltration during small rainfall events gener-
ally caused by the presence of cracks in the pipes. This paper 
takes the infiltration estimation work of Lutz [6] one step 
closer to a sustainable system for monitoring unusual dete-
rioration in a sewer catchment. 

 Tsitsifli et al. [7] focused on monitoring sewer pipeline 
deterioration by estimating the likelihood of the next pipe 
failure, where water leakage is regarded as one of the 
failures. Their focus was drinking water where leaks are a 
loss of a resource. In our application, leakage is only a loss if 
the overflow is sufficiently large to cause an adverse 
environmental impact. We therefore try to measure 
deterioration in a way that may avoid catastrophic failures. 
Early warning allows for the appropriate maintenance effort, 
like removing tree roots from the cracks in pipes and 
patching the cracks. This effort reduces the number of 
overflows – and thus the risk to the environment – because 
less rainfall water seeps into the sewerage pipes. 

2. METHOD 

 Seepage can be estimated at the outflow point of a 
catchment. If we had perfect models that fitted both the dry 
weather flows in sewerage pipes and the wet weather flows 
for rainfall events – and there were no overflow points in the 
catchment – then the total amount of rainfall seeping into the 
sewerage system for the catchment would be the integration 
of the difference between the model-predicted wet weather 
flows and the model-predicted dry weather flows for the 
duration of a rainfall event. 

 Fig. (1) demonstrates the difference for one time period 
in this integration. It presents a plan view of a sewer pipe at 
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the end of a catchment for a single point in time during two 
weather states. The two weather states considered in this 
figure are the dry weather flows at a particular date and time, 
and the wet weather event flows at the same date and time. 
The difference in area between the levels in the pipe of the 
wet weather flows and the dry weather flows (dark shaded 
area) is proportional to the volume of seepage for that par-
ticular point in time. 

 If this area is integrated across time for the duration of 
the rainfall event’s influence we can then estimate the total 
seepage for the rainfall event (provided there were no over-
flows upstream of this point in the sewer during the rainfall 
event). Hypothetically, if this identical rainfall event oc-
curred at the same time, day-of-the-week and date of the year 
for every year (assuming this were possible), we could use 
this to estimate the total seepage for each year. This would 
provide the means of assessing to what extent the sewer 
catchment is deteriorating by assessing the increase in esti-
mated total seepage volume for this same rainfall event over 
time (in years). Using the same rainfall event, day-of-the-
week and time of day makes certain that our comparison 
process compares like with like – the only difference being 
the increased amount of seepage attributable to pipe deterio-
ration.  

 A brief outline of the process in steps is as follows: 

1. Find rainfall events without overflows. This is important 
because many overflow points have no instrumentation 
for measuring overflow volumes. 

2. Fit hydrological/empirical models to the measured 
flows. Check that the models do not suffer any temporal 
biases (particularly during the rainfall event) and magni-
tude biases (e.g. biases for higher flows). Compare 
competing models and select the model with the small-
est mean square error of prediction. 

3. For each year, use hydrological/empirical models to 
estimate what the flow would have been for dry weather 

flows, for the same date, day-of-the-week, time-of-the-
day as the rainfall event used to compare infiltration. 
Carry this out for the wet weather event’s entire duration 
of influence on flows. 

4. For each year, use hydrological/empirical models to 
estimate the flows that would have occurred if this same 
wet weather event was repeated each year at the exact 
same time and day of the year, that is, estimate the flows 
throughout the duration of this wet weather event. 

5. For each year in the assessment period, estimate the total 
seepage for the duration of the wet weather event by 
subtracting the integral of the dry weather estimated 
flows from the integral of the wet weather event esti-
mated flows. 

6. Use statistical process control methods across years to 
assess whether the seepage volume increases signifi-
cantly with each increasing year during the assessment 
period. This increase would flag any significance in-
crease in the deterioration of the sewer in the catchment. 
Early response to significant deterioration is thought to 
save maintenance costs by repairing the damage before 
it gets too bad. 

