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Abstract: The assessment of the plastic rotation of reinforced concrete beams is an essential aspect to avoid structural 
brittle collapses. The value actually available can be generally determined as sum of two different components. The first, 
due to bending, the second for inclined shear cracks. This paper presents a simplified model which provides the flexural 
plastic rotation of the rectangular beams with a ``closed-form solution''. The approach is substantially dimensionless and 
includes main influencing factors the cross -section, as mechanical material properties, ductility, geometrical and 
mechanical reinforcement ratio, confinement effects. In closing, in order to appreciate the reliability of the procedure, a 
comparison with models proposed by international technical standards is made. 
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1. INTRODUCTION 

 The current European technical rules [1-3] provide the 
seismic capacity of existing reinforced concrete (RC) 
buildings by means of non-linear analysis. These methods, 
however, require knowledge of the actual post-elastic 
rotational capacities of each structural element (beams, 
columns) both in monotonic field, for non-linear static 
analysis, and in cyclic field, for non-linear dynamic analysis. 
In non linear static field, a series of parameters (yielding, 
peak resistance, ultimate state) has to be defined, in order to 
define the response curve of the element, while in non-linear 
dynamical field, cyclic models for strength and stiffness 
degradation have to be defined. Nevertheless, these models 
are not easy to define, because they involve numerous 
geometrical and mechanical parameters and several 
uncertainties (for example the influences load types). 
 In order to facilitate practical applications, the methods 
usually adopted in technical codes only provide experimental 
relationships for deformation capacity at the elastic (yiel-
ding) and at ultimate (collapse) limit; therefore, based on 
these prescriptions, it is not possible to completely define 
with specific rules the strength degradation (softening 
branch) or the hysteretic behaviour. In addition, these rela-
tionships are based on the following principal parameters: 
1. Ultimate concrete strength; 
2. Ductility characteristics of the reinforcement steel; 
3. Shear slenderness.  
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 Generally, the deformation capacity at yielding is 
evaluated as a chord rotation, taking into account different 
contributions corresponding to bending, shear and slip 
mechanisms. Therefore, it is difficult to define a relationship 
between the element parameters and the rotational capacity, 
due to the complex phenomena influencing the post-elastic 
deformation behaviour and to the natural variability affecting 
these phenomena. The code, consistently with the methodo-
logies developed in literature, proposes two main approa-
ches: a mechanical-empirical approach, based on plastic 
hinge length concept, and a purely empirical approach [4-
10]. In addition, it should be noted that precisely defining the 
plastic rotation in the non-linear field is a crucial step in the 
seismic assessment of buildings and infrastructure [11-14]. 
 The paper proposes a mechanical model based on 
dimensionless relationships which is able to examine the 
effects of the flexural collapse for rectangular cross-sections. 
The analytical/graphical approach allows to perform simple 
parametrical analyses and evaluate the influence of some 
mechanical characteristics that are usually neglected in other 
numerical approaches. 
 The following simplifications are made: 
1. after the first cracking, the contribution of the tensile 

concrete is neglected; 
2. tension-stiffening effects are disregarded.  
 The parameters included in the model are: 
1. material constitutive laws; 
2. mechanical tensile reinforcement ratio; 
3. compressive-tensile reinforcement ratio; 
4. post-elastic branch in the idealised moment-curvature 

relationship.  
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2. CONSTITUTIVE LAWS AND MOMENT-CURVA-
TURE RELATIONSHIP 

 Although there are aspects that fall into purely didactical 
fields, it is important to propose hereinafter the consolidated 
theories because symbols and some quantities are referred to 
in the proposed methodology. 
 The model considers two alternative stress-strain 
relationships in compression (Fig. 1 left). Both the laws start 
with a parabolic branch that exhibits the maximum stress at 
the yielding strain εcy ( The second branch, which includes 
softening effect, is parabolic in the first case (indicated with 
symbol ``P'') and linear in the second one (``L''). The 
constitutive law for reinforcement, both in tension and in 
compression, is assumed to be an elastic-plastic one with 
hardening (Fig. 1 right). The steel elastic modulus employed 
in this work is equal to E s =200000N/mm 2 . 

