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Abstract: Under severe earthquakes, eccentrically braced frames might experience large inelastic deformations, and the 
inelastic action is restricted primarily to the ductile links. In order to study the reasonable design method for links, seventy 
analyses of links are conducted to investigate the effect of different flange width-thickness ratio and length, fifty links are 
also designed to study the influence of stiffeners spacing, stiffeners thickness and placing on side(s), and thirty-six links 
are designed to consider the effect of axial loads, which are all based on the material properties of Q235 steel. The 
accuracy of finite element models is verified using the experimental data during cyclic loading. Numerical analysis results 

show that the flange width-thickness ratio of short and long links can be relaxed to 10 235/fy , and stiffeners can only be 

placed on one side. However, the flange width-thickness ratio of intermediate links is limited to 8 235/fy , and stiffeners 
should be placed on both sides due to the unstable behavior. Stiffener thickness has no significant influence on the 
performance of links with varying length. Unlike short links, intermediate and long links are susceptible to the axial 
forces. Then an optimum design method is proposed by analyzing the main influencing factors, so links can have good 
ductility and stiffness at high load levels.  

Keywords: Eccentrically braced frames (EBFs), finite element method, flange width-thickness ratio, link, stiffener. 

1. INTRODUCTION 

 Eccentrically braced frames (EBFs), which combined the 
advantages of moment resisting frames (MRFs) and 
concentrically braced frames (CBFs), can exhibit both 
adequate ductility and lateral stiffness during rare 
earthquake. The inelastic deformations were only limited to 
links while the other members, including columns, beam 
segment outside of links and columns, were designed to 
remain essentially elastic, so damage on the EBFs can be 
controlled. Moreover, the ductility mainly depended on links, 
which was determined by the inelastic rotational capacity 
and energy dissipation [1-5]. Therefore, links were the most 
important members in EBFs, and the seismic performance of 
EBFs can be improved by reasonable design of the links. 

 Link length has a great influence on the inelastic rotation 
γp. The length ratio ρ is equal to eVp/ Mp , where e is the link 
length, Mp and Vp are the nominal plastic flexural and shear 
strength, respectively. According to AISC [6], Links with ρ 
less than 1.6, called short(shear) links, form plastic hinges at 
either end and γp can be designed for 0.08 rad. Links with ρ 
more than 2.6, called long (flexural) links, yield primarily in 
flexural and γp can be designed for 0.02 rad. Links with ρ 
between 1.6 and 2.6, called intermediate (shear-flexural) 
links, yield combined of shear and flexural, and γp can be 
designed by linear interpolation between 0.08 and 0.02 
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depending on the length ratio ρ. Many designers preferred to 
use links yielded in shear because they showed better 
stiffness, strength and ductility. However, architectural 
consideration restricted the application of short links in some 
situations, so intermediate and long links were also important 
and inevitable to be used.  

 As the high significance of the links in the overall 
performance of the EBFs, many researchers had been 
dedicated to study the seismic behaviour of links, including 
the effect of flange with-thickness ratio [7], loading protocol 
[8], stiffeners [9], overstrength factor [10], tubular links [11] 
and the performance of intermediate and long links [12]. 
However, more investigations were concentrating on the 
independence parameters or part of links. In addition, 
previous studies mainly focused on the A36 [1] , A992 [9] 
and European steel [13], and the performance of links with 
different steel is quite different. So it is not known whether 
the parameters and design method of links given by the 
AISC can be used for the links with Q235 or Q345 steel. 
Based on the Q235 steel, a comprehensive analysis of all the 
links with varying length ratio should be studied, and the 
maximum inelastic rotation and energy dissipation can be 
obtained. The influencing factors of links mainly include 
flange width-thickness ratio, stiffener thickness and placing 
on side(s), stiffener spacing and axial forces. Moreover, the 
current flange width-thickness requirement for all the links 
was derived from Code for seismic design of buildings [14], 
it may be conservatively for some links, so many rolled steel 
cross-sections cannot be used as links, and it is also 
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placed on one side because the section depth is less than 
640mm. The stiffener thickness, stiffener spacing and web 
slenderness ratio can all satisfy the requirements of current 
specification [14]. 

 The maximum inelastic rotation γmax that a link achieves 
prior to strength degradation is determined from a backbone 
curve by extracting the points at the maximum displacement 
of each analysis step in the hysteresis curve. If strength 
degradation is not happened in the backbone curve, the 
maximum applied inelastic rotation is chosen as the plastic 
rotation capacity [12]. 

 Fig. (5) shows the maximum inelastic rotation γmax versus 
length ratio ρ, and Fig. (6) shows the normalized inelastic 
rotation (maximum inelastic rotation/design rotation) versus 
length ratio for all of seventy links. Short links, intermediate 
links and long links are indicated by squares, triangles and 
rhomboids. All of the filled icons indicate links satisfy the 
requirement of flange width-flange ratio (bf/tf<8 235/fy ), 
and the empty icons are those that exceed the value. A solid 
line indicates the allowable maximum design rotation. From 
Fig.(5) and Fig. (6), all of the short links that include filled 
and empty icons can reach the maximum design rotation, the 
intermediate links with filled rhomboids can also satisfy the 
requirement, but some intermediate links with empty 
rhomboids cannot reach the design rotation because of the 
premature failure of flange and web. 