 For effective monitoring it is essential that we have unbi-
ased estimates of seepage. It is not possible to obtain unbi-
ased seepage estimates when there are overflows because the 
overflows cannot be measured. Therefore one of the chal-
lenges in monitoring seepage is to avoid rainfall events with 
overflows. If overflows are ignored, the unknown overflow 
can cause serious biases in our seepage estimates and thus 
devalue the monitoring effort. 

 The data sources are gauged measurements of flow, level 
and velocity at several locations in the catchment and more 
importantantly at the exit of the catchment. Data are also 
sourced from hydrological/statisical models used to estimate 
level, velocity and flows during hypothetical rainfall events 
and during dry weather. 

3. ILLUSTRATIVE APPLICATION 

 The goal of the application was to reliably estimate the 
total rainfall seepage into the sewerage pipes in a specific 
catchment within the Sydney Metropolitan area - the Castle 
Hill catchment - and to monitor it over common rainfall 
events across several years. The estimate was taken at the 
outflow point of the catchment. 

Castle Hill is 62% residential, 2% commercial, 12% in-
dustrial and open space/ parkland takes up about 15% of 
the area. Population is about 30,000. Castle Hill has a 
sanitary sewer that leaks and allows stormwater and 
ground water infiltration. The sewer design has not made 
allowances for wet weather events or growth in the popu-
lation. About 90% of the pipes are 150 mm in diameter. 
This means their actual capacity is often much higher 
than the nominal design amount. The sewerage catch-
ment area is 1,219 ha. Total length of sewers within the 
Castle Hill catchment is 193,180m. The number of de-
signed overflow structures is 20 in 10 years and there 
were 20 spillages from manholes in 10 years. Fourteen 
sewer gauges are used in sewer model calibration. There 

 

Fig. (1). A plan view of the seepage estimation process at one time 
point. 
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are no incoming sewer flows to Castle Hill catchment. 
provides details of the Castle Hill sewer catchment, in-
cluding the overflow and spill points (at manholes). 

3.1. Identifying Rainfall Events Without Overflows 

 Every catchment has ungauged overflow points and so 
unbiased seepage estimates were not possible for all rainfall 
events. The challenge was therefore to find rainfall events 
with no overflows, and then monitor seepage for these events 
over time. 

 The level of flows in sewer pipes in the catchment is 
measured at several locations and this provided us with some 
information on when overflows were likely. However, if 
rainfall is heavy and localised then overflows can still occur 
by surges in local seepage. There was a need, therefore, to 
derive a method of estimating when overflows may occur. 
We wanted to know how much rain needs to fall and for how 
long after this before an overflow is likely. The strategy to 
find rainfall events without overflows is two fold: 

1. Reduce the risk of overflows by identifying rainfall 
events that occur during periods with low dry weather 
flows. 

2. Find a range of rainfall events that do not lead to over-
flows, and include several of these of varying durations 
and magnitudes in the seepage evaluation to check con-
sistency in the seepage trends across different size events. 

 We started by classifying a dry weather state. This was 
done by excluding flow data within 12 hours of the ends of a 
rainfall event. Although this may leave periods where the 

soil is saturated and some seepage occurs, this will be 
swamped by many dry weather periods. Note that the evalua-
tion period was during a major drought (2003 to 2009). A 
linear model was fitted using level as the response variable 
and harmonics for time-of-the-day (denoted hour) and week-
day factor (denoted wd) as explanatory variables to the ‘dry 
weather’ data. 

 The fitted model explained 78% of the variation in the 
dry weather flow levels, and if time (day number) were in-
cluded as an explanatory variable as well, then the model 
would explain 82% of the variation. If we include public 
holidays in the model, then the model fit would further im-
prove. Obvious outliers were ignored (i.e. not excluded) be-
cause they did not influence the model fit much, and we 
were only interested in identifying when the dry weather 
flows were low. 

 This model established that peak dry weather flows occur 
between 10pm to about 6am and from 1pm to 4pm during 
the day (see Fig. (2) - note a weekend influence).  

