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Abstract: Detached Eddy Simulation（DES）is quite a new approach for the treatment of turbulence, which unites the 
efficiency of Reynolds Averaged Navier-Stokes Simulation (RANS) and the accuracy of Large Eddy Simulation (LES) 
into one framework. In this paper, DES method based on Spalart-Allmaras (S-A) turbulence model is employed to 
simulate the incompressible viscous flow around bridge decks. In order to obtain the aerodynamic forces, the forced 
motion simulations of the bridge decks are implemented by self-developed codes combined with FLUENT software. After 
obtaining the aerodynamic forces, aerodynamic derivatives are determined based on the least square algorithm. As the 
examples, the thin flat plate and the Great Belt East Bridge suspended spans cross-section are investigated to calculate 
their aerodynamic derivatives. Finally, the simulation results are compared to the data reported in other studies. The 
comparisons show that the present method gives much better prediction of the aerodynamic derivatives than RANS 
method and discrete vortex method (DVM). 
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1. INTRODUCTION 

 It is very important for bridge flutter prediction to obtain 
the accurate aerodynamic derivatives, which are important 
basic parameters for bridge flutter stability analysis. 
Although wind tunnel tests are the main means to obtain the 
bridge dynamic derivatives at present, they are costly, time-
consuming, poor repeatability and difficult to effectively 
study the evolution of the flow field around the bluff body. In 
recent years, the computational fluid dynamics method 
attracted people's attention as an effective method and 
applied to bridge wind engineering. Walther and Larsen [1-
3] used discrete vortex method (DVM) to simulate the flow 
field around bridge deck, and calculated aerodynamic 
derivatives for five typical bridge section. Based on large 
eddy simulation, Selvam et al. [4] employed finite difference 
method (FDM) and finite element method (FEM) to 
calculate the drag coefficients and Strouhal numbers for 
Great Belt East Bridge. They found that the calculation 
results by FDM are in good agreement with the experimental 
results. Frandsen et al. [5, 6] applied FEM to explore the 
flow field around Great Belt East Bridge and to calculate 
aerodynamic derivatives, and the computed results showed 
good agreement with those from wind tunnel tests. Based on 
finite volume method software FLUENT and LES, Sarwar et 
al. [7] studied the evolution of the flow field around box 
girder section by a three-dimensional model. They found that 
geometric details of girder sections will cause a certain 
impact on the aerodynamic parameters. Huang et al. [8]  
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computed aerodynamic derivatives for flat plate and long 
span bridge deck by FLUENT combined with two-equation
k ε−  renormalization group (RNG) turbulence model. 
Braun et al. [9] developed a FEM model to simulate wind 
action over the Guamá River Bridge employing the pseudo-
compressibility approach, large eddy simulation (LES), an 
arbitrary Lagrangean–Eulerian formulation and an explicit 
two-step Taylor–Galerkin method. The aerodynamic 
behavior of the Great Belt East Bridge is also predicted in 
their research. Other researchers, such as Cao [10, 11], Zhu 
[12-14], and Zhou et al. [15], also have done a lot of 
research using different simulation methods for this subject. 
 Since the wind field is typical high Reynolds flow, the 
existing studies usually adopt RANS or LES to simulate the 
air flow around bridges. In practice, some complex 
phenomena such as flow separation, reattachment and 
trailing vortex shedding unsteadiness always take place in 
the flow around bridge decks. Some turbulence models of 
the RANS method have difficulties in simulating flow 
separation, reattachment and flow recovery around blunt 
bodies. In addition, the RANS method provides poor 
description of the flow physics because it is unable to 
capture effectively the spectrum of unsteadiness that are 
associated with the turbulent fluctuations away from the wall 
[16]. All these reasons will affect the calculation accuracy of 
the RANS method. LES has high simulation accuracy. 
However, it requires very fine grid to capture the complex 
flow phenomena in near-wall region. The RANS method is 
relatively mature in the treatment of near-wall region, and is 
more skillful in near-wall predictions than LES. It is more 
important that its predicting results for near-wall flows can 
meet with the real flow state well. Hence, the hybrid 
RANS/LES idea of combining both methods where the inner 
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near-wall region is handled by the RANS approach while the 
outer region of the bulk flow is solved through LES makes 
rather perfect sense. This is the basic idea of DES. S-A 
turbulence model [17] is the most successful one-equation 
model and is skilled in predicting flows with strong adverse 
pressure gradients near the wall boundary. Moreover, it is 
worth-mentioning here that it can get better results without 
very fine grid and even can outperform some two-equation 
turbulence models in predictions of flow separation and re-
attachment. For such reasons, the S-A model is selected to be 
incorporated into LES for simulating turbulent flows around 
bridge decks in the present study. In order to obtain the 
aerodynamic forces, the forced motion simulations of the 
bridge decks are implemented by self-developed codes 
combined with FLUENT software. Numerical simulations of 
the aerodynamic derivatives for the thin flat plate and Great 
Belt East Bridge are carried out, and the simulation results 
are compared against data reported in other studies [18-20] 
to demonstrate the usefulness and effectiveness of this 
present work. 

