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Abstract: A NeuroFuzzy System (NFS) is one of the most commonly used systems in the real life problems because it 

has explicit and transparency which results from the fuzzy systems, with the learning and generalization capabilities from 

the dynamic behavior of the neural networks. It is one of the most successful systems, which introduced to decrement the 

fuzzy rules that constituting the underlying model. This system has a high efficiency; it gives good results in high speed. 

The NFS used in this study to predict the settlement of deep pile foundations. The results obtained from this system give 

good agreement and high precious for prediction of settlement compared with hyperbolic model and statistical regression 

analysis. Also, this scenario can be applied for similar or more complicated problems in the geotechnical engineering. 
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1. INTRODUCTION 

 The design of foundations is generally controlled by the 
criteria of bearing capacity and settlement; the latter is often 
governing. The problem of estimating the settlement of 
foundations is very complex, uncertain and not yet entirely 
understood. A developed neural network was used for the 
prediction of settlement of a vertically loaded pile foundation 
in a homogeneous soil stratum [1]. The input variables used 
in this study for the proposed neural network consisted of the 
time and load according to the field measurements. The 
desired output from the Neurofuzzy (NF) model training is 
obtained by means of field measurements results of the 
settlement. The NF output is the pile foundation settlement. 

 Over the last few years, the use of NF has increased in 
many areas of geotechnical engineering. The use of NF 
networks in which, the acquired knowledge can be translated 
into a set of fuzzy rules that describe the relationship 
between the network inputs and the corresponding outputs in 
a transparent fashion. In the present study, the ability of NF 
networks to predict settlement of deep pile foundations in 
deep soft soils and to assist with providing a better 
understanding regarding the relationships between settlement 
and the factors affecting on settlement is assessed. In the last 
years, when the fuzzy systems are being considered as highly 
nonlinear or they includes a large number of input variables, 
the number of fuzzy rules constituting the underlying model 
is usually large. Dealing with a large size fuzzy model can 
pose many practical problems, such as, the increase of 
training time for the system’s weights and the difficulty of 
updating them [2-4]. However, the model used in this study 
deals with the NF network to overcome these difficulties of 
the practical problems representing the settlement behavior 
in the deep soft soil area. 
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2. NEUROFUZZY NETWORKS 

2.1. Neurofuzzy Systems (NFS)  

 Existing fuzzy reasoning techniques suffer from the lack 
of a definite method to determine membership functions and 
a learning capability which can be overcome by neural 
networks driven fuzzy reasoning. Neural networks are used 
to tune the membership functions of fuzzy systems that are 
employed for controlling equipment. Although fuzzy logic 
has the ability to convert expert knowledge directly into 
fuzzy rules, it usually takes a lot of time to design and 
adjusts the linguistic labels (fuzzy sets) of the problem. In 
addition, the tuning of membership functions is a tricky 
procedure as it sometimes embodies a number of free 
parameters that must be assigned by an expert [3, 4]. Neural 
network techniques can automate this design procedure 
improving the performance and reducing the computational 
time. Neural network approach to design membership 
functions was proposed in 1989 [3]. The parameters, which 
define the shape of the membership functions, are modified 
to reduce error between output of the fuzzy system and 
supervised data [5-7]. 

 The resultant combined system for the Fuzzy System and 
the Neural Network is called NFS, which posses the 
advantage of both, and overcomes some of the drawbacks of 
individual approaches, such as black-box of neural networks 
and the limited learning capability of fuzzy systems [3, 5]. 
One additional advantage of NF networks is that available 
engineering knowledge can be incorporated into the trained 
network to optimize model performance and to enhance the 
interpretation of a constructed model [8]. 

2.2. NeuroFuzzy Network Structure 

 The structure of NFS is determined by the functions used 
to represent the fuzzy sets. A general layout of NF network, 
which used Mamdani fuzzy model, with multi-inputs and 
one output, is shown in Fig. (1). The architecture of this 
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network is analogous to that of artificial neural network with 
four-layers [3, 4, 7].  

 In the first layer, the fuzzification operator for each 
linguistic variable is performed using Gaussian membership 
functions, which is given in the following: 
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Where xj is the j
th

 input variable; aij and bij are the center and 
the width for the Gaussian membership function. 

 The outputs of the first layer are fed to the next layer that 
performs a T-norm operation (product operation) [3]. The 
output of this layer represents the firing strength of premise 
(antecedent) part for each rule, which can be calculated as 
following: 
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Where: m is the number of input variables. 

 The firing strength is normalized in the third layer 
through dividing its value by the summation of all the firing 
strengths of all rules as: 
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Where: n is the number of rules. 

 Finally, in the fourth layer, the summation of all the 
normalized values of Ui are multiplied by the corresponding 
weight ci which represents the center of membership 
function in the consequent-part of the rules [2-4], to produce 
the center-of-gravity defuzzification operation. The output of 

the fourth layer represents the crisp output value for the 
given inputs, which can be obtained by the following 
formula: 
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2.3. NeuroFuzzy System and Supervised Learning 

 The adjusted parameters in the NF network can be 
divided into two categories based on the IF-part (premise-
part) and THEN-part (consequent-part) parameters of the 
fuzzy rules [3, 5, 7]. In the premise-part, the center aij and 
the width bij of the Gaussian membership functions are being 
fine-tuned, whereas in the consequent-part, the adjusted 
parameters are the consequent weight ci. 

 A gradient descent based back propagation algorithm is 
used LMS error-function to adjust the parameters of the NF 
network using the training patterns [3]. The main goal of 
supervised learning algorithm is to minimize this error-
function, which has the formulas: 
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Where: E is the total error for the NFS. 

pE  is the error in the pattern p. 

pYd  is the desired output in the pattern p.  

pY is the actual output in the pattern p. 