 The methodology here proposed allows to obtain the ex-
pressions of θp as a function of a “conventional” parameter 
(ξconv), which characterises the failure behaviour of the sec-
tion. This parameter is obtained by taking into account the 
“conventional constitutive laws”, which are slightly different 
from those considered in Fig. (1). The main changes consist, 
substantially, for concrete, at strain values εc>εcy=2‰ the 
compressive strength corresponding remains constant, while 
for reinforcement steel, ft=fy, that is, the constitutive law is 
without hardening. 

 The proposed approach completely neglects the tensile 
concrete strength, except for the evaluation of the cracking 
moment M cr . In this case, the constitutive law is assumed as 
a parabolic rectangular one. Following the Guyon hypo-
theses, the maximum strain e cr  is obtained as a function of 
the tensile reinforcement ratio. The parameter αt determines 
the maximum allowable stress in tension. Generally, for M = 
M cr  the stress distribution is assumed in accordance with the 
scheme shown in Fig. (2). 

 In which, the resulting forces: CS
’, CC, TC,  and TS are 

evaluated using the following equations:  

sys AfC µβ *' =  (1) 

dbfkC cC ξα*=  (2) 

( )dbfT ctC ξδα −+1
3
2=  (3) 

SyS AfT β=  (4) 

𝜀𝑐𝑟[‰] = 0.01 �25 ⋅ 10 �100 𝜔
(1+𝛿)

𝑓𝑐
𝑓𝑦
− 1�

2
� ≥ 0.25‰ (5) 

 Fig. (3) (left) shows the moment-curvature relationship. 
There are three points that completely define the law: 

1. the cracking point, and the related M cr ; 

 
Fig. (1). Stress-strain constitutive laws for (left) concrete and (right) reinforcement steel. 

 
Fig. (2). Stress-strain distribution: hypotheses at cracking. 
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2. the yielding point, characterised by the yielding of steel 
in tension, and the related M y ; 

3. the ultimate point, where the ultimate strain in concrete 
or in steel is reached, and the related M u . 

 It is known that the behaviour of an RC section, after the 
first cracking, essentially depends on the tensile reinfor-
cement (Fig. 3 - right). For low values of the reinforcement 
ratio (curve a), the post-cracking branch II is almost coin-
cident with a linear one, whereas the post-yielding branch III 
is characterised by high values of the ultimate curvature and 
perceptible increments of the failure moment M u  with 
respect to the yielding one M y . For higher values of the 
reinforcement ratio (curve b), the post-cracking behaviour 
(branch II) becomes non linear and the ultimate curvature 
approaches the yielding one. In these cases, the failure 
moment can be lower than the yield one (M u

)(b  <  M y
)(b ). 

For beams with very high reinforcement ratios, branch III 
can even disappear, and failure can be attained for yielding 
of the tensile reinforcement. Finally, in the case of super-
reinforced beams (curve c), also the branch II can vanish and 
the beam exhibits a fragile collapse at the level of the first 
cracking. Known three points of the law it is possible to 
idealize the curve considering it as a function having linear 
branch. 

 However, it should be pointed out that, in all the 
examined conditions, the proposed approach is based on the 
assumption of a linear relationship between the characteristic 
points. If M u  < M y  (see curve b and c), the post yielding 
branch is assumed to be horizontal and the failure point in 
the moment - curvature diagram is the one for which M = M
y . 