2. NUMERICAL METHODS  

2.1. Identification Method for Aerodynamic Derivatives 

 The aerodynamic forces acting on a bridge deck per unit 
length can be formulated in the Scanlan and Tomko linear 
form , which involves eight aerodynamic derivatives: 
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where L and M are the lift force and the pitching moment, ρ
is the air density, U  is the inflow wind speed, B  is the 
breadth of the bridge, *

i
H and *

i
A (i=1-4) are defined as 

aerodynamic derivatives, /K B Uω=  is the reduced frequ- 
ency,ω  is the circular frequency of oscillation, h and !h are 
the vertical motion and its time derivatives respectively,α
and !!  are the section torsion and corresponding time 
derivatives, respectively. 
 In order to identify the eight aerodynamic derivatives in 
Eq. (1), the bridge section is deemed to be a rigid body and 
forced to oscillate vertically or to oscillate torsionally in a 
sinusoidal manner in the flow. The pressure and the friction 
on the bridge surface can be calculated by solving the 
governing equations among the computational domain. 
Then, the aerodynamic forces (the lift force and the pitching 
moment) can be obtained through surface integral for the 
pressure and the friction. When the aerodynamic forces are 
obtained, the aerodynamic derivatives can be extracted by 
least squares method. 
Taking vertical forced vibration as an example explains how 
to identify aerodynamic derivatives. Assuming the bridge 
deck is forced to oscillate vertically in the following manner: 

h t( ) = h0 sin! t  (2) 

where 
0
h  and ω  are the displacement amplitude and the 

circular frequency of the oscillation, respectively. The 
velocity of the bridge deck !h t( )  can be easily obtained from 

Eq.(2). ( )h t , !h t( ) and the simulated aerodynamic forces are 

saved as the discrete data and denoted as 
i
h , !h

i
,

i
L ,

i
M  

( 1, 2, ,i N= K ), N  is the total recording points. Because 
only *

1
H , *

4
H , *

1
A and *

4
A  are related with vertical oscillation, 

Eq.(1) degenerates into the following form: 
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 At each time point i, the residuals of the simulated 
aerodynamic forces and flutter derivatives computed by Eq. 
(3) can be calculated as follows: 
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 The residual sum of squares of Eq. (4a) is: 
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 In order to minimize the residual sum of squares, the 
partial derivatives of Eq. (5) are satisfied according to the 
least square algorithm: 
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 Thus, equations with unknown variables *

1
H and *

4
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be obtained from Eqs. (6): 
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 So, *

1
H and *

4
H can be acquired by solving Eq.(7). In the 

same way, the aerodynamic derivatives *

1
A and *

4
A  can be 

obtained from Eq.(4b).  
 Similarly, the other four aerodynamic derivatives *

2
H , *

3
H ,

*

2
A and *

3
A  can be obtained when the bridge section is forced 

to oscillate torsionally in a sinusoidal manner in the flow. 
The torsional oscillation is conducted by the following 
torsion driving signal in the present work 

! t( ) = !
0
sin" t  (8) 
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where
0

α andω are the displacement amplitude and the 
circular frequency of the oscillation, respectively . 

