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Abstract: In this paper an interface model accounting for roughness and micro-cracks is presented and applied to 
masonry-like structures. The model is consistently derived by coupling a homogenization approach and arguments of 
asymptotic analyses. A numerical procedure is introduced and numerical results, based on a finite element formulation, 
are successfully compared with experimental data , obtained on masonry samples undergoing to shear tests. Finally, a 
parametric numerical analysis is proposed, highlighting the influence of the roughness features on the interface response.  
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1. INTRODUCTION 

 In the general framework of micro-analysis applied to 
model masonry structures, basically, two main approaches 
can be distinguished: the so-called simplified micro-
modeling approach and the detailed micro-modeling 
approach. 
 The first method consists of modeling mortar and 
unit/mortar interfaces as a unique discontinuous element, 
usually referred to as joint. In the last few decades, after the 
first attempt due to Page [1], several authors have focused 
this kind of micro-modeling approach and a number of 
models can be found in the specialized literature [2-7]. Lofti 
and Shing [2], Lourenço and Rots [4], Gambarotta and 
Lagomarsino [3] among others, have proposed interface 
models, which include concepts developed in the theory of 
plasticity for non-standard materials and in fracture 
mechanics. All these models adopt a Mohr-Coulomb failure 
criteria and use an internal variable to describe a post-peak 
softening behavior. These interface constitutive models are 
usually expressed in terms of contact tractions and conjugate 
generalized joint strains, derived from the discontinuities of 
the displacements at the joint. In particular, Lofti and Shing 
[2] presented a constitutive model for dilatant interfaces that 
was able to simulate initiation and propagation of fracture 
under combined normal and tangential stresses. Gambarotta 
and Lagomarsino [3] proposed a simplified micro-modeling  
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method based on continuum damage mechanics (CDM) 
which takes into account both the mortar damage and the 
unit-mortar decohesion caused by opening and frictional 
sliding. Raous et al. [5] have developed a model, improved 
by Monerie and Raous [8], known as RCCM model, which 
predicts the damage evolution at the interface among two 
initially-bonded deformable bodies. They proposed a 
consistent model that accounts for adhesion, Coulomb 
friction and unilateral contact. Adhesion and friction were 
strictly coupled with damage which was modelled in 
agreement with the Frémond theory [9]. This model was 
adopted by Fouchal et al. [10], to study interfaces in 
masonry assemblies. 

 In the detailed micro-modeling approach, the masonry 
joints are represented by mortar continuous elements and by 
discontinuous interface elements. This type of approach is 
probably less common in the literature because of its 
significant computational cost, but it has been proved as a 
powerful tool to simulate, in an accurate way, the behavior 
of small masonry assemblies [11-14]. Alfano and Sacco [11] 
proposed an interesting interface model, combining 
elastoplasticity arguments and CDM approach, introducing, 
within an interface representative element volume, the 
distinction between a linear elastic undamaged zone and a 
damaged zone, considering a unilateral Coulomb friction 
law. Pelissou and Lebon [12] applied model by Gambarotta 
and Lagomarsino for characterizing the local behavior of the 
brick/mortar interface, by coupling the asymptotic 
techniques (particularly, matched asymptotic expansions) 
[15-17]. 
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 Recently, Rekik and Lebon [13, 14] proposed a detailed 
micro-mechanical model based on homogenization theories, 
CDM and asymptotic techniques. The rationale of that model 
is based on the assumption that the non-linear behavior of 
masonry is concentrated at unit/mortar interface level. In 
order to estimate an interface constitutive law, they assume 
the existence of a third material, called interphase, which is a 
mixture of the two principal masonry constituents, brick and 
mortar indeed. In order to obtain the effective mechanical 
properties of such a micro-cracked brick/mortar interface, a 
three steps method is introduced. Firstly, a classical 
homogenization procedure for stratified composites is used 
in order to derive virgin material properties; then a 
homogenization technique of damage mechanics [18] is 
applied to take into account the presence of micro-cracks; 
finally, an asymptotic strategy leads to brick/mortar interface 
constitutive law. 
 In this paper a detailed micro-modeling approach is 
adopted. In this framework, a generalization of the Rekik-
Lebon model is proposed. The novelty of this paper is the 
introduction of an internal variable, called roughness 
function, which takes into account the geometrical 
heterogeneities localized at the unit/mortar interface level. 
 The paper is organized as follows. In Section 2, the 
general theoretical background is traced, by introducing the 
reference problem, and the interface model is developed 
within the context of the micro-mechanical analysis and of 
the asymptotic strategy. Then, Section 3 is devoted to the 
experimental results obtained by shear tests on small 
masonry assemblies [10, 19]. Finally, in Section 4, numerical 
results based on the proposed approach are presented and 
discussed. They show model soundness and consistency and 
are obtained via a finite element formulation that involves 
interface elements to model unit/mortar interfaces. The 
experimental data presented in Section 3 are used to set the 
numerical model, enabling to carry out a parametric analysis 
on the roughness features. In detail, after the identification of 
model parameters, the influence of both shape and entity of 
the roughness function on the global response is discussed. 