 Next we considered what rainfall events would cause 
overflows. To minimise the risk we examined overflows at 
peak dry weather flows. That is, we examined the level in the 
sewerage pipes at gauged locations during rainfall events at 
peak dry weather flowing times of 7 to 10 am and 5 to 8 pm. 
Change point detection technologies were used to identify 
rainfall events with overflows [11].  

 The approach used to determine rainfall events with no 
overflows is as follows: 

 

Fig. (2). Times series of model-fitted level of sewerage (in meters) versus time of the day. 
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 Establish all rainfall events and let sx be the rainfall at 

the start (first 15 min). 

 Rank these rainfall values 

sNss xxx ,,2,1 ...0  and let the corresponding 

levels be sNss yyy ,,2,1 ...0  . 

 Start by considering only rainfall events with 
mmxxx snss 1...0 ,,2,1   and fit the 

model
insinnjisi exy  ,,,,   where 

nji ,,  is the 

level for the dry weather flows at the different times of 
the day and 

in  is the rate of increase in level with rain 

and ine  is the random error term with mean zero and 

constant variance. Calculate the mean square error for 
this fitted model, denote this nmse . 

 Next considering only rainfall with 

snsnss xxxx ,1,,2,1 ...0   and fit the model 

1,1,,,   insinjnjisi exy  . Calculate the mean 

square error 
1nmse . 

 Recursively consider only rainfall events with 

sjnsnss xxxx ,,,2,1 ...0   and fit the 

model
jinsijnjnjisi exy   ,,,,  . Calculate the 

mean square error 
jnmse 
. 

 Plot the jnmse  versus j. Find the change point that 

causes jnmse   to change from a decreasing trend or 

constant trend to an increasing trend. The rainfall at the 
change point is taken as the start of an overflow point. 
This value is 3.8 mm in Fig. (3).  

 This suggests that we should not accept any rainfall event 
with more than 3.8 mm in the first 15 minutes of the event. 
This process is repeated for accumulative rainfall over 15 
minute intervals. 

 The rules for defining rainfall events without overflows 
are as follows: 

1. The starting 15-minute interval of rainfall must be below 
3.8 mm. 

2. The first 30 minutes of the rainfall event must have less 
than 7.5 mm of rainfall.  

3. The first hour of the total rainfall event must have less 
than 11mm of rainfall. 

4. The two hours of the rainfall event must have less than 
14mm of rainfall. 

5. The three hours of the rainfall event must have less than 
15mm. 

6. The four hours of the rainfall event must have less than 
16mm. 

7. The nine hours of the rainfall event must have less than 
28mm. 

 

Fig. (3). Flow change point for rainfall amounts in the first 15 minutes of rainfall events. 
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 We were able to find several rainfall events of different 
magnitudes that satisfied these rules, and these were used to 
monitor seepage over the same event for every year of the 
monitoring period. Six rainfall events that met these specifi-
cations were established from the data. 

3.2. Fitting Hydrological/Empirical Models to the Meas-
ured Flows 

 The hydrological models provided by Sydney Water 
were MOUSE models. MOUSE models [8] are physical-
based hydrological (semi-deterministic) models that use rain-
fall as an input to fit level, velocity and flows at certain 
gauge points in the sewer. The model parameters are catch-
ment runoff constants that depend on the changing catch-
ment characteristics, pipe friction constants, and several 
other parameters that can be manipulated to fit the measured 
data. Some of these are auto-calibrated (e.g. manning num-
ber for overland flows), while others involve manual calibra-
tion (e.g. manning number for channel flows). These models 
preserve the water balance of flows and therefore are spatio-
temporal consistent. These hydrological models explained 
80% of the variation for level and 78% of the variation for 
flows. Since the measurement uncertainty was approximately 
10%, these models were efficient.  