3. PLASTIC ROTATION CAPACITY 

 The plastic rotation capacity can be determined by evalu-
ating the effect due to two different contributions: bending 
(θPB) and shear (θV). 
 The proposed procedure is based on the scheme of a con-
tinuous beam with uniformly distributed reinforcement, for 
which the rotation on an intermediate support is calculated. 
The zero points in the moment diagram are supposed to be 
symmetric on both sides of the support. The shear slender-
ness is assumed to be λ = Lv / d, where LV is the distance 
between the zero and the maximum in the moment diagram 
(i.e. the point of contra-flexure) (Fig. 4 - left). 
 The plastic rotation due to bending θPB can be determi-
nated integrating the moment-curvature diagram between 
two zero consecutive points. In particular: 
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 When a threshold shear is reached, a number of inclined 
shear cracks start in the plastic zone. The inclined shear 
cracks can dramatically increase the rotation capacity. The 
value of this contribution is calculated in accordance with 
research of Ahner and Kliver (1998) [15] (see Fig. 4 - right), 

introducing the dimensionless variable θ , as a function of 
the parameter a 1  (which depends on the lever arm of internal 
forces z, on the compression struts inclination at the steel 
yielding βS and on the inclination of the stirrup reinforce-
ment αt): 
 In the proposed model, it is assumed βS = 45°, αt = 90°, 
and α1 = 0.5zctgβS – ctgαt = 0.45d. 

 
Fig. (3). Idealized and actual moment-curvature relationship for a RC section. 
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 It is also assumed that shear cracks appear when the 
beam slenderness λ becomes lower than limit slenderness 
given by following relation: 

dV

M y
lim *=λ  (8) 

 Equivalently (for a fixed λ), it’s possible say that shear 
cracks appear when ω ≥ ωlim or ξ ≥ ξlim. 
 For beams higher than 60cm, according to the 
prescriptions of document Bullettin CEB (1985) [16], V* 
can be expressed by the following relationship:  

( ) bdbdV lr
** =501= τρτ +  (9) 

 Introducing this value in Eq. 7, the dimensionless 
moment at yielding is given by the following expression:  
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 The diagram in Fig. (5) gives the quantity τ  as a function 
of the concrete compression strength f c . 

4. ANALYTICAL FORMULATION OF ROTATIONAL 
CAPACITY 

4.1. Step 1: Evaluation of χ cr , χ y  and χ u . 

 This step consists of the evaluation of the curvatures χ cr  
(first cracking), χ y  (yielding of the tensile reinforcement) 
and χ u  (failure). They can be obtained as a function of 
normalized neutral axis depth ξ cr  = x cr / d, ξ y  = x y  / d and 
ξ u  = x u  / d. It is obtained: 
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failure due to maximum strain in the tensile reinforcement; 

( )
u

cu
uu d

ξ
ε

χµχ ==  (14) 

failure due to maximum strain in the compressed concrete. 
 

 
Fig. (4). Model for calculating the plastic rotation due to bending (left) and shear (right). 
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4.2. Step 2: ξcr, ξy and ξu.  

 In order to obtain these functions, it is convenient to in-
troduce three different patterns of the strain distribution at 
cracking or yielding (namely A, B or C), whose definition 
can be deduced from Fig. (7). In the same figure the values 
of ξ*A, ξ*B and ξ*C are also shown (neutral axis depth for “cr” 
or “y” at limits of fields A, B or C). Equation (*) allows to 
obtain the correlative ξuA, ξuB and ξuC (neutral axis depth at 
ULS for the same ω). In addition, it is appropriate to 
introduce the parameters reported in Table 1. 

 

 

 Fig. (6) also summarises the procedure used to obtain ξcr 
and ξy vs ξu. Once the generic value for ξu and µ is fixed, the 
translation equilibrium equation allows to calculate the cor-
relative mechanical reinforcement ratio ω by equation ((**) - 
see Fig. 6). For the same values ξu and µ , the corresponding 
translation equilibrium equation at “cr” or “y” (differentiated 
for strain distributions A, B or C) allows to deduce an alter-
native expression for ω ((***) - see Fig. 6). By equating ((**) - 
see Fig. 6) and ((***) - see Fig. 6) it is possible to obtain the 
searched relation between ξcr (or ξy) and ξu (14): 

( )
'

*

*1**0*
' =

µββ
ξ

µββ
ξ

−

−+

−

kkkk u  (15) 

 

 
Fig. (5). vs concrete compressive strength fc. 