2. PROBLEM STATEMENT AND MODEL 
FORMULATION 

 In the following, reference will be made to the model 
proposed by Rekik and Lebon [13, 14], aiming to furnish a 
generalization of that approach that includes a roughness 
characterization at the interface level. The proposed model 
fits into the general framework of the asymptotic expansions 
method. 
 This method was, originally, developed by Sanchez-
Palencia [20] in order to derive the homogenized response of 
composites. It represents a mathematically rigorous way to 
recover the governing equations of the interface models and 
of the plate and shell theories. Basically, the method is based 
on the choice of a geometrically small parameter (e.g. the 
size of the microstructure or the thickness of an interphase 
layer) and on the expansion of the relevant fields (e.g. 
displacement, stress and strain) in power series with respect 
to the chosen small parameter. In the following, the matched 
asymptotic expansions method [21, 22], i.e. one-direction 
asymptotic expansions method with matching conditions, is 

used. Accordingly, the derivation of the governing equations 
of the soft interface is performed by adopting the strong 
formulation of the equilibrium problem, i.e. by writing the 
classical compatibility, constitutive and equilibrium 
equations. The matched asymptotic expansions method is 
chosen because of its efficiency in recovering an elastic 
interface law which retains memory of interphase material 
properties, as, in this case, roughness and micro-cracks. 
 In what follows, the interface model is discussed and an 
application on the unit/mortar interface of masonry 
structures is performed. 

2.1. Notation 

 Let the Cartesian frame ),,,( 321 xxxO  be introduced, and 
let ( 321 ,, iii ) be the corresponding orthonormal basis. With 

reference to the notation defined in Fig. (1), a thin layer εB  
(called interphase) with non-constant small thickness ηε  is 
considered, the scale quantity ε  being such that 1<<<0 ε . 
The function η  will be defined in which follows. Moreover, 

let S  be the intersection between εB  and the interphase 
midplane, S , referred to as interface, being an open bounded 
set in 2R  with a smooth boundary. Thus, the reference 
frame origin O  lies at the interphase midplane and the 3x -
axis runs perpendicular to S . The interphase lies between 
two bodies, generally denoted as adherents, occupying the 
reference configuration 3R⊂Ω±

ε . In such a way, the 
interphase represents the adhesive joining the two bodies 

ε
+Ω  and ε

−Ω . It is assumed that the adhesive and the 
adherents are perfectly bonded, and therefore the continuity 
of displacements and stress vector fields is ensured. Let ε

±S  
be the surfaces between the interphase and the adherents, and 
let εεεε BS ∪∪ΩΩ ±±=  be the overall system. 

 
Fig. (1). Problem statement and notation. 

 As a definition, let 0
2,21 ),(
RS

Cxx ∈±η  be the roughness 

functions describing ε
+S  and ε

−S , respectively. They are 
assigned functions that take into account the geometrical 
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shape at the adherents/interphase interface level, and they are 
assumed to satisfy the following properties:  
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 Besides, let  
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be the average measure of the roughness function in the limit 
problem for ε  tending to zero (see Fig. 2). 

 Each subregion of such a composite system has been 
assumed to be homogeneous and materials are considered to 
behave as linearly elastic, with ±a  and εb  denoting the 
positive-definite fourth-order elasticity tensors of the 
adherents and the interphase, respectively. The adherents are 
subjected to the body force density 3: Rε

±Ωf  and to the 

surface density 3: Rε
gΓg . Body forces are neglected in 

the adhesive region. On the boundary portion ε
uΓ , 

homogeneous boundary conditions are prescribed:  
εε
uonΓ0u =  

where 3: Rεε
±Ωu  is the displacement field defined on 

εΩ . Let the boundary parts ε
gΓ  and ε

uΓ  be located far from 
the interphase domain and let the fields representing the 
external forces be endowed with sufficient regularity, in 
order to ensure the existence of the equilibrium 
configuration. 