 Unfortunately, the calibrated knowledge-based models 
were not available for the full period. We could have cor-
rected for small but significant biases using an empirical 
model with the residuals of these hydrological models as the 
response variable. Note that models were assumed to be un-
biased if, and only if, the differences between gauge meas-
urement and model fits were independent of rainfall amount, 
time-of-the-day, size of flows, day-of-the-year and day-of-
the-week. The empirical models on the other hand explained 
83% of the variation in flows and were unbiased in the sense 
described in the previous sentence. 

 There are three sources of errors in predictions. The first 
is model error. This is controlled by using the MOUSE soft-
ware. The second is incorrect measurement of the flows, 
because the model is calibrated in a way that assumes these 
measurements are correct. The third is incorrect measure-
ment of inputs to the models such as rainfall, pipe dimen-
sions, etc. Rainfall is measured at four locations in the Castle 
Hill catchment and rainfall elsewhere is not recorded. De-
spite these facts the final fitted models are surprisingly effi-
cient – typically explaining from 75% to 90% of the varia-
tion in the measurements. Further information on evaluating 
the goodness of fit of models is available in [9] and [10]. The 
model’s ability to explain this amount of variation is excep-
tional given the level of measurement error is expected to be 
10%. Despite this performance, the model-fitting process 
concentrates on fitting high rainfall events accurately and 
therefore may not be accurate at predicting, say, low dry 
weather flows. It is necessary, therefore, to check whether 
these models deliver biased predictions for dry weather 
flows (see Section 2.3 below). 

 

3.2.1. Proposed Solutions to Biases in the Hydrological 
Models 

 Each year, Sydney Water spends millions of dollars cali-
brating and checking their gauges and in turn calibrating the 
hydrological models using these measurements. These mod-
els fit level, velocity and flow throughout the sewerage sys-
tem. Every year each gauge is checked twice for accuracy, 
and it is recalibrated if the gauge is assumed to be biased.  

 As noted above, hydrological models were fitted to these 
measurements for each year separately, but these were un-
available for all years considered and when they existed pro-
duced biased predictions. Although statistically significant, 
these biases are relatively small when compared to the mag-
nitude of measurements, which range from 0.010 to 0.414 

3m /sec with a mean of 0.025 3m /sec. Since fully calibrated 
hydrological models were not available for the complete 
study period, empirical models were fitted using the follow-
ing explanatory variables: 

 Year 

 An indicator variable for working day (wd) (Saturdays, 
Sundays and public holidays coded zero and working 
days one).  

 Time-of-the-day in hours (hour) – harmonic, penalised 
splines and polynomial were tried but polynomials of 
order 16 proved a better explanatory variable using AIC 
[12] to select between these. 

 Time in days from the start (day) – the usual cosine and 
sin harmonic proved best and a linear trend in time. 

 Rainfall: The following steps are  used to define rainfall-
related explanatory variables – 

a. Rainfall is aggregated over neighbouring 15 minute 
intervals – find the aggregation which best corre-
lates with flows – this was aggregation of rainfall 
over the period with a 30 minute to 1 hour and 45 
minutes delay.  

b. After correcting for the best aggregation period 
found in Step a, find the next best aggregation from 
remaining potential aggregations.  

c. Repeat Step b until no significant aggregations are 
found.  

This process gave several aggregations up to and 
including the prior 4 days of rainfall. The only vari-
ables not included in the significant aggregations 
were current rainfall and rainfall for the period 15 
minutes earlier than when flow was measured (i.e., 
it takes at least 15 minutes from the start of rain be-
fore infiltration influences the flows in the sewer). 

 The year indicator variable interactions with rainfall 
aggregations, and wd (weekend indicator variable) inter-
acts with polynomial hour explanatory variable.  

 Flows were modelled using the log-normal distribution. 
This model explained 83% of the variability in the flows. 
Similarly temporal changes in variance of the residual error 
of the model were fitted by a reduced subset of these  
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explanatory variables using the gamlss package [13-15] in 
the R Software [16] (the exact form of these models can be 
obtained from the led author on request). There were no ob-
vious biases in the model in terms of temporal trends in the 
residuals for either rainfall values, within a day, across days 
or with size of the flows. 