2.2. Governing Equations 

 In bridge wind engineering, the flow around the bridge 
section is always deemed as the incompressible, viscous 
flow. This class of flow is governed by the continuity and 
momentum equations, that in two-dimensional form can be 
written as follows:  
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where ix  (i=1, 2) is the Cartesian coordinate, t is time, iu  is 

velocity component, p is the kinetic pressure, and 
ijτ  is the 

stress tensor. 

2.3. DES Turbulence Model 

 The stress tensor, 
ijτ in Eq. (10), can be written as the 

sum of the viscous and Reynolds stress tensors: 
L T
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where the viscous part L
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 According to Boussinesq’s assumption, the Reynolds 
stress tensor, T

ij
τ is given as:  
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where k is the turbulent kinetic energy, v  the laminar 
kinematic viscosity of the fluid, tv  the turbulent eddy 
viscosity and 

ijδ the Kroneker delta. 
 In S-A model, the turbulent viscosity tv can be defined as 
follows: 
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 All the variables and constants in Eq. (15) are given as 

follows,
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where d  is the distance from any point in the flow field to 
the nearest wall surface, ω  the magnitude of the vorticity. 

The DES turbulence model based on S-A model is obtained 
through replacing the distance to the nearest wall d in Eq. 
(15), by d%, which is defined as ( )min ,

DES
d d c= Δ% . In which

Δ is the largest distance from the center of the grid center to 
the adjacent cells, The model constant coefficient is taken as 
0.65. In the boundary layer near the wall, d≤

DES
c Δ ,the model 

degenerates into S-A model described by Eq. (15), and the 
model works in the RANS mode. When d>

DES
c Δ , the model 

works in Large Eddy Simulation mode. 

2.4. Dynamic Meshes for Numerical Simulation 

 The bridge deck oscillations in the wind field can be 
operated through the moving boundary and dynamic mesh 
technique. In view of the arbitrary Lagrangian-Eulerian 
formulation, the integral form of the conservation equations 
for a generalized scalar,ϕ , on arbitrary control volumes with 
the moving boundary can be given as follows: 

( )
s

V V V V

d
dV u u dA dA S dV

dt
ϕ

ρϕ ρϕ ϕ
∂ ∂

+ − ⋅ = Γ∇ ⋅ +∫ ∫ ∫ ∫
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whereV is the volume of the control volume, V∂  the moving 
boundary of the control volume, ur flow velocity vector, 

s
ur

velocity vector of the moving mesh, Γ the diffusion 
coefficient, S

ϕ
the source term of the generalized scalarϕ . 

The only moving boundary, considered in the present work 
is bridge deck surface, and it can be conducted using the 
driving signal defined as Eq.(2) or Eq.(8). This work is done 
by self-developed codes developed in the programming 
platform of Visual C++. The mesh velocity

s
ur in the moving 

mesh region can be easily obtained from the oscillations of 
the moving boundary. 
 The quality of the grid will become poor after every 
iteration time step. In order to adjust the size and shape of 
the grid, the spring smoothing method and the local 
remeshing method are utilized in this paper. The spring 
smoothing method can adjust the size and shape of the grid 
through the elastic deformation. When the displacement of 
boundary nodes are larger or less than the specified size, the 
local remeshing method will be activated to merger or split 
poor cell in this paper.  
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2.5. Solution Procedure 

 Because the bridge section is deemed to be a rigid body 
in flow, one needs only to solve the governing equations 
among the fluid domain without concern for the aeroelastic 
response of the bridge. Eq. (16) is the integral form of the 
governing equations which considers the mesh velocity. In 
the equation, the first term on the left side is the unsteady 
term, the second on the right side is the convective term, and 
the first term is the diffusive term. The numerical solutions 
of Eq. (16) are computed using finite volume method. The 
second order upwind scheme for convective terms and the 
second order implicit scheme for unsteady terms are used. 
Diffusive terms are treated using a conventional central 
difference scheme. SIMPLE (Semi-Implicit Method for 
Pressure-Linked Equations) algorithm is used to achieve the 
pressure-velocity decoupling. 