Table 1. Definition of the Fundamental Parameters for the Evaluation of Xcr, Xy and Xu vs ξcr, ξy and ξu 
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4.3. Step 3: Evaluation of ξu vs ξu
conv. 

 The procedure used to obtain these functions, similarly to 
Step 2, introduces three different patterns of the strain distri-
bution at ULS (1, 2 or 3, see Fig. 7). These distributions are 
obtained considering the “conventional” constitutive laws of 

Fig. (6). The quantities ξu1, ξu2 and ξu3 (or, equivalently ω1, 
ω2, ω3) represent the limits of these patterns (equation (°) - 
see Fig. 7). Afterwards, fixing the generic values for ξu and 
µ, the translation equilibrium equation allows to obtain the 
correlative mechanical reinforcement ratio ω by means equa-

 
Fig. (6). Procedure used to obtain ξcr and ξy vs ξu.. 

 
Fig. (7). Procedure used to obtain ξu vs ξu

conv 
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tion ((°°) - see Fig. 7), considering the activated failure field 
II,III or IV for the “conventional” constitutive law. For the 
same values ξu and µ, the corresponding translation equilib-
rium equation allows to deduce an alternative expression for 
ω ((°°°) - see Fig. 7) with “actual” constitutive law. By equat-
ing ((°°),(°°°) - see Fig. 7), it is possible to obtain the searched 
relation between ξu and ξu

conv. 

''
=

µββ

ξ

µββ

ξ

−−

ukk cu  (16) 

 In order to provide a complete overview about the several 
parameters involved in the procedure shown in the present 
and previous paragraphs, see Appendix in the end of the 
document. 
 On the basis of the procedure shown above and the 
following Fig. (8), ξu

conv is given by three numerical 
relationships depending on the failure fields considered for 
the rectangular cross section. 

5. RESULTS  

5.1. Influence of Tension Stiffening and Concrete in 
Tension 

 The analytical formulation here proposed with a 
numerical model was compared. Model takes into account 
the tensile concrete strength and effects of tension stiffening. 
The purpose of the comparison is the evaluation of the level 
of approximation involved by the proposed formulation. 
 Fig. (9) and Fig. (10) report the results of the comparison 
between the two approaches, which seem to be very close. 
The diagrams refer to rectangular cross section beams, 
reinforced with steel characterised by  ε y  = 0.27%; ε u  = 
5%; f t /f y  =1.08. The concrete has been modelled through 
two different constitutive laws: the first one refers to non 
confined concrete, with εcr=0.025%, εcy=0.2% and 
εcu=0.35%, the second one to confined concrete described by 
the usual Kent-Park model [17](Kent and Park, 1971), with 
εcr=0.025%, εcy=0.2% and εcu=0.878%,  and where:  

( )
( ) 0.002769=

2
=

'

st

st
sdb

db
′′′′

′′+′ ω
ρ  (17) 

is the volumetric ratio of confining hoops. 
 It should be pointed out, remembering the assumptions 
made preliminarily, that the disregarded effects seem to have 
a certain importance for the evaluation of the sectional 
ductility. Especially if compared to parameters as the 
transversal reinforcement ratio or compressive reinforcement 
ratio that contribute to grow up the ultimate rotation 
capacity. 
 The plots in Fig. (10) also show that the softening branch 
has the effect to maintain the maximum of the ductility to 
very high values of the mechanical reinforcement ratio ω , 
when combined with suitable values of the compressive 
longitudinal reinforcement. 

5.2. Plastic Rotation Capacity of Beams with Rectangular 
Cross section 

 The plastic rotation capacity of rectangular cross section 
is reported in Fig. (11a) for concrete constitutive law 
considering parabolic softening branch, while, in Fig. (11b), 
for concrete constitutive law having linear softening branch. 
The main parameters are: material properties, shear 
slenderness ( λ =3), compressive reinforcement steel ratio µ, 
conventional neutral axis depth ξu

conv. The θP vs ξu
conv rela-

tionship, indicated in red in Figs. (11a and 11b), corresponds 
to the specific case of concrete rectangular cross section with 
fc=25Mpa and µ=0.5. 