3.3. Using the Models to Estimate Dry Weather Flows, 
Wet Weather Flows and Hence Total seepage for the 
Rainfall Event 

 The fitted model was used to estimate flows for rainfall 
events and the corresponding dry weather flows for the same 
event duration. Corresponding estimates of seepage were 
thus estimated by the respective difference in the wet 
weather and dry weather flows. These estimates of 15-
minute seepage values were then aggregated over the dura-
tion of the event. This was then repeated for the same period 
for each year during the study period with the appropriate 
adjustment made to the explanatory variables for each year, 
but keeping the hour-of-the-day (hour), wd and rainfall ag-
gregation unchanged. The next section examines how these 
annual seepage estimates for the same rainfall event can be 
monitored to assess the deterioration in the sewer system. 

3.4. Detecting Significant Increases in Sewer Deteriora-
tion 

 The goal of this part of the process is to detect significant 
increases in infiltration early so that timely maintenance can 
be facilitated before damage to the sewer escalates. We use 
statistical process control methods to offer this early warn-
ing. The control variable is the estimated total infiltration 
volume for a rainfall event at the same date, time and day-of-
the-week for each year of the evaluation period. The design 
of control charts for non-homogeneous processes requires 
the definition of the control variable, its target value and an 
estimate of the process variance in the control variable. 

 At this point we have a wet weather model that can inter-
polate the same rainfall event for identical times of the year 
(same season, days-of-the-week and times-of-the-day). In 
addition, we have a dry weather model that can be used to 
find the expected dry weather flows during wet weather 
events for each matched period across all years in the study 
period. The respective differences between the fitted flow 
values using the dry weather and wet weather models pro-
vide the estimated seepage for the matched event across all 
years. In addition, these models provide the standard errors 
for the fitted values. 

 Let 2
,s t  be the variances of the differences between wet 

and dry weather estimates of flows at each 15 minute inter-
val t. The sum of seepage values overall of all 15-minute 
time periods in the rainfall event provides an estimate of the 
total seepage for the event. The variance of the total seepage 
caused by summing over auto-correlated seepage 15-minute 
estimates needs to be established. Seepage estimates follow 
approximately an autoregressive model of order one (i.e. AR 
(1) process [17]). Let the lag one auto-correlation be denoted 
by  then the variance of total seepage for the rainfall event 

is given by (let the number of 15-minute intervals to the start 

of the event be t=ts and the number of 15-minute intervals to 
the end be t=te) 
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where tr represents the trace of the matrix. Note that the cor-
relation matrix is assumed to be constant over all years while 
the variances are assumed to change from year to year. 
Therefore, for year  ,the standard deviation for the total 
seepage of a rainfall event is given by 

| |
, , ,ˆ

te te i j
seepage S i S ji ts j ts    

 
  

 (1) 

 The plot of seepage values for the event across years in-
cluding the lines plus and minus two standard deviations 
either side of the seepage estimates will provide the users 
with a good visual image of system deterioration and its 
level of significance. The Cumulative Sum (CUSUM) chart 
of departures in seepage estimated value s  from 0s  (the 
target value) for the t th year can be used to establish 
whether this seepage has significantly deteriorated over the 
years by calculating 

 

where 0s  is the seepage value at the start of the study pe-
riod. An alternative is to allow 0s to drift according to an 
acceptable deterioration rate, and then alarm maintenance 
managers when this deterioration is unacceptably high. A 
significant deterioration caused by an increasing level of 
seepage compared to target value is flagged whenever 

 (2) 

where the value of h is designed to give a specified false 
alarm rate specified by the asset manager (e.g. Sydney Wa-
ter) or an Average Time between false alarms equal to say 50 
(this would be on average one false alarm in every 50 
years). After appropriate maintenance is carried out the 
manager can check for improvement in seepage by simulta-
neously looking at statistic [18] 

 (3) 

 A significant improvement would be indicated whenever 

 (4) 

 These data could be monitored each year for catchments 
that showed signs of significant deterioration. The value of h 
for a false alarm rate (flagging significant deterioration when 
there is none) of one every 100 years can be found using the 
spc-library [19] in R [16] CUSUM statistics with a resetting 
boundary manage the memory of past data quite efficiently. 