 

Fig. (1). NeuroFuzzy system structure. 
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P is the patterns number. 

Z is the parameter vector (a11, …, anm; b11, …, bnm; c1, …, 

cn).  

 Fig. (2) shows the structure of the identification problem 
with NF model [2, 4]. 

 The objective function E(Z) with respect to all 

parameters in NFS, such as the centers aij and the widths bij 

for the input membership functions, and the centers ci for the 

output membership functions. 
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Where: i = 1,…, m ; {m is no. of input variables}  

 j = 1,…, n ; {n is no. of rules in NFS} 

ka, kb and kc are the learning rates, and t means the learning 
iteration. 

 The determination process of the initial values for the 

centers aij of the membership functions is very difficult. The 

NF network system provides easy way to minimize the 

difficulty of finding the centers aij, in this study, the Matlab 

program is used to solve the above equations as shown in 

Appendix A.  

3. DATA USED IN THE STUDY 

 This paper is a study of Beijing-Shanghai high-speed 
railway and measuring the settlement values of the Bridge 
with the time and load. The settlement is measured using the 
single point of settlement account meter. The data used in 
this study were taken from level gauge measurements of pile 
foundations processed of Beijing-Shanghai project at 
location DK124, piers D18 and D19 and at DK152, piers 
F371, F372 and F373 on 2009/10/27. The collected 
measurements included the displacement/mm and the 
relative amount of compression/mm. These values were 
measured for multiple depths and at different time intervals. 
The reading depths were different depending on the depth of 
the compressed layer under the pile. The study analysed 
these data in the NF network system to compare them with 
the hyperbolic and the statistical models in addition to 
predict the settlement as shown in the following items. 

4. SETTLEMENT OF PILE FOUNDATION 

 In bridge engineering, settlement of pile-group 
foundation is an important index reflecting construction 
safety and quality [9]. Calculation methods of settlement 
adopted by most of criteria are usually conservative and 
theory basis is scant and deficient [10]. For pile foundation, 
however, due to the difficulty in evaluating the interaction of 
pile-soil-pile system and the behavior of excess pore water 
pressure, quantitative prediction method for long-term 
settlement in soft ground soil still needs to be improved [11]. 
For performance-based design of pile foundations, it is 
necessary to develop a practical prediction method for long-
term displacements of pile foundation. Many prediction 
methods for the settlement in soft ground can be found, 
current methods of settlement calculations show different 
advantages and disadvantages [12-15]. 

 In this paper, the new monitoring technique by a single 
point of settlement level meter is used to measure the 
settlement in the deep soft soil. Calculation and prediction of 
pile group foundation settlement is still a research problem. 
The NFS models are used to predict the settlement of the 

 

Fig. (2). Identification problem with NeuroFuzzy model. 
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deep soft soils in the project with high accuracy compared 
with the previous methods. 

 Pile foundation is a great achievement of modern theory 
of interaction between pile and soil. There are two reasons 
why a pile foundation is more appropriate than a shallow 
foundation in a certain project. First is because of a low 
bearing capacity of the natural subsoil, in which piles are 
used to transfer the load to deeper soil layers or directly to 
hard bearing stratum. The second is the foundation cannot 
fulfill the requirements of tolerable deformation, and piles 
are used to reduce excessive settlement [16]. 

 In this paper, the pile foundation is used with length 
reached to 52 m to control the settlement in the deep soft soil 
area. The results show that the maximum settlement values 
measured during field testing are within the allowable limits 
by standard specifications. The TB10002.5-2005 code 
(3.2.1) specifies an allowable settlement of 40-80 mm [17], 
and the code “200 kilometres per hour passenger railway 
interim design provisions” specifies an allowable settlement 
of 50 mm [18]. Ballast railways have two requirements: the 
allowable settlement of a single foundation must be no more 
than 80 mm, while two adjacent foundations may have 
settlement of no more than 40 mm. The AASHTO code also 
has a limitation for settlement in the pile foundation not 

exceeds the value of 25 mm [19]. 

5. SETTLEMENT ANALYSIS WITH NEUROFUZZY 
MODEL 

 Neurofuzzy networks are modified recently in the field of 
geotechnical engineering. The field data are learned by the 
NF model using the trial and error of the Matlab program 
coding. The learning rates are discovered by many trials, 
then the final learning rates which estimated the values of 
settlement are ka = 0.00955; kb = 0.00907; kc = 0.00091; as 
shown in Appendix A. These learning rates give a good 
estimation for settlement, the estimated curve as shown in 
Fig. (3) for D18 of DK124 worksite, which indicates a 
matching results of that measured in the field. The final 
results of the model show also that the predicted settlement 
will be stable and within the final readings of the field 
measurements. In the same manner, the other models of 
Beijing-Shanghai project are tested using the NF model with 
good results as shown in Fig. (4) for D19 pier of DK124 
worksite, and Figs. (5-7) for piers F371, F372 and F373 
respectively of DK152 worksite. NF model can predict the 
values of settlement as shown in the following graphs using 
the programs coding in Appendix A, through applying long 
period of time out of the range of the learning data. 

 

Fig. (3). NF model compared with the field data of D18 pier, DK124. 

 

Fig. (4). NF model compared with the field data of D19 pier, DK124. 

0 200 400 600 800 1000

Time (days)

-8

-6

-4

-2

0

2

4

S
e

tt
le

m
e
n
t 

(m
m

) 
  
  

  
  
  

L
o

a
d
/1

0
M

N

Load Curve 

Field Settlement 

NF Settlement 

0 200 400 600 800 1000

Time (days)

-8

-6

-4

-2

0

2

4

S
e

tt
le

m
e
n
t 

(m
m

) 
  
  

  
  
  

L
o

a
d
/1

0
M

N

Load Curve 

Field Settlement 

NF Settlement 



82    The Open Civil Engineering Journal, 2014, Volume 8 Hussein Y. Aziz 

5.1. Comparison of Neurofuzzy Model with Hyperbolic 
Model 

 The settlement can be calculated at any time after loading 
completion through the use of the following equation [20]. 