 Fig.(7) shows the normalized inelastic rotation versus 
flange width-thickness ratio for all of the link models. In  
Fig. (6), all of links satisfy the current flange width-thickness 
ratio 8 235/fy  can reach the design rotation. As the flange 
width-thickness ratio is relaxed to 10 235/fy , all of the short 
and long links can reach the requirement of design rotation, 
but some intermediate cannot reach the design rotation due 
to the premature failure. These results indicate that the 
relaxation of flange width-thickness ratio to 10 235/fy  can 
be justified for short and long links, and the value of 
intermediate links is also limited to 8 235/fy . 

3.3. Stiffener Spacing and Placing 

 In order to investigate the influences of stiffener spacing 
and placing, links with varying length from short links to 
long links are designed based on H400x250x10x15, and the 
section properties, stiffener spacing and stiffener spacing are 
all shown in Table 1.  

 Short links. The length and length ratio ρ of all the short 
links are 1200mm and 1.44, respectively, and the design 

Table 1. Section properties for links with varying stiffener spacing and placing 

Section Type Length Length ratio, ρ Stiffener spacing Stiffener stiffness 

400x250x10x15 short 1200mm 1.44  4@300，5@240，6@200，7@171，8@150 ta=10 mm 

400x250x10x15 intermediate 1680mm 2.02 4@420，5@336，6@280，7@240，8@210 ta=10 mm 

400x250x10x15 long 2400mm 2.88 
5@480，6@400，7@342，8@300，9@266，
10@240，a distance of 305mm from each end  

ta=10 mm 

 

Fig. (6). Normalized rotation versus length ratio for links. 

 

Fig. (7). Normalized rotation versus flange width-thickness ratio 
for links. 

 

Fig.(5). Inelastic rotation versus length ratio for links 
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are suggested to use short links and decrease the link length 
as far as possible, so the maximum inelastic rotation and 
stable energy dissipation can be obtained. 

4. OPTIMUM DESIGN METHOD FOR LINKS 

 By means of studying the main influencing factors for 
links with varying length ratio, an optimum design method 
for links is developed according to the following steps: 

(1) Selection of link sections. The first members to be sized 
in EBFs are links, and the link shear force in each story 
can be derived by the accumulated story shear force, so 
the web depth and thickness of link can be determined by 
the shear forces and web slenderness. The flange width 
and thickness can be obtained by considering the effect 
of flange width-thickness ratio, which can be relaxed to 
10 235/fy  for short and long links and be limited to 
8 235/fy  for intermediate links. Then the link sections 
can be selected. 

(2) Stiffeners spacing. Stiffeners spacing of all types of links 
should only satisfy the provision. 

(3) Stiffeners place on side(s). Stiffeners of short and long 
links can only place on one side, but stiffeners of 
intermediate links are advisable to place on two sides. 

(4) Stiffeners thickness. The stiffeners thicknesses of all 
types of links are only required to satisfy the provision, 
more than 0.75tw and 10mm. 

 Moreover, short links will be the most proper links when 
the axial force should be considered, and the length ratio 
from 1.3 to 1.5 would be the best choice. 

CONCLUSION 

 Effective finite element investigation of 156 links is 
conducted to comprehensively study the main influencing 
factors and global behavior of all types of links with I-
shaped cross-section during cyclic loading. The conclusions 
are as follows: 

(1) The flange width-thickness ratio can be relaxed to 
10 235/fy for short and long links, and the flange  
 

 width- thickness ratio of intermediate links is always 
limited to 8 235/fy . 

(2) Analysis results indicate that stiffeners spacing of links 
with varying length ratio have no significant effect on the 
inelastic rotations, so it is suggested to satisfy the design 
spacing. Stiffeners of short and long links can only be 
placed on one side, but stiffeners of intermediate links are 
advisable to be placed on two sides due to the unstable 
behavior. 

(3) Different stiffeners thicknesses do not affect the failure 
modes and inelastic rotations significantly. Therefore, 
more than 0.75tw and 10mm that is considered the 
structural factor by the provision is suggested. 

(4) The effect of axial force of short links should only be 
considered when the axial force is more than 0.15fA, but 
the behaviors of intermediate and long links are unstable 
and susceptible to the axial forces, so it cannot be 
neglected under any condition. Furthermore, the ductility 
and strength of short links are better than the other links, 
it is suggested to use short links and decrease the link 
length when axial force should be considered, then the 
maximum inelastic rotation and stable energy dissipation 
can be obtained. 

(5) An optimum design method is proposed by analyzing the 
main influencing factors for all types of links. 
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