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Abstract: Subject to various factors under loading, bridges appear to be discrete. Thus, it is unavoidable to take the prac-
tical bridge into consideration with regard to the bridge deflection forecasting. Given this, the Bayesian dynamic forecast-
ing theory is introduced to forecast the bridge deflection. Since the bridge deflection can stay stable in a long term, create 
constant mean discount Bayesian conditional equation and observational equation and deduce the Bayesian posterior 
probability of the bridge deflection conditional parameters on the basis of the prior information of the parameters. With 
recursive deduction, the conditional parameters keep updating as observational data are imported. The results of Bayesian 
forecasting comprise values and confidence interval, which makes it more instructive. Finally, practical examples are 
adopted to examine the superior performance of Bayesian dynamic forecasting theory.  
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1. INTRODUCTION 

The bridge deflection is an important parameter in terms 
of evaluating the safety performance of a bridge. It is closely 
related to the bridge load-bearing ability and too large de-
flection can directly influence the speed and comfort of traf-
fic load on the bridge that is why it is important to be perma-
nently monitored. Subjective factors such as external load-
ing, internal prestress, concrete elasticity modulus and creep 
and shrinkage together with observational errors lead to dis-
crete and uncertain examined deflection data. 

Traditional means of forecasting including regression 
forecasting, parameters smoothing and linear time series 
forecasting create statistical models to obtain conventional 
forecasting, given the sample information and model infor-
mation, and mechanically transform the input information 
into output information. The final result of these kinds of 
forecasting is just a specific value, which however, is quite 
uncertain and the limits of the uncertainty cannot be defined. 
Conventional means of forecasting treat the forward infor-
mation and the recent information in the same way. Howev-
er, as a matter of fact recent information is far more im-
portant than forward information [1].  

Studying dynamic models, Bayesian dynamic forecasting 
is a time series forecasting means, the basic thought behind 
which is to integrate the forecaster’s experience as known 
condition into practical model, create a dynamic model based 
on model, data and prior information (information on un-
known parameters of the overall distribution) and deduce the 
Bayesian posterior probability of the state parameters [2].  
 

*Address correspondence to this author at the School of Civil Engineering 
and Transportation, South China University of Technology, Guangzhou, 
510640, China; E-mail: cvqshyan@scut.edu.cn. 

This process is not about simply inputting data and calculat-
ing to get the final result; however it deduces from the ob-
tained posterior distribution information, thus men are in-
volved in the forecasting process, which makes the prior 
uncertain matters controllable. As a matter of fact the fore-
casting result will be more accurate. 

This article samples finite observed deflection data, cre-
ates constant mean discount Bayesian model to forecast the 
deflection in the later stage and showcase the advantage of 
Bayesian dynamic forecasting theory regarding uncertain 
issues [3]. 

2. BAYESIAN FORECASTING THEORY 

Bayesian forecasting does not only employ information 
of samples but also makes full use of the prior information of 
the samples. During the deduction, Bayesian forecasting 
requires that the prior information should be presented in the 
way of probability distribution of the unknown parameters 
(prior distribution), constantly correct prior distribution by 
importing sampling information to obtain posterior distribu-
tion and calculate the forecasting values. The forecasting 
mode is: prior distribution + sample information → posterior 
distribution [4]. See Bayesian forecasting recursive algo-
rithm in Fig. (1). Here θt represents the state parameter at 
time t; yt represents the observed data at time t; Dt represents 
all the effective information set before and at time t, Dt={yt, 
Dt-1}.  

Starting with the basic theory of Bayesian statistics, 
Bayesian forecasting not only avails the prior data infor-
mation but also incorporates forecaster’s experience and 
judgment. Having integrated both subjective and objective 
factors, it is more flexible considering the unusual condi-
tions. This forecasting can not only calculate the value but 
also the confidence interval, obtaining more instructive re-
sults [5-7]. 
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Fig. (1). Recursive steps of Bayesian dynamic model. 
 
3. CONSTANT MEAN DISCOUNT MODEL 

3.1. Bayesian Dynamic Linear Model 

Same as conventional means of forecasting, Bayesian 
forecasting also needs to create a model. However, the dif-
ference lies in the fact that a dynamic model is required in 
the case of Bayesian forecasting. The dynamic linear model 
comprises a system of two equations, which can be described 
as: (1) how the observation of the process randomly relies on 
current state parameters; (2) how state parameters change as 
time increases, illuminating the dynamic changes and ran-
dom disturbance of the interval system [1, 6]. Specifically, 
Bayesian dynamic linear model (BDLM) works on the basis 
of two hypothesis:  
 

 
Fig. (2). Bayesian dynamic model. 

 
(1) state variables θt(t=1, 2,…,T) constitute a Markov 

chain, where the relationship between θt and θt-1 is linear; 
(2) observational variables yt(t=1, 2,…,T) are independ-

ent of each other and yt is only related to θt; the relationship 
between yt and θt is linear. 