S = S0 + (t / ( + ×t)) (10)  

Where: S is settlement amount at time t in mm, S0 is initial 
settlement amount (at the time of completion of girder 
construction according to the field measurements) in mm, t is 

 

Fig. (5). NF model compared with the field data of F371 pier, DK152. 

 

Fig. (6). NF model compared with the field data of F372 pier, DK152. 

 

Fig. (7). NF model compared with the field data of F373 pier, DK152. 
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time in days and α, β are coefficients. After a straight line is 
drawn, the coefficients  and  are calculated for the vertical 
axis and slope, respectively, as shown in Fig. (8). 

 Values of α = 8.394 and β = 0.505 are estimated 

according to the data for pier 18, and pier 19 have values of 

α = 30 and β = 0.25. The piers F371 and F373 have 

coefficient values of α = 80,  = 0.761 and α = 45, β= 1.29, 

respectively. As shown in Figs. (9-12), the settlement is 

predicted using the hyperbolic model which assumes an 

average settlement speed used to predict the settlement based 

on initial measured settlement amounts. The hyperbolic 

method is useful for settlement prediction in complex soil 

formations. However, the precision of the predicted 

settlement using the hyperbolic model is less than that 

predicted by the NF model, therefore, the last gives more 

agreement of the settlement prediction in the deep soft soil. 

The hyperbolic prediction of settlement for other models of 

 

Fig. (8). Hyperbolic function curve coefficients calculation. 

 

Fig. (9). Hyperbolic model compared with the NF model and the field data of D18, DK124. 

 

Fig. (10). Hyperbolic model compared with the NF model and the field data of D19, DK124. 
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Beijing-Shanghai project is not conservative; meanwhile, it 

is conservative for all the models using the NFS in the 

analysis and prediction of settlement. 

5.2. Comparison of Neurofuzzy Model with Statistical 
Model 

 The SAS software is used to derive the settlement 

prediction equation by considering time and load as 

independent variables and settlement readings as dependent 

variable [21]. Appendix B shows the log file of the input 

program which is used to find the run results. The following 

equation is derived for pier 18: 

St18 = – 0.812 – 2.674 L – 0.015 t +0.007 Lt  (11) 

Where: St18 is settlement value for pier 18 at time t in mm, L 

is the load/10MN and t is time in days. 

 The first parameter of the above equation constitutes the 

initial value of settlement in the statistical analysis. Fig. (13) 

shows the comparison between the predicted values of 

settlement of NF model and the statistical model of D18 in 

DK124 worksite, in addition to that predicted by the 

hyperbolic model. For pier F372 at worksite DK152, the 

statistical equation is derived from the field data as shown in 

the following: 

StF372 = – 4.291 – 2.771 L – 0.011 t + 0.007 Lt  (12) 

 Fig. (14) shows also the relation between the NFS 

prediction with the statistical regression of F372 in DK152. 

The NFS prediction gives good agreement compared with 

the other models and can be applied for similar problems to 

estimate the settlement of pile foundations. The statistical 

regressions of other models of the project are not 

conservative as the same manner in the hyperbolic model; 

therefore, the prediction of settlement is conservative using 

the NFS. More information about the statistical analysis and 

Eureqa Models are shown in Appendix C and Appendix D 

respectively. As shown from the results of Eureqa Models, 

 

Fig. (11). Hyperbolic model compared with the NF model and the field data of F371, DK152. 

 

Fig. (12). Hyperbolic model compared with the NF model and the field data of F373, DK152. 
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the data behaves in a good statistically manner. Observed vs. 

Predicted, Output vs. Row and Error/Complexity Pareto are 

shown in Eureqa Models which shows also the behaviour of 

data with stable curves and changeable behaviour that 

indicate the reasonability of the settlement and not its 

reaching to the dangerous limits. When compared NFS 

Models with Eureqa Models, the first shows more stable 

state behaviour and long duration behaviour, NFS is more 

suitable than other methods to predict the settlement of pile 

foundations.  

CONCLUSION 

 In recent years, NF networks have emerged as one of the 

most potentially successful modeling approaches in 

engineering. In particular, NFS have been applied to many 

areas of geotechnical engineering and have demonstrated 

considerable success. The objective of this study is to 

highlight the use of NFS in pile foundation engineering. The 

study describes NF techniques and its application in pile 

foundations settlement, as well as the salient features 

associated with NF model development. Therefore, the NF 

 

Fig. (13). NF model compared with hyperbolic model, statistical model and the field data of D18, DK124. 

 

Fig. (14). NF model compared with hyperbolic model, statistical model and the field data of F372, DK152. 
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model gives more accurate results to predict the settlement of 

deep pile foundations compared with other modeling 

approaches.  