3. NUMERICAL SIMULATIONS 

3.1. Structure Geometry and Mesh Generation 

 Selected test cases corresponding to turbulent flows 
around a thin flat plate and the girder section of Great Belt 
East Bridge are presented here. Their cross-sections are 
shown in Fig. (1). Section A represents the thin flat plate and 
section B is the Great Belt East Bridge suspended spans 
cross- section. Fig. (2) gives their computing grids. 

B=1000

960

10

 
(a) The thin flat plate (Unit: mm) 

H
=4
.4

B=31

19
 

(b) Girder section of Great Belt East Bridge (Unit: m) 
Fig. (1). Geometric model. 
 
 The thin flat plate and the girder section lengths are 
chosen as characteristic length and viewed as B, which is 
marked in Fig. (1). The computational domain is rectangular, 
and occupies a 16B× 20B square in both cases, with the 
model section is located 8B away from the inlet; and the 
distance from the upper or lower boundary to the center of 
the model section is also 8B. This arrangement can ensure 
the appropriateness of imposing the unperturbed free stream 
velocity at the inlet as well as the upper and lower 
boundaries of the domain. In the process of establishing the 
meshing, the inner boundary meshing is denser than that in 
exterior boundary to give consideration to computing power 
and computing precision. Meanwhile, the viscous boundary 
layer over the model surface is well resolved by the fine 
mesh with the overall y-plus less than 1, which can eliminate 
the need for a boundary layer treatment. At the inlet, the 
velocity entrance boundary is applied. The pressure outlet 

boundary is applied to the outlet. The no-slip boundary 
condition is imposed at the model surface as well as the 
upper and lower boundaries. The whole mesh region is 
defined as dynamic mesh region. 

 
(a) The thin flat plate, 

 
(b) Girder section of Great Belt East Bridge 

Fig. (2). Model grids. 

3.2. Aerodynamic Force Coefficients and Discussion 

 For the thin flat plate, forced motion simulations are 
conducted using the driving signals as follows: vertical 
signal ( )0.02sin 4h tπ= , torsion signal ( )4sin 4 tα π= ; and 
the simulations cover the wind velocity range from 4 to 
40m/s. For Great Belt East Bridge, the simulations are 
performed with the reduced wind velocities: 2.5,5,7.5 and 
10. The reduced wind flow velocity is given by /U fB , 
where U is the inflow velocity, B is the bridge deck width 
and f is the natural frequency of the structure. Vertical 
driving signal is ( )0.1sin 0.4h tπ= , and torsion driving signal 
is ( )4sin 0.4 tα π= . These two examples only show 
computation of the aerodynamic derivative values for zero 
angle of attack. 
 The aerodynamic forces by simulation include the lift 
L(t) and the moment M(t). They are usually expressed in 
non-dimensional form as follows: 

( )
2 ,

0.5l

L t
C

U Bρ
=  ( )

2 2 ,0.5m

M t
C

U Bρ
=  (17) 

where 
l
C  is the lift coefficient;

m
C is the moment coefficient; 

ρ is the fluid density, taken as 1.225 kg/m3; B and D are the 
width and depth of the bridge deck, respectively; U is the 
flow velocity. 