2.2. Rescaled problem 

 A classical change of scale is performed both in adhesive 
and in adherents. In what follows, symbol (^) denotes the 
rescaled fields in the adhesive and symbol (-) the rescaled 
fields in the adherents. Accordingly, addressing Fig. (2), the 
following rules for the change of variables hold:  
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where the plus (respectively, minus) sign applies whenever 
ε
+Ω∈x  (respectively, ε

−Ω∈x ). 

 By enforcing relationships (2), the rescaled domains for 
interphase and adherents are described by:  
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 The sets }
2

=,),(:),,{(= 321
3

321
±

± ±∈∈ ηzSzzzzzS R  

denote the interfaces between B  and ±Ω , and 

−+−+ ∪∪∪Ω∪ΩΩ SSB=  denotes the rescaled 
configuration of the composite body (see Fig. 2). Finally, uΓ  

and gΓ  are the images of ε
uΓ  and ε

gΓ  after the rescaling, 

and 1pf:=f −  and 1pg:=g −  are the rescaled volume 
force density and the rescaled surface force density, 
respectively. 

 Denoting with 1εε pu:=u −ˆˆ   and 1εε pu:=u − , the 
displacement fields relevant to the rescaled adhesive and 
adherents, respectively, the following asymptotic expansions 
up to the first order with respect to the small parameter ε  
hold:  

)(=),,( 10
321 εεε ozzz ++ uuu  (4) 

)(ˆˆ=),,(ˆ 10
321 εεε ozzz ++ uuu  (5) 

)(=),,( 10
321 εεε ozzz ++ uuu  (6) 

 The corresponding asymptotic expansions for the strain 
tensors, in interphase and in the adherents, respectively, 
result from: 

 
Fig. (2). Problem rescaling: (a) unscaled system, (b) rescaled system, (c) limit system. 
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with:  
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where, as it is customary, Greek indexes vary in the set 
{1,2} . 

 Denoting with 1pσσ −ˆ:=ˆ εε  and 1pσσ −εε := , the 
stress fields from the rescaled adhesive and adherents, 
respectively, the following stress asymptotic expansions with 
respect ε  also hold:  

)(= 0 εε o+σσ  (12) 

)(ˆ=ˆ 0 εε o+σσ  (13) 

)(= 0 εε o+σσ  (14) 

 Since the representation form (13), the equilibrium 
equations of the interphase, addressed by neglecting the 
corresponding body forces, leads to:  

0=ˆ03,3iσ  (15) 

that is, stress components 0
3ˆiσ  (with {1,2,3}∈i ) have to be 

described as constant with respect to 3z  in the adhesive. 
Moreover, by enforcing the continuity of the stress field 
among the adhesive and the adherents, Eq. (15) leads to:  

0=]][[ 0
3iσ  (16) 

where, as a notation rule, ),0,(),0,(:=]][[ 2121
−+ − xxfxxff  

denotes the jump across the surface S  of a function f  

defined on the limit configuration obtained for +0ε  (see 
Fig. 2). 

2.3. Interphase/interface analysis 

 In the framework of the previously-introduced notation, 
the following constitutive laws hold for adherents and 
interphase, respectively, in the rescaled problem:  

)ue(aσ ε±=ε  (17) 

)ue(bσ εε ˆ=ˆε  (18) 

 By assuming that the interphase is described by a soft 
behavior [21, 22], the following condition can be stated:  

)(εo+εb=bε  (19) 

 In order to refer to a matrix notation, let ijklki
jl bK :=)(  

be introduced. By substituting Eqs. (7) and (13) into Eq. 
(18), and integrating with respect to 3z , the following soft 
interface law is obtained:  

]u[Kiσ 033
3 ˆ1=ˆ 0

η
 (20) 

where the influence on the interface stiffness of the 
roughness function η  is clearly established. 

 Referring to the bi-dimensional problem in the plane 
),( 31 ii , for the sake of simplicity, the stiffness matrix 33K  in 

Eq. (20) is obtained starting from the micro-cracked material 
of Kachanov's theory [18] and it is expressed as follows:  
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in which TB  and NB  represent the components of the crack 
compliance tensor B  introduced in [18] along the tangent 
(i.e., along 1i ) and normal-to-the-interface (i.e., along 3i ) 
directions, respectively, and L  is the characteristic 
dimension of the limit interface domain along 1i . Moreover, 
the interface stiffness matrix depends on the parameter l , 
that identifies an average overall measure of micro-cracks. In 
this model, following the approach proposed by Rekik and 
Lebon [14], a simplified bilinear micro-cracks evolution law 
is adopted by assuming a dependence of the parameter l  on 
the global shear stress at the interface. 