 Experimental study of the issues raised by a single point 

of the settlement account of level joint test method measured 

by a series of compression curve and the total bridge pile 

foundation settlement. For the application of theoretical and 

engineering significance of compression settlement point by 

adjacent to a single point, the NFS gives good estimations of 

settlement compared with the field data.  
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Appendix 

APPENDIX A: THE NEUROFUZZY MODEL FOR LEARNING THE DATA  

1 First program 

clear all 

clc 

memb=5;          % these are the membership functions values 

iteration=5000; 

error = 0.0001; 

spreat=0.028; 

ka = 0.00955;  kb = 0.00907;    kc =0.00091; 

  

%-------------------------------------------------------------------------- 

data = xlsread('data.xls');     % read the Xls file and divide it to the 3 variables Time (t), Load (l), and Settlement (s) 

t= data(1:length(data), 1); 

l= data(1:length(data), 2); 

ste= data(1:length(data), 3); 

  

pattren=length (ste); 

max_t= max(t); 

max_l= max(l); 

max_ste= min(ste);     % we take minimum because the values of Settlement is Negative 

                       % Transfer all the Data to 0..1 depend on 

                       % its values and in the end of program we 

                       % will return the values  

t=t/max_t; 

l=l/max_l; 

ste=ste/max_ste; 

%-------------------------------------------------------------------------- 

% these are the high and low values for Time, Load and Settlement. 

high_t=max(t); low_t=min(t); 

high_l=max(l); low_l=min(l); 

  

high_s=max(ste); low_s=min(ste); 

%-------------------------------------------------------------------------- 

% calculate the increment for all inputs   

inctm=(high_t-low_t)/(memb-1); 

inclm=(high_l-low_l)/(memb-1); 

  

incsm=(high_s-low_s)/(memb-1); 

  

% calculate the centers for all input variables  

centt=low_t:inctm:high_t; 

centl=low_l:inclm:high_l; 

  

cents=low_s:incsm:high_s; 
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b1(1:memb)= spreat; 

b2(1:memb)= spreat; 

%-------------------------------------------------------------------------- 

% hold on 

  

e=999999; 

it=0; 

inter_arr=[]; 

error_arr=[]; 

while (e > error) && (it < iteration) 

  clc   

  e=0;     

  for i=1:pattren 

    s=0; 

  

    for j=1:memb 

      q1= -0.5 * ( (t(i) - centt(j)) / b1(j) ).^2; 

      if (q1 <= -32) 

        u1(j)= 0; 

      else 

        u1(j)= exp (q1); 

      end; 

       

      q2= -0.5 * ( (l(i) - centl(j)) / b2(j) ).^2; 

      if (q2 <= -32) 

        u2(j)= 0; 

      else 

        u2(j)= exp (q2); 

      end; 

  

      u_pr(j)= u1(j) * u2(j); 

      s= s + u_pr(j); 

    end 

     

    for j=1:memb 

      if s < 0.000000000001 

         u_bar(j)= 0; 

      else 

         u_bar(j)= u_pr(j) / s; 

      end 

    end 

     

    oy(i)= 0; 

    for j=1:memb 

       oy(i)= oy(i) + cents(j) * u_bar(j); 

    end 

     

    e= e + 0.5 * (ste (i) - oy(i)).^2; 

         

 %% Back propagation algorithm      

    for j=1:memb 

      kkk= (oy(i) - ste(i)) * (cents(j) - oy(i)) * u_bar(j);   

      ea1= kkk * ( (t(i) - centt(j)) / (b1(j)).^2 ); 

      ea2= kkk * ( (l(i) - centl(j)) / (b2(j)).^2 ); 

  

      eb1= kkk * ( (t(i) - centt(j)).^2 / (b1(j) * (b1(j)).^2 ) ); 

      eb2= kkk * ( (l(i) - centl(j)).^2 / (b2(j) * (b2(j)).^2 ) ); 

  

      ec= (oy(i) - ste(i)) * u_bar(j); 
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      centt(j)= centt(j) - ka * ea1; 

      centl(j)= centl(j) - ka * ea2; 

      b1(j)= b1(j) - kb * eb1; 

      b2(j)= b2(j) - kb * eb2; 

      cents(j)= cents(j) - kc * ec; 

    end; 

  

  end 

   

  it= it + 1; 

  disp ('Error in Network  =  '); 

  disp (e); 

  disp ('------------------------'); 

  disp ('Iteration         =  '); 

  disp (it); 

%   pause(0.001); 

  error_arr=[error_arr log(e)]; 

  inter_arr=[inter_arr it]; 

end 

  

% Transfer all the data to 0..1 depend on its values and in the end of program we will return the values.  

t=t*max_t; 

l=l*max_l; 

ste=ste*max_ste; 

oy=oy*max_ste; 

data(:,1)=t; 

data(:,2)=l; 

data(:,3)=ste; 

data(:,4)=oy; 

XLSWRITE('mydata.xls',data); 

plot (inter_arr, error_arr); 

% legend ('sin (x)');          

% xlabel ('x = 0: 2: pi');     

% ylabel ('sin (x)  cos (x)'); 

% title ('plot sin cos function');       

% hold  

2. Second program 

clear all 

clc 

memb=5;          % these are membership functions values 

iteration=5000; 

error = 0.0001; 

spreat=0.028; 

ka = 0.00951;  kb = 0.00907;    kc =0.0009; 

  

  

%-------------------------------------------------------------------------- 

data = xlsread('data.xls');     % read the Xls file and divide it to the 3 variables Time (t), Load (l), and Settlement (s) 

t= data(1:length(data), 1); 

l= data(1:length(data), 2); 

ste= data(1:length(data), 3); 

  

pattren=length (ste); 

max_t= max(t); 

max_l= max(l); 

max_ste= min(ste);              % we take minimum because the values of    

                                  Settlement is negative     
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                                % Transfer all the Data to 0..1 depend on 

                                % its values and in the end of program we 

                                % will return the values  

t=t/max_t; 

l=l/max_l; 

ste=ste/max_ste; 

%-------------------------------------------------------------------------- 

% these are the high and low values for Time, Load and Settlement. 

high_t=max(t); low_t=min(t); 

high_l=max(l); low_l=min(l); 

  

high_s=max(ste); low_s=min(ste); 

%-------------------------------------------------------------------------- 

% calculate the increment for all inputs   

inctm=(high_t-low_t)/(memb-1); 

inclm=(high_l-low_l)/(memb-1); 