 Figs. (3 and 4) show the time history of the lift and 
moment coefficients when models A and B are forced in 
vertical motion, respectively. In order to carry out 
comparative analysis, the lift and moment coefficients 
acquired by RANS with RNG k ε− turbulence model are 
also shown in Figs. (3 and 4). Comparing Fig. (3) with Fig. 
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(4), it can be observed that the aerodynamic forces of model 
B have more distinct fluctuation than model A. One reason is 
that there are some more prominent internal disturbances in 
the flow fields for model B due to its irregular geometry. 
Another reason is that flow separation and vortex shedding 
in the flow fields are not quite obvious for model A owing to 
its very small thickness. As can be seen from Fig. (4), the 
aerodynamic lift and moment coefficients curves calculated 
by RANS look relatively smooth, while the results obtained 
by DES show obvious fluctuation. The reason for this 
phenomenon can be found in Fig. (5), which shows the 
instantaneous eddy-viscosity contours of model B in near-
wake region, where vortex-shedding occurs. As expected, 
the RNG k ε− turbulence model does not allow strong 
gradients and complex distribution of the turbulent viscosity 
in areas of massive separation, so much so that it is not able 
to sustain the vortex-shedding unsteadiness, even with very 
fine meshes. While DES turbulence model is capable of 
simulating the sophisticated distribution of the turbulent 

viscosity. It means that the DES algorithm can capture the 
smaller vortexes, and reflect the complicated features of the 
flow around bridge decks. The discrepancy of the numerical 
results between DES and RANS for the aerodynamic 
coefficients of model B can be seen clearly from Fig. (4). 
Fig. (6) gives the reason for this discrepancy when the lift 
coefficient reach the maximum values. On the upper side of 
the bridge deck surface, the negative pressure region 
simulated from DES is larger than that from RANS. The 
reverse is true on the lower side of the bridge deck surface. 
This results in the higher lift coefficients obtained from DES 
than that from RANS. RANS creates relatively large local 
zones of low pressure acting on the front end of the lower 
surface and on the rear end of the upper surface. As a result, 
the DES results are larger than the RANS results for the 
moment coefficients. 

 
Fig. (4). Time histories of aerodynamic coefficients of model B 
undergoing vertical motion (U =31m/s). 

 
 It is worth mentioning specially that the aerodynamic 
forces of model A and model B contain significant steady 
aerodynamic forces. Only by eliminating the impact of the 

0 5 10 15 20 25
-0.2

-0.1

0

0.1

0.2

0.3

T/s

C l

 

 
RANS
DES

0 5 10 15 20 25

-1.5

-1

-0.5

0

0.5

T/s

C m

 

 
RANS
DES

 
Fig. (3). Time histories of aerodynamic coefficients of model A 
undergoing vertical motion (u=16m/s). 
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steady aerodynamic forces, the aerodynamic lift and moment 
coefficients can be used to compute the aerodynamic 
derivatives. 

 
Fig. (5). Computed eddy viscosity field around bridge deck 
corresponding to the instance of the maximum lift for model B 
undergoing vertical motion (U =31m/s). 

3.3. Aerodynamic Derivatives and Discussion 

 Once the aerodynamic forces are obtained, aerodynamic 
derivatives can be determined based on the least square 
algorithm described in the Section 2. The simulated 
aerodynamic derivatives of the thin flat plate are shown in 
Fig. (7), while Theodorsen ’s theoretical solution [18] are 
also given for comparison. It can be found easily from Fig. 
(7) that the overall trend of the simulated results by DES 
meets well with the theoretical solution. Aerodynamic 
derivative values are in good agreement with the theoretical 
solution when the reduced wind velocities are small (less 
than 10m/s). As the reduced wind velocity increases, some 

aerodynamic derivative values, such as *

2
H and *

2
A , deviate 

slightly from the theoretical value. Nevertheless, the overall 
simulated results are encouraging. More importantly, it can 
be can seen that DES method has the better calculation 
precision than RANS, especially for *

4
H and *

4
A . 

 Fig. (8) presents the computed values for Great Belt East 
Bridge, while the results calculated by virtue of DVM [15], 
LBM [19], RANS [20] and Poulsen’s experimental data [21] 
are also given to demonstrate the usefulness and 
effectiveness of DES. Even though the wind tunnel test 
results are not complete, it is obvious that DES method is in 
better agreement with the wind tunnel test better than the 
other methods for *

1
H , *

1
A and *

2
A . For *

2
H and *

4
H , the DES 

results have the poor accuracy, but still conform to the 
change trend of the wind test results, and have almost the 
same accuracy as the RANS results. For *