 Bending and shear contributions are separately plotted in 
the diagram, together with the related procedure that allows 
to detect the value of ξ lim . With this procedure it is also 
possible to evaluate the effects of the shear cracking. 

 The graphical approach confirms the importance to have 
a detailed assessment of ξ lim . In fact, the contribution of the 
shear cracking seems to be absolutely not negligible for the 
sectional ductility. 

 With regard to the confinement effects, Figs (9, 10, 11a 
and 11b) show that, for failure of the compressive zone (θ p  
decreasing with ξ u ), the rotational capacity highly depends 
on the concrete confining degree. Moreover, ductility 
strongly decreases because the tensile reinforcement ratio ω  
becomes higher, whereas it increases together with 
compressive reinforcement. 

5.3. Comparison with MC2010 and EC2 

 Finally, in Fig. (12) (left) comparison with the diagrams 
provided by EC2 and MC2010 is carried out ( λ =3). The 
materials considered are: concrete C25/30, steel ``Type A'' 
(MC2010)[18] or ``Class B'' (EC2), with εy = 0.27%, εu = 
5%, Φ = ft / fy = 1.08. The maximum values are attained for 
a ξu

conv between 12% and 15%. In Fig. (12) (right) for a 
volumetric ratio of confining hoops ρ = 0.002769 (see Equa-
tion 17), to the allowable plastic rotation exhibit a sudden 
jump to the value of 50 mrad, which remains quasi-constant 
for a wide range of ξu

conv.  

FINAL REMARKS 

 The plastic rotation capacity must be determined in order 
to check if critical sections have the sufficient ductility to 
redistribute internal forces and avoid brittle failure. Usually, 
international codes provide graphical approaches that appear 
to be an inadequate design tool because of their several 
approximations. More accurate formulations are indeed 
necessary, especially to give suggestions finalized to geo-
metrical dimensioning and arrangement of the reinforcing. 
 The proposed model includes the influence of the most 
relevant factors on the calculation of the rotational ductility 
and allows to focus the attention on the importance that each 
of them has in addressing the structural failure to a ductile 
behaviour. 
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 Around the following fundamental parameters: 
- Concrete and reinforcement constitutive law (§ 2.1, Fig. 

1) fc, εcy, εcu, α, αt , γ, εy, εu and Φ; - eventually; 
- Material strength ratio fc / fy ; 

- Dimensionless concrete cover: δ = c/ d; 
- Mechanical reinforcement ratio: 𝜔 = 𝐴𝑠𝑓𝑦

𝑏𝑑𝑓𝑐
  ; 

- Compressive reinforcement ratio: µ = AS’ / AS ; 
- Shear slenderness: λ = LV / d; 

 
Fig. (8). Relationships of the ξu

conv  for conventional constitutive laws of the materials. 

 
Fig. (9). Plastic rotation capacity according to the concrete constitutive law with parabolic softening branch and non confined concrete. 



250    The Open Civil Engineering Journal, 2013, Volume 7 Raffaele et al. 

 

The procedure can be summarized as follows: 
1. ξu

conv = (x / d)conv is obtained from geometric and mate-
rial parameters; 

2. ξu vs ξu
conv is obtained through the procedure shown in 

Fig. (7), Equation 16,  reported in §4.3; 
3. ξcr and ξy vs ξu are obtained through the procedure 

shown in Fig. (6), Equation 13 reported in §4.2;  
4. Xcr, Xy and Xu vs ξcr and ξy vs ξu, are respectively calcu-

 
Fig. (11a). Rotation capacity due to bending (θ PB  ) and shear ( θ V ) for constitutive law with parabolic softening branch and unconfined 
concrete. 