  

incsm=(high_s-low_s)/(memb-1); 

  

% calculate the centers for all input variables  

centt=low_t:inctm:high_t; 

centl=low_l:inclm:high_l; 

  

cents=low_s:incsm:high_s; 

  

b1(1:memb)= spreat; 

b2(1:memb)= spreat; 

%-------------------------------------------------------------------------- 

% hold on 

  

e=999999; 

it=0; 

inter_arr=[]; 

error_arr=[]; 

while (e > error) && (it < iteration) 

  clc   

  e=0;     

  for i=1:pattren 

    s=0; 

  

    for j=1:memb 

      q1= -0.5 * ( (t(i) - centt(j)) / b1(j) ).^2; 

      if (q1 <= -32) 

        u1(j)= 0; 

      else 

        u1(j)= exp (q1); 

      end; 

       

      q2= -0.5 * ( (l(i) - centl(j)) / b2(j) ).^2; 

      if (q2 <= -32) 

        u2(j)= 0; 

      else 

        u2(j)= exp (q2); 

      end; 

  

      u_pr(j)= u1(j) * u2(j); 

      s= s + u_pr(j); 

    end 
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    for j=1:memb 

      if s < 0.000000000001 

         u_bar(j)= 0; 

      else 

         u_bar(j)= u_pr(j) / s; 

      end 

    end 

     

    oy(i)= 0; 

    for j=1:memb 

       oy(i)= oy(i) + cents(j) * u_bar(j); 

    end 

     

    e= e + 0.5 * (ste (i) - oy(i)).^2; 

         

 %% Back propagation algorithm      

    for j=1:memb 

      kkk= (oy(i) - ste(i)) * (cents(j) - oy(i)) * u_bar(j);   

      ea1= kkk * ( (t(i) - centt(j)) / (b1(j)).^2 ); 

      ea2= kkk * ( (l(i) - centl(j)) / (b2(j)).^2 ); 

  

      eb1= kkk * ( (t(i) - centt(j)).^2 / (b1(j) * (b1(j)).^2 ) ); 

      eb2= kkk * ( (l(i) - centl(j)).^2 / (b2(j) * (b2(j)).^2 ) ); 

  

      ec= (oy(i) - ste(i)) * u_bar(j); 

  

      centt(j)= centt(j) - ka * ea1; 

      centl(j)= centl(j) - ka * ea2; 

      b1(j)= b1(j) - kb * eb1; 

      b2(j)= b2(j) - kb * eb2; 

      cents(j)= cents(j) - kc * ec; 

    end; 

  

  end 

   

  it= it + 1; 

  disp ('Error in Network  =  '); 

  disp (e); 

  disp ('------------------------'); 

  disp ('Iteration         =  '); 

  disp (it); 

%   pause(0.001); 

  error_arr=[error_arr log(e)]; 

  inter_arr=[inter_arr it]; 

end 

  

oper(:,1)= centt; 

oper(:,2)= centl; 

oper(:,3)= cents; 

oper(:,4)= b1; 

oper(:,5)= b2; 

XLSWRITE('operators.xls',oper); 

  

% Transfer all the Data to 0..1 depend on its values and in the end of program we will return the values. 

t=t*max_t; 

l=l*max_l; 

ste=ste*max_ste; 

oy=oy*max_ste; 
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data(:,1)=t; 

data(:,2)=l; 

data(:,3)=ste; 

data(:,4)=oy; 

XLSWRITE('mydata.xls',data); 

  

plot (inter_arr, error_arr); 

% legend ('sin (x)');          

% xlabel ('x = 0: 2: pi');     

% ylabel ('sin (x)  cos (x)'); 

% title ('plot sin cos function');       

  

% hold off 

3. Third program 

clear all 

clc 

memb=5;          % these are membership functions values 

%-------------------------------------------------------------------------- 

oper= xlsread('operators372.xls'); 

centt= oper(1:length(oper),1); 

centl= oper(1:length(oper),2); 

cents= oper(1:length(oper),3); 

b1= oper(1:length(oper),4); 

b2= oper(1:length(oper),5); 

  

data = xlsread('dataF372.xls');     % read the Xls file and divide it to the 3 variables Time (t), Load (l), and Settlement (s) 

t= data(1:length(data), 1); 

l= data(1:length(data), 2); 

ste= data(1:length(data), 3); 

  

pattren=length (t); 

max_t= max(t); 

max_l= max(l); 

max_ste= min(ste);              % we take minimum because the values of Settlement is Negative     

t=t/max_t; 

l=l/max_l; 

ste=ste/max_ste; 

for i=1:pattren 

    s=0; 

    for j=1:memb 

      q1= -0.5 * ( (t(i) - centt(j)) / b1(j) ).^2; 

      if (q1 <= -32) 

        u1(j)= 0; 

      else 

        u1(j)= exp (q1); 

      end; 

       

      q2= -0.5 * ( (l(i) - centl(j)) / b2(j) ).^2; 

      if (q2 <= -32) 

        u2(j)= 0; 

      else 

        u2(j)= exp (q2); 

      end; 

  

      u_pr(j)= u1(j) * u2(j); 

      s= s + u_pr(j); 

    end 
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    for j=1:memb 

       u_bar(j)= u_pr(j) / s; 

  

    end 

     

    oy(i)= 0; 

    for j=1:memb 

       oy(i)= oy(i) + cents(j) * u_bar(j); 

    end 

end 

  

% Transfer all the Data to 0..1 depend on its values and in the end of program we will return the values  

t=t*max_t; 

l=l*max_l; 

ste=ste*max_ste; 

oy=oy*max_ste; 

  

data(:,1)=t; 

data(:,2)=l; 

data(:,3)=oy; 

XLSWRITE('18.xls',data); 
 