3
A , LBM and DVM 

are in good agreement with the wind tunnel test, and are 
superior to DES and RANS. But DES still remains a distinct 
advantage over RANS. For *

3
H , at low reduced velocity, DES 

meet with the experimental values well   , and is superior to 
other methods, while at high reduced velocity, its results are 
slightly less accurate than that of other methods. For *

4
A , DES 

has the same trend as RANS and DVM. The comparisons 
above justify that on the whole, the DES method adopted in 
this paper has obvious advantage over RANS and DVM in 
calculation precision, especially for some important 
aerodynamic parameters for the girder cross-sections, such 
as *

1
H , *

2
H , *

3
H , *

1
A ,and *

2
A .   

 

 
(a)DES (b)RANS 

Fig. (6). Pressure contours around bridge deck corresponding to the instance of the maximum lift for model B undergoing vertical motion  
(U =31m/s) 
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Fig. (7). Aerodynamic derivatives of thin flat plate. 
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Fig. (8). Aerodynamic derivatives of great belt east bridge. 

CONCLUSION 

 This paper aims to find a more accurate numerical 
method for the prediction of aerodynamic derivatives of the 

bridge. First, the identification method for aerodynamic 
derivatives is elaborated. Then, the forced vibrations of the 
bridge decks in the flow fields are successfully achieved by 
self-developed codes combined with FLUENT software 
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employing DES turbulence model, thereby the aerodynamic 
forces can be computed. At the end, the reliability of DES 
turbulence model for the prediction of aerodynamic 
derivatives of the bridge is discussed through numerical 
examples.  
 As an example, the thin flat plate and the Great Belt East 
Bridge suspended spans cross-section are investigated to 
calculate their aerodynamic force coefficients and 
aerodynamic derivatives through applying this method. For 
the thin flat plate, the simulation values of the aerodynamic 
derivatives are in good agreement with the theoretical 
curves. For the box section (Great Belt East Bridge), the 
DES results for the box section at low reduced velocity are 
more close to the experimental values, while at high reduced 
velocity, the discrepancy between the DES results and wind 
test values becomes obvious. Comparing with the other 
numerical methods, DES method has the better calculation 
precision than RANS, and is superior to DVM for most of 
aerodynamic derivatives. These comparisons are powerful 
evidence of the reliability and applicability of the present 
CFD method. Numerical examples also prove that DES has a 
distinct advantage over RANS in simulating flow separation, 
reattachment and vortex shedding unsteadiness, which are 
the salient features for the flow field around the bridge. 
Thus, the DES method is more worthy of being popularized 
and is applied to obtain aerodynamic derivatives of bridge 
decks. 

CONFLICT OF INTEREST 

 The authors confirm that this article content has no 
conflict of interest. 

ACKNOWLEDGEMENTS 

 The research was supported by International Cooperative 
Program (Funding Codes: 2011DFA21460). 

REFERENCES 
[1] J.H. Walther, and A. Larsen, “Two dimensional discrete vortex 

method for application to bluff body aerodynamics,” J. Wind Eng. 
Indust. Aerodyn., vol. 67-68, pp. 183-193, 1997. 

[2] J.H. Walther, and A. Larsen, “Aeroelastic analysis of bridge girder 
sections based on discrete vortex simulations,” J. Wind Eng. Indust. 
Aerodyn., vol. 67-68, pp. 253-265, 1997 

[3] J. H. Walther, and A. Larsen, “Discrete vortex simulation of flow 
around five generic bridge deck sections,” J. Wind Eng. Indust. 
Aerodyn., vol. 77-78, pp. 591-602, 1998. 

[4] R. P, Silva, M. J. Tarini, and A. Larsen, “Computer modelling of 
flow around bridges using LES and FEM,” J. Wind Eng. Indust. 
Aerodyn., vol. 77-78, pp. 643-651, 1998. 