3. EXPERIMENTAL STUDY 

 The experimental tests, which this paper refers to, have 
been carried by Fouchal [19]. The small masonry assemblies 
considered are made by two or three, hollow and full bricks, 
bound together by mortar joints. The mortar used in 
specimen is a conventional mortar ready-made based on a 
mixture of aggregates, rolled sand-lime and portland cement. 
In order to determine the mechanical properties of both 
materials, some bending and compressive tests were 
performed. The obtained results, discussed in more detail in 
[10], are summarized in Table 1.  

3.1. Shear Tests on Coupled and Triplet Samples 

 Aiming to observe the shear behavior of the masonry 
assembly at the local level, several experimental tests, 
concerning samples composed by two [23], three or more 
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bricks [24], are proposed in literature. The considered 
experimental tests concern some coupled and triplet samples, 
shown schematically in Fig. (3), subjected to simple shear 
load. In order to study the influence of brick type on the 
shear behavior, two different types of bricks, i.e. full and 
hollow, are used and, for both type of triplet, four tests are 
performed. More details can be found in [10, 19]. In the 
following, reference will be made to experimental results on 
triplet samples only. 
Table 1. Experimentally-determined mechanical properties 

of the three-fold masonry constituents. 

Young's moduli (MPa) of full brick   9450 

Poisson ratio of full brick   0.13 

Young's moduli (MPa) of hollow brick   6050 

Poisson ratio of hollow brick   0.13 

Young's moduli (MPa) of mortar   8200 

Poisson ratio of mortar   0.3 

 

 
Fig. (3). Shear tests. (a) Two bricks sample. (b) Three bricks 
sample. LVDT: linear variable differential transformer. 

 The shear test consists of applying a monotonically 
increasing load F  on the top of the samples, until the failure 
(see Fig. 3). During the test, LVDT sensors fixed on the 
sample, give an average measure of the relative displacement 
between bricks. The obtained results, in terms of global 
shear stress and relative displacement, on the triplet samples 
of full and hollow bricks were shown, respectively, in  
Fig. (4) and Fig. (5). In the first case, the mechanical 
behavior is characterized by brittle behavior with an elastic 
part characterized by high values of the stiffness for test 1 
and 4 and reduced values of the stiffness for the test 2 and 3. 
In the hollow bricks case, a softening behavior was observed 
with an initial elastic branch characterized by high values of 
stiffness. After reaching the maximum load value, the 
response was characterized by sliding motion between bricks 
[10, 19]. 
 One remarks that the failure load value differs between 
the tests performed on similar samples. Fig. (6) underlines 
the dispersion of the failure modes that probably is the cause 
of the above cited difference in terms of failure loads.  

 Notably, two cracks localization are observed: at 
mortar/brick interface level and in the mortar joint. In both 
cases, i.e. full and hollow samples, proposed experimental 
evidence shows that the unit/mortar interface behavior is less 
brittle than the mortar one. Regarding the hollow bricks, 
other parameters can significantly affect the dispersion of the 
experimental data as the presence of an arbitrary distribution 
of mortar spikes in the brick hollows. 
 Finally, the main findings of this experimental part of the 
study are: the non-linear behaviour of masonry-like samples 
tested under shear conditions and the strong heterogeneity of 
this kind of structure at the local scale. 
 In previous works, it has been established that damaged 
interface models as RCCM model [10] and the Rekik-Lebon 
model [13, 14], are successfully able to reproduce the above 
experimental tests, which showed a sliding mode failure at 
the brick/mortar interface. 

 
Fig. (4). Shear stress-displacement curve in the case of full brick 
triplets: experimental results (each curve represents a test). 

 
Fig. (5). Shear stress-displacement curve in the case of hollow 
brick triplets: experimental results (each curve represents a test). 
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4. NUMERICAL RESULTS AND DISCUSSION 

 According to the Eqs. (20) and (21) of the interface 
model presented in Section 2 , the interface stiffnesses in 
normal and tangential directions are expressed by simple 
closed-form relationships. Proposed numerical applications 
refer to the test 1  on the three full bricks sample, which 
exhibits a rupture localized at brick/mortar interface level 
(Fig. 4). 
 A finite element analysis is implemented. A plane stress 
modeling is pursued using a regular mesh of 4Q  elements 
for the overall computational domain. To reproduce 
brick/mortar interfaces, interface elements, based on the 
stiffness properties previously established, are used. An 
incremental explicit algorithm is used to solve the local 
problem [25]. For the constituents, material properties 
summarized in Table 1 is considered. 