APPENDIX B 

Code file of settlement data for pier D18 

data bridge; 

input Settlement load time; 

Interaction = load*time; 

cards; 

 

 

 
0 0 0 

0 0.1603333 1 
-0.52 0.325 2 

-1.11 0.481 3 

-1.57 0.481 4 
-1.8 0.481 5 

-1.91 0.481 6 

-2.13 0.481 8 
-2.31 0.481 9 

-2.48 0.481 10 

-2.53 0.481 11 
-2.67 0.481 12 

-2.84 0.481 17 

-2.94 0.481 19 
-3.17 0.481 21 

-3.28 0.481 22 

-3.28 0.481 24 

-3.37 0.481 28 

-3.41 0.481 35 

-3.42 0.481 71 
-3.52 0.481 102 

-3.61 0.481 117 

-3.61 0.481 138 
-3.64 0.481 153 

-3.75 0.481 169 

-4.49 1.684 183 
-6.22 1.684 211 

-6.52 1.684 273 

-6.58 1.684 274 
-6.61 1.7905 288 

-6.61 1.870375 296 

Settlement  
Load  

Time  
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-6.64 1.9302813 319 

-6.65 1.9752109 320 

-6.67 2.0089082 361 

-6.68 2.11 370 

-6.83 2.11 378 

-6.89 2.11 385 
-6.95 2.11 393 

-7.01 2.11 424 

-7.07 2.11 433 
-7.13 2.11 438 

 

ODS GRAPHICS ON; 

PROC univariate Data = bridge; 

qqplot time; 

run; 

PROC Reg Data = bridge; 

model Settlement = load time Interaction;  

plot predicted.*residual.; 

run; 

PROC Reg Data = bridge; 

model Settlement = time;  
run; 

APPENDIX C 

Data Used in the Study 

 The data used in this study were taken from level gauge measurements of pile foundations processed at locations DK124 
and DK152 that started on 2009-10-27. The measurements collected included the displacement/mm and the relative amount of 
compression/mm. These values were measured for multiple depths and at different time intervals. The reading depths were 
different depending on the depth of the compressed layer under the pile. The study represented these data in a graphical form of 
the experimental results to predict settlement of deep soft soils. Tables C-1 and C-2 show the geotechnical properties and 
parameters of the soft soil in the DK124 and DK152 worksites respectively. 

Table C-1. Soil characteristics and strength parameters at the DK124 working points. 

Sampling 

Depth (m) 
 % γunsat (kN/m3) γsat (kN/m3) e k (m/day)  

av 

(MPa-1) 
c (kPa)  (Degree) 

Ψ 

(Degree) 

1.07 30.7 17.7 18.0 0.849 0.086 0.32 0.51 14 8.5 0.0 

4.37 27.4 18.3 18.6 0.813 0.086 0.31 0.17 15.9 9.2 0.0 

9.37 31.1 18.2 18.5 0.852 0.432 0.32 0.47 11.0 10.6 0.0 

19.57 26.7 19.4 19.5 0.756 0.432 0.30 0.41 25.6 13.5 0.0 

24.82 22.9 19.3 19.5 0.651 0.432 0.30 0.25 20.9 16.7 0.0 

26.37 24.2 20.4 20.6 0.658 0.864 0.29 0.32 21.4 30.8 0.8 

30.72 26.0 18.7 18.9 0.737 0.086 0.29 0.23 96.8 14.6 0.0 

41.97 28.2 18.9 19.2 0.804 0.432 0.28 0.31 35.6 15.5 0.0 

46.27 24.7 19.2 19.4 0.677 0.432 0.28 0.13 42.0 21.3 0.0 

53.07 30.6 19.4 19.7 0.887 0.043 0.27 0.20 43.8 17.1 0.0 

57.57 27.4 20.0 20.2 0.772 8.64 0.28 0.29 8.9 32.7 2.7 

69.57 18.9 19.4 19.7 0.587 0.043 0.27 0.18 43.8 17.1 0.0 

73.17 28.2 20 20.2 0.820 8.64 0.28 0.34 8.9 32.7 2.7 

80.67 23.9 19.2 19.5 0.685 0.043 0.27 0.23 44.7 15.5 0.0 

83.57 23.2 20.2 20.4 0.673 8.64 0.28 0.24 13.7 36.2 6.2 

Where:  Water content; γunsat : The unsaturated unit weight of soil; γsat : The saturated unit weight of soil; e: Void ratio; k: Permeability;  : Poisson’s ratio;  

av: Compressibility; Es: Compression modulus; c: Cohesion; : Internal friction angle; ψ: Dilatancy angle. 
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Table C-2. Soil characteristics and strength parameters at the DK152 working points. 

Sampling  

Depth (m) 
 % γunsat (kN/m3) γsat (kN/m3) e k (m/day)  

av 

(MPa-1) 
c (kPa) 

  

(Degree) 

Ψ 

(Degree) 