[5] J. B. Frandsen, “Numerical bridge deck studies using finite 
elements.Part I: flutter,” J. Fluids Struct., vol. 19, pp. 171-191, 
2004. 

[6] J. B. Frandsen, “Computational Fluid-Structure Interaction 
Applied to Long-Span Bridge Design,” Cambridge University, 
1999. 

[7] M. Sarwar, T. Ishihara, K. Shimada, Y. Yamasakic, and T. Ikedad, 
“Prediction of aerodynamic characteristics of a box girder bridge 
section using the LES turbulence model,” J. Wind Eng. Indust. 
Aerodyn., vol.10-11, pp. 1895-1911, 2008. 

[8] L. Huang, H. l. Liao, B. Wang, and Y. l. Li, “Numerical simulation 
for aerodynamic derivatives of bridge deck,” Simulation Modelling 
Practice and Theory, vol.17, pp. 719-729, 2008. 

[9] A .L. Braun, and A. M. Awruch, “Finite element simulation of the 
wind action over bridge sectional models: Application to the 
Guamá River Bridge (Pará State, Brazil) ,” Finite Elements in 
Analysis and Design, vol. 44, pp. 105-122, 2008.  

[10] F. C. Cao, H. F. Xiang, and A. R. Chen, “Numerical assessment of 
aerodynamic derivatives of thin flat plate,” J. Tongji Univ., vol. 27, 
pp. 131-135, 1999. 

[11] F. C. Cao, H. F. Xiang, and A. R. Chen, “Numerical assessment of 
aerodynamic derivatives and critical wind speed of flutter of bridge 
decks,” ACTA Aerodynamic Sinica, vol. 18, pp.26-33, 2000. 

[12] Z.W. Zhu, Z.Q. Chen, and W. F. Chen, “Assessment of 
aerodynamic derivatives of the ideal flat plate based on the moving 
grid method,” J. National Univ. Defense Tech., vol. 24, pp. 13-17, 
2002. 

[13] Z.W. Zhu, and Z.Q. Chen, “Numerical simulations for aerodynamic 
derivatives and critical flutter velocity of bridge deck,” China J. 
Highway and Transp., vol. 17, pp. 41-45, 2004. 

[14] Z.W. Zhu, Z.Q. Chen, and M. Gu, “Evaluating flutter derivatives of 
the thin plate by applying the numerical simulation method,” J. 
Hunan Univ. (Natural Sciences), vol. 32, pp. 11-15, 2005. 

[15] Z. Y. Zhou, A.R. Chen, and H.F. Xiang, “Numerical assessment of 
aerodynamic derivatives and critical wind speed of flutter of bridge 
decks by discrete vortex method,” J. Vib. Eng., vol. 32, pp. 327-
331, 2002. 

[16] J. Y. Tu, G. H. Yeoh, and C. Q. Liu, Computational Fluid 
Dynamics: A Practical Approach, Elsevier Press, 2008, pp. 132-
147. 

[17] P. R. Spalart, and S. R. Allmaras, “A one-equation turbulence 
model for aerodynamic flows,”AIAA-92-0439, 1994. 

[18] T. Theodorsen, “General theory of aerodynamic instability and 
mechanism of flutter,” NACA Report No. 496, 1935. 

[19] T. C. Liu, “Lattice Boltzmann Method used for bridge structure 
aeroelastic numerical calculation,” Tongji University, 2007.  

[20] Y. J. Ge, and H. F. Xiang,“Computational models and methods for 
the aerodynamic stability of long-span bridges,” China Civil Eng. 
J., vol. 41, pp. 86-93, 2008. 

[21] N.K. Poulsen, A. Damsgaard, T. A. Reinhold, “Determination of 
flutter derivatives for the Great Belt Bridge,” J. Wind Eng. Ind. 
Aerod, vol. 41, pp. 153-164, Oct. 1992． 

 

 
 

Received: July 23, 2014 Revised: August 07, 2014 Accepted: August 08, 2014 
 

© Ketong and Aiping; Licensee Bentham Open. 
 

This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/-
licenses/by-nc/4.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited. 
 