 To show the influence of the roughness shape on the 
response of the masonry-like structural model, three different 
periodic functions, with the same period and amplitude, are 
considered: a cosine wave, a square wave and a sawtooth 
wave. For the sake of simplicity, these planar functions are 
chosen periodic in the plane ( 31,ii ) and constant with respect 

to the coordinate 2x . In the following, these three different 
roughness functions will be indicated, respectively, as 

321 ,, ηηη : 
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where, as customary, ⎦⎣− xxxfrac =)( , and where the 

parameters hAA /=*  and hTT /=*  are, respectively, the 
amplitude and the period, normalized with respect to a 
characteristic dimension h , herein chosen as 10=h  mm, i.e. 
equivalent to the mortar thickness. Dimensionless amplitude 
and period ( ∗A  and ∗T ) are assumed to be equal, 
respectively, to 0.1  and 0.63 . It is worth pointing out that 

 
Fig. (6). Failure modes experienced by testing triplets of full and hollow bricks, and corresponding ultimate shear stress values. 

 
Fig. (7). Plot of the deformed shape and color map of the displacement in x-direction (obtained for a cosine roughness function η  with 

0.5=*A  and 2.1=*T ). 
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by introducing the roughness function η  within the interface 
constitutive law, the interface stiffnesses are no longer 
constant along the interface surface unlike in Rekik-Lebon 
model. 

 
Fig. (8). Plot of the deformed shape and color map of the 
displacement in y-direction (obtained for a cosine roughness 
function η  with 0.5=*A  and 2.1=*T ). 

 
Fig. (9). Shear stress-displacement curve for a triplet model. 
Numerical results. Influence of roughness shape. 

 The numerical response of the triplet model in terms of 
“load-displacements” curves is obtained for the three types 
of roughness and in the case without roughness. Fig. (7) 
shows the influence of the shape of the roughness function 
for fixed amplitude and period. For the chosen values of 
these parameters, it is pointed out that the shape of the 
roughness does not have a relevant influence on the global 
response of the masonry-like model. 

 The cosine roughness function is chosen to make an 
identification process with respect to experimental results 
relevant to the test 1  of the triplets of full bricks. The period 
as well as the parameters of the bi-linear evolution law for l  
as proposed in Rekik-Lebon [20], are assumed to be fixed  

( 2.1=∗T , 1.26=cτ  MPa, 1.62=uτ  MPa, 3.1=cl  mm, 
4.0=ul  mm), thus the proper amplitude value is identified 

as it is shown in Fig. (8). 

 
Fig. (10). Identification of the dimensionless amplitude of a cosine-
shaped roughness function, by comparison with experimental data. 

 Moreover, in order to understand the influence of 
roughness entity on the global shear stress-displacement 
response, a parametric analysis for the cosine-shaped 
roughness is performed by choosing different values of the 
normalized amplitude *A  and period *T , presented in Fig. 
(9) and Fig. (10). 

 As a general comment to these proposed numerical 
results, it is worth observing that the period *T  does not 
have a great influence on the global response of the 
masonry-like model, for values of the dimensionless 
amplitude in the range 0.10 *≤≤A . Generally, for higher 

values of the normalized amplitude, namely 1<0.1 *A≤ , the 
influence of the normalized period seems to be much more 
relevant. Nevertheless, within the limits of the present 
approach and for any value herein considered for the period 

∗T , the amplitude ∗A  can be retained as the roughness 
parameter that mainly affects the interface response. 

CONCLUSION 

 In this paper a generalization of the interface model 
proposed by Rekik and Lebon has been established and 
applied to masonry-like structures. The model accounts for 
roughness and micro-cracks in the interface region, and it 
has been derived by employing an asymptotic expansions 
method. Numerical results obtained via the proposed 
formulation and based on a finite element implementation, 
have been successfully compared with experimental data 
relevant to samples of masonry assemblies. Within the 
limitation of the proposed approach, a parametric analysis 
has been carried out, highlighting the influence of the 
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roughness function features on the asymptotic constitutive 
behaviour of the interface. 
 Future research steps will be devoted to improve the 
micro-crack modeling, by including damage evolution 
descriptions and by enhancing the constitutive descriptions 
within the homogenization procedure, as proposed, for 
example, by Goidescu et al. [26]. Moreover, a comparison 
between the proposed model and well-established interface 
models is ongoing. 
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Fig. (11). Numerical results computed for a triplet model. Influence of the dimensionless amplitude of a cosine-shaped roughness function on 
the shear stress-displacement response. 

 

 
Fig. (12). Numerical results computed for a triplet model. Influence of the dimensionless period of a cosine-shaped roughness function on the 
shear stress-displacement response 
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