3.3 30.7 17.7 18.9 0.849 0.086 0.30 0.51 52.5 14.8 0.0 

13.7 27.4 18.6 18.9 0.813 0.432 0.30 0.17 16.6 11.2 0.0 

16.2 31.1 19.4 19.6 0.852 0.432 0.30 0.47 17.0 13.2 0.0 

21.4 26.7 19.7 20.0 0.756 8.64 0.28 0.41 6.8 37.7 7.7 

25.5 22.9 19.4 19.6 0.651 0.432 0.30 0.25 17.0 13.2 0.0 

28.1 24.2 19.9 20.6 0.658 0.864 0.29 0.32 14.8 29.1 0.0 

30.3 26.0 19.1 19.3 0.737 0.432 0.28 0.23 35.8 20.1 0.0 

34.2 28.2 18.9 19.2 0.804 0.864 0.29 0.31 31.4 24.5 0.0 

38.7 24.7 19.8 20.0 0.677 8.640 0.28 0.13 6.8 37.7 7.7 

41.7 30.6 18.3 18.4 0.887 0.086 0.31 0.20 30.0 11.2 0.0 

43.4 27.4 19.3 20.2 0.772 0.086 0.29 0.29 18.0 11.5 0.0 

51.3 18.9 19.5 19.6 0.587 0.043 0.27 0.18 29.0 18.0 0.0 

55.1 28.2 19.0 20.2 0.820 0.086 0.29 0.34 38.5 10.9 0.0 

64.7 23.9 19.2 19.4 0.685 0.086 0.29 0.23 42.3 21.8 0.0 

73.0 23.2 19.9 20.4 0.673 8.64 0.28 0.24 11.6 39.0 9.0 

Settlement Prediction by Hyperbolic Modeling 

 The settlement can be calculated at any time after loading completion through the use of the following equation (C-1). 

S = S0 + (t / ( + ×t)) (C-1) 

Where: S is the settlement amount at time t in mm, So is the initial settlement amount (at the time of completion of girder 
construction according to the field measurements) in mm, t is the time in days as explained previously in the paper.  

 Figs. (C-1 and C-2) clearly show the settlement field measurements of the loads imposed, with the required construction 
time, in addition to the predicted settlement for a period longer than that of the field test. The results show that long-term 
settlement will not be large as compared to the site measurements. The predicted settlement values are about 6.5 mm for pier 
No. 18, and 8 mm for pier No. 19 in the DK124 worksite. The predicted curves closely match the experimental curves and 
indicate that the structure will not be affected by the long-term consolidation. The initial settlement was considered for this 
model at the time of beam girder construction. After this initial value, the settlement increased abruptly to reach its maximum 
predicted value. 

 As shown in Figs. (C-3 and C-4), the long-term settlement predicted by the hyperbolic model for piers F371 and F373, 
respectively closely matched the field test results. The piers F371 and F373 have coefficient values of  = 80,  = 0.761 and  
 = 45, = 1.29, respectively. 
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Fig. (C-1). Field settlement, load overtime and predicted settlement curves for pier No. 18. 

 

Fig. (C-2). Field settlement, load overtime and predicted settlement curves for pier No. 19. 

 

Fig. (C-3). Field settlement, load overtime and predicted settlement curves for pier No. F371. 
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Fig. (C-4). Field settlement, load overtime and predicted settlement curves for pier No. F373. 

Settlement Prediction by Statistical Regression 

 Appendix B shows the log file of the input program that is used to find the output results.  

 The settlement during the testing time and settlement prediction can be calculated by the equation for pier 18 which 
mentioned previously in 5-2 as shown in Fig. (C-5).  

 

Fig. (C-5). Settlement at pier No. 18 calculated by the statistical regression method. 

 For pier F372 at worksite DK152 the statistical analysis as shown in Fig. (C-6). The predicted settlement has a slight 
downward trend but remains controlled and within the limits allowed for the long-term settlement. In the statistical analysis, the 
data have random readings; therefore, they are adjusted for this aspect to get better results and this may be considered as 
disadvantage in the statistical regression.  

 From the results obtained in the output of the program shown in Appendix B, the pattern in Fig. (C-7) indicates that it may 
assume that the residuals are not normally distributed and constant in variance at each level of the predicted values. Also, 
according to QQ-plot analysis, the data are supposed to be normally distributed if the plot forms a straight line, whereas if the 
plot creates some upward or downward curvatures, the data are supposed to be right-skewness and left-skewness, respectively. 
In the QQ plot shown in Fig. (C-8), the up and down wave form supports indicated that the predicted settlement is not normally 
distributed. Therefore, the previous discussion explains that the data of the project used in this study are difficult to be analyzed 
by the statistical models, so the next sections will deal with the three dimensional finite element analysis with new modification 
to get better results of settlement in the deep soft soils.  
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Fig. (C-6). Settlement at pier No. F372 calculated by the statistical regression method. 

 

Fig. (C-7). Residual versus predicted value at pier No.18. 

 

Fig. (C-8). Settlement versus normal quantiles at pier No.18. 
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The correlation coefficient (R
2
) gives more information about the training of network. According to this study the correlation 

coefficient (R
2
) value up to 0.991 for training and testing data sets, and Y = 0.007X+0.041. The results show the ability of an 

adaptive neuro-fuzzy inference system to predict the damage severity of the structure with high accuracy. Mean Square Error 
(MSE) is equal to: MSE [T(Y); U] = E [(T(Y) – U)

2
], it is equal to  0.003958 as shown in Fig. (C-9). 

 

Fig. (C-9). MSE for the training and testing set at pier No.18. 

 Table C-3 shows the statistical information of the predicted data by using NFS. 

Table C-3. Statistical information of the predicted data by using NFS. 

Standard Deviation Min. Max. Mean 

2.228711 0 7.13 4.77416 

 

APPENDIX D 

Eureqa Models 

Model List 

Model Observed vs. Predicted Output vs. Row Error/Complexity Pareto 

Model: 
y = a*cos(b - c*x - d*cos(e + -

f/(g*x - cos(-h*w)) - i*x - j*w)) 

Text: 

y = 2.30065*cos(1.45106 - 

0.00209287*x - 

0.231973*cos(4.88499 + -

0.0416226/(0.00162701*x - 
cos(-0.351446*w)) - 

0.0151917*x - 0.126046*w)) 
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Model Observed vs. Predicted Output vs. Row Error/Complexity Pareto 

Model: 
y = a*cos(b - c*x - d*cos(e + -
f/(g*x - h) - i*x - j*w)) 