 
3.4.1. Results 

 The catchment in focus, namely Castle Hill in Sydney, is 
a stand-alone catchment similar to a boundary catchment. 
This is the easiest situation to deal with, because we do not 
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need to account for flows coming in from a connecting 
catchment. Six different rainfall events were used to assess 
the impact of event size on inference. 

 Fig. (4) provides the seepage estimates for Event 2 to-
gether with the autocorrelations and partial autocorrelations 
of these estimates. To decide when seepage had stopped for 
the rainfall event, we ran the Exponentially Weighted Mov-
ing Average statistic backwards in time for the events and 
recorded the average time period (rounded) where the seep-
age started to trend above zero across all years. This re-
corded value was taken as the end point of the event for all 
years. The autocorrelation of the seepage values were exam-
ined for all events by exploring the autocorrelation and par-
tial autocorrelation functions. All events besides possibly 
Event 2 indicated that the AR1 model is a reasonable model 
for this time series. 

 

3.4.2. Assessing Whether the Trends in Seepage Rates 
Were Significant 

 The estimated total seepage for a rainfall event is  one 
year apart, and under the assumption that there is no change 
in seepage these estimates should be randomly distributed 
about the same mean value. Therefore the classical CUSUM 
and EWMA charts would apply. As the Castle Hill system is 
relatively new and only small deterioration is anticipated, we 
would expect the CUSUM charts to be preferred to Shewhart 
charts [20]. 

 Fig. (A1) in APPENDIX A presents the time series plots 
of the seepage estimates for all 6 events. Note that the only 
event that may suggest a hint of deterioration is Event 1. All 
other events report a reduction in seepage from 2003 to 2005 
followed by an increase.  

 

 

Fig. (4). Time series of seepage estimates for the year of the event and their autocorrelations. 
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 The CUSUM charts are reported in Fig. (5) for Event 1, 
2, 5 and 6 with CUSUM values not all equal to zero. This 
checks whether seepage has trends from the starting value. 
The CUSUM plot in Fig. (4) assumes an in-control ARL of 
24 (i.e. one false alarm every 24 years) and an offset value 
k=0.2. The CUSUM chart suggests there has been no signifi-
cant deterioration in the Castle Hill sewer system.  

4. CONCLUSION 

 The paper offers a case study in the application of a proc-
ess for assessing deterioration in a catchment sewer. The 
sewer examined was a fairly new sewer and therefore was 
not expected to show much deterioration. It was selected 
because it was in a stand-alone catchment with well-
calibrated gauges.  

 The technology has several elements to its design that are 
worth investigating. Some of these are listed below: 

 Study how differences in the distribution of rainfall 
event for year to year influence inference (i.e. chart sen-
sitivity). 

 Study how knowledge-based hydrological models and 
empirical-based models can be integrated to provide a 
better estimate of seepage during a rainfall event.  

 Study the method for selecting overflow events. This is 
likely to lead to events closer to the average dry weather 
flow of 92 litres/sec and thus improve the ability to sig-
nal trends in seepage overtime. 

 Assess whether the dry weather flow simulator devel-
oped for this project has application in hydrological-
based models. 

 

Fig. (5). Low-sided and High-sided CUSUM chart for seepage values. 
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 Test the methodology on other catchments to see if 
seepage trends can be detected. 

 See if the methodology can be used to monitor for statis-
tical significance changes in overflow events from year 
to year (both volume and number). 

 This future work is likely to help refine the approach 
outlined in the paper into a useful asset management tool for 
assessing deterioration in sewers. 
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APPENDIX A 

 

Fig. (A1). Time series plot of seepage total estimates (in m2/sec times the duration of the event) for the 6 events. 
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