 
Fig. (11b). Rotation capacity due to bending (θ PB  ) and shear ( θ V ) for constitutive law with linear softening branch and confined 
concrete. 
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lated from Equations 11,12,13 and 14 reported in § 4.1; 
5. θPB and θV are calculated from Equations 6 and  7 re-

ported in § 3; 
6. Finally, the plastic rotation capacity is obtained as the 

sum of bending and sher components: 
( ) ( ) ( )conv

uV
conv
uPB

conv
uP ξθξθξθ +=  (18) 

NOMENCLATURE 

a1 = coefficient of the Ahner and Kliver model 
(1998) [15] 

As = area of tension reinforcement 

As
’ = area of compression reinforcement 

b = width of rectangular cross section 

b’’ = width of the confined core of the cross-section 

d’’ = depth of the confined core of the cross-section 

Es = Young’s modulus of steel 

fc = concrete compressive strength 

ft  = ultimate strength of reinforcement 

fy  = yield strength of reinforcement 

h = cross-sectional depth 

k = filling coefficient 

LV = shear span 

Mcr = bending moment at cracking 

Mu = bending moment at collapse (ultimate) 

My = bending moment at yielding 

x = neutral axis depth 

Φ = ratio between ultimate and yield strength of 
reinforcement 

α = multiplicative factor of the concrete compres-
sive strength 

αt = inclination of the stirrup reinforcement (Ahner 
and Kliver model (1998) [15]) 

αt = multiplicative factor of the concrete compres-
sive strength in order to evaluate the concrete 
tensile strength 

β  = coefficient that defines the level of reinforce-
ment in tension 

β* = coefficient that defines the level of reinforce-
ment in compression 

βS = inclination of the compression equivalent strut 
in the shear model 

δd = concrete cover (also as “c”) 

εcr = concrete cracking strain 

εcu = concrete ultimate strain 

εcy = concrete yielding strain 

εu = ultimate strain of reinforcement 

εy = yield strain of reinforcement 

γ = strength loss in the softening branch (0<γ<1) 

λ = shear slenderness 

λlim = limit shear slenderness 

µ = ratio between tensile and compression steel 
reinforcement  

 
Fig. (12). Plastic rotation capacity as a function of ξu

conv  and comparison with MC2010 and EC2, (left) for unconfined concrete, (right) for 
confined concrete. 
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θPB = plastic bending rotation 

θV = shear plastic rotation 

ρl  = steel percentage ratio of longitudinal rein-
forcement 

τr = threshold shear - according to Bullettin CEB 
(1985) [16] 

ξcr = normalized neutral axis depth at cracking 

ξu = normalized neutral axis depth at ultimate 

ξu
conv = conventional value of normalized neutral axis 

depth at ultimate 

ξy = normalized neutral axis depth at yielding 

ξ  = normalized neutral axis depth 

ω = mechanical reinforcement ratio of the tension 
longitudinal reinforcement 

ωst = mechanical reinforcement ratio of the stirrup 
reinforcement 

PBθ  = dimensionless plastic bending rotation 

uθ  = dimensionless plastic rotation at ultimate 

yθ  = dimensionless plastic rotation at yielding 

crχ  = dimensionless curvature of first cracking 

uχ  = dimensionless curvature at collapse point 

yχ  = dimensionless curvature at yielding point 

CONFLICTS OF INTEREST 

 The authors confirm that this article content has no con-
flicts of interest. 

ACKNOWLEDGEMENT  

 The research presented in this article was partially funded 
by the Department of Civil Protection, Project ReLUIS-DPC 
2010-2013. 

APPENDIX 

 In the following Figures, the values of the main parameters that define the whole procedure were reported. The values are 
related to the constitutive laws for the concrete with linear and parabolic branch, whereas for reinforcement bars the law is 
elastic-plastic with and without hardening. The figures are to be considered as a small guideline to the steps of the procedure 
described in sections 4.2 and 4.3. 

 
Fig. (A1). Coefficient values η, κ, β, β, for the constitutive law of the concrete with parabolic softening branch and elastic-plastic with 
hardening for the reinforcement. 
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Fig. (A2). Coefficient values η, κ, β, β' for the constitutive law of the concrete with linear softening branch and elastic-plastic with hardening 
for the reinforcement. 
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