Text: 

y = 2.31714*cos(1.44466 - 

0.00206066*x - 
0.225726*cos(4.77843 + -

0.133682/(0.00506785*x - 

0.964676) - 0.014796*x - 
0.117047*w)) 

 

   

Model: 
y = a*cos(b - c*x - d*cos(e + -

f/(g*x - h) - i*x)) 

Text: 

y = 2.3359*cos(1.43435 - 

0.00208401*x - 

0.210236*cos(5.05226 + -
0.0468981/(0.00531117*x - 

0.984331) - 0.014207*x)) 
 

   

Model: 
y = a - b*cos((c + x2 - 

d*x)/(e*x - f - g*x2)) 

Text: 

y = 1.29901 - 
0.819268*cos((1689.94 + x^2 - 

130.848*x)/(82.5196*x - 

17539.8 - 0.330703*x^2)) 
 

   

Mode

l: 

y = -a*x/(b*w + x*w - cos(-
c*w)) - d*w - e*cos(f*w)*sin(g 

+ h*x) 

Text: 

y = -0.384567*x/(2.5413*w + 
x*w - cos(-2.75023*w)) - 

0.304951*w - 

1.07184*cos(0.230234*w)*sin(0
.112242 + 0.0138401*x) 

 

   

Mode

l: 

y = -a*x/(b*w + x*w - c) - d*w - 

e*cos(f*w)*sin(g + h*x) 

Text: 

y = -0.372967*x/(2.11815*w + 
x*w - 0.0956009) - 0.305251*w 

- 
1.06933*cos(0.230186*w)*sin(0

.11412 + 0.0138555*x) 
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Model Observed vs. Predicted Output vs. Row Error/Complexity Pareto 

Mode

l: 

y = -a*x/(b*w + x*w) - c*w - 

d*cos(e*w)*sin(f + g*x) 

Text: 

y = -0.372932*x/(2.30444*w + 
x*w) - 0.305251*w - 

1.069*cos(0.23019*w)*sin(0.11

2471 + 0.0138632*x) 
 

   

Mode

l: 

y = -a*x/(x*w - b) - c*w - 

d*cos(e*w)*sin(f + g*x) 

Text: 

y = -0.347421*x/(x*w - 

1.08264) - 0.305689*w - 

1.0642*cos(0.230247*w)*sin(0.

127317 + 0.0137664*x) 
 

   

Mod

el: 

y = a/(b - c*w) - d*w - 

e*cos(f*w)*sin(g + h*x) 

Text: 

y = 0.0833903/(0.167855 - 
0.263315*w) - 0.307905*w - 

1.04126*cos(0.229181*w)*sin(0.

0834108 + 0.0141917*x) 
 

   

Mode

l: 

y = -a/(w - b) - c*w - 

d*cos(e*w)*sin(f + g*x) 

Text: 

y = -0.448645/(w - 0.921867) - 
0.305076*w - 

1.04774*cos(0.229841*w)*sin(0

.119473 + 0.0138623*x) 
 

   

Mode

l: 

y = a - b*w - c*cos(d*w)*cos(e 

+ f*x - g*w) 

Text: 

y = 0.169999 - 0.288049*w - 
1.07602*cos(0.23035*w)*cos(4.

77206 + 0.0136656*x - 

0.0160478*w) 
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Mod
el: 

y = -a/w - b*w - 
c*cos(d*w)*sin(e + f*x) 

Text: 

y = -0.110984/w - 0.312571*w - 

1.04536*cos(0.228251*w)*sin(0.
0167447 + 0.0145702*x) 

 

   

Mode
l: 

y = a - b*w - c*cos(d*w)*cos(e 
+ f*x) 

Text: 

y = 0.169991 - 0.287994*w - 

1.07427*cos(0.230425*w)*cos(4
.80185 + 0.0137989*x) 

 

   

Mod
el: 

y = a - b*w - 
c*sin(d*x)*cos(e*w) 

Text: 

y = 0.0618919 - 0.30506*w - 

1.0643*sin(0.0145879*x)*cos(0.
229141*w) 

 

   

Model
: 

y = a - sin(b*x)*cos(c*w) - d*w 

Text: 

y = 0.0517325 - 

sin(0.0148312*x)*cos(0.22667*
w) - 0.307702*w 

 

   

Model: y = sin(-a*x)*cos(-b*w) - c*w 

Text: 
y = sin(-0.0148891*x)*cos(-

0.223831*w) - 0.31763*w 
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Model: y = a + x2/(b + x2 - c*x) 

Text: 
y = 0.477783 + x^2/(96163 + 

x^2 - 398.901*x) 
 

   

Model: y = -a*sin(-b*x)/w - c*w 

Text: 
y = -2.15477*sin(-

0.0153494*x)/w - 0.327939*w 
 

   

Model: y = a + b*x - c*cos(d*x) 

Text: 
y = 0.945533 + 0.00177828*x - 

0.49458*cos(0.00752338*x) 
 

   

Model: y = a*sin(-b*x) - c*w 

Text: 
y = 0.624069*sin(-

0.0157107*x) - 0.311543*w 
 

   

Model: y = a + b*x - c*x2 

Text: 
y = 0.393479 + 0.00595572*x - 

4.4983e-6*x^2 
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Model: y = a*sin(b + c*x) 

Text: 
y = 2.44793*sin(0.172041 + 

0.00214494*x) 
 

   

Model: y = a - cos(-b*x) 

Text: 
y = 1.47901 - cos(-

0.00575565*x) 
 

   

Model: y = a + b*w2 

Text: y = 0.347961 + 0.0385729*w^2 
 

   

Model: y = -a - b*w 

Text: y = -0.1258 - 0.330803*w 
 

   

Model: y = -a*w 

Text: y = -0.311868*w 
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Model: y = a 

Text: y = 0.481 
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