Fig. (2) is a BDLM sketch based on the above two hy-
pothesis. For each t(t=1,2,…, T), the model corresponds to a 
set of four elements: {F,G,V,W}t={Ft,Gt,Vt,Wt}. Assume 
that both the observational variables and the state variables 
are random variables from the normal distribution, then for 

any time t [1]:  (1) 

where yt represents r×1-dimension observational vector; 
θt represents n×1-dimension state parameter vector; Ft repre-
sents n×r-dimension regression matrix; Gt represents n×n-
dimension state mobility matrices; νt represents r-dimension 
normal zero mean observational error, the variance of which 
is Vt; ωt represents n-dimension normal zero mean state er-
ror, the variance of which is Wt. Equation (1) can be detailed 
as observational equation and state equation: 

Observational equation: 

yt= Ft
’θt+νt, νt ~N[O,Vt]               (2)  

State equation: 

θt=Gtθt-1+ωt,ωt~N[O,Wt]  (3) 
Here both state variable θt and observational variables yt 

are univariates, thus, 
BDLM{Ft,Gt,Vt,Wt}= BDLM{Ft,Gt,Vt,Wt}. 

3.2. Constant Mean Discount Model 

Constant mean discount model is a BDLM with 
 Ft=1,Gt=1, an unknown Wt, and a discount factor δ. State 
observational equation and state equation are presented as [8, 
9]: 

Observational equation: 

yt=θt+νt, νt ~N[0,Vt]  (4) 
State equation: 

θt=θt-1+ωt, ωt~N[0,Wt]   (5) 
Derived from objective uncertainty caused by the lack of 

knowledge, it is not easy to calculate Wt . To solve this prob-
lem, discount factor δ(0<δ<1) is introduced in the model, 
Wt=Ct-1(1/δ-1), Ct-1 represents the state variance at time t-1 
[10]. 

As for unknown Vt, φt= Vt
 -1 .Suppose (φt|θt)~Γ(nt/2,dt/2) 

then E(φt|θt)= nt/dt=1/St, for any large nt , St nearly equals Vt. 
See the recursion of nt and dt in section 2.3. During the de-
duction, estimate and with regard to the examined sample 
information and correct state parameters with recursion 
equation [1, 11].  

A remarkable feature of constant mean model is 
E[yt+k|θt]=θt, E[θt+k|θt]=θt, which is usually availed of in the 
forecasting of randomly fluctuating and steadily changing 
data. From the prior research experience, the author finds 
that the deflection can keep steady for a long time. Constant 
mean discount model forecasting is more accurate. 

3.3. The Recursion and Correction of Constant Mean 
Discount Model 

The recursion and correction process of constant mean 
discount model (observational variance Vt is unknown) is 
similar to Kalman filtering [12-14]. Below are the steps: 

(1) the posterior distribution of state parameters , mean 
mt-1 , and variance Ct-1 at time t-1. 
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where Dt-1 represents the set of all the effective infor-
mation before and at time t-1. For large nt-1,  
nearly equals normal distribution , St-1 nearly 
equals the observational variance Vt-1. 

(2) the prior distribution of state parameters and one-step 
forward forecasting at time t. 

   (7) 

where Rt=Ct-1/δ (state variance), ft=mt-1 (one-step fore-
casting result), et=yt-ft (one-step forecasting error), Qt=St-

1+Rt (one-step forecasting variance). According to the defini-
tion of HPD (the highest posterior density) confidence inter-
val, the HPD confidence interval with 95% assurance rate is: 

   (8) 

(3) the posterior distribution of state parameters at time t 

   (9) 

where correction factor At=Rt/Qt. It is easy to know that 
0<At<1. 

3.4. Dereferencing of the Discount Factor 

The discount factor δ is an important parameter. The 
larger the δ is, the more stable the model will be. Meanwhile 
the anti-intervention ability will be stronger. However, the 
state parameters are difficult to be corrected. The smaller the 
state parameters are, the easier it is to correct the state pa-
rameters. However at the same time the model is more sensi-
tive to observational data and it is more disturbed by the 
noise. Thus, to obtain a reliable forecasting result it is im-
portant to select an appropriate δ. When it is not easy to de-
termine the value of δ, conduct forecasting with models of 
different δ. Then compare the forecasting result and choose 
the most appropriate δ as the discount factor of the model. 
This article adopts mean absolute deviation MAD and mean 
square error MSE as the measurement of evaluating the fore-
casting performance.  

Below are the calculating equations of MAD and MSE re-
spectively: 

    (10) 

       (11) 

In the above equations, et represents one-step forecasting 
error, and T represents the data size. The smaller the MAD 
and MSE are, the better the forecasting performance will be. 
Assume the discount factors δ1 and δ2 can lead to the mini-

mum value then take the average of the two as the discount 
factor for the constant mean model. 

4. EXAMPLES 

Suppose Table 1 are the monitored deflection data of a 
middle-span in 24 successive months and the monitored fre-
quency is once a month. Forecast the cumulative deflection 
when t=25. 

 
Table 1.  Observed deflection data of middle-span. 

t 

 (day) 

Deflection 

(mm) 

t  

(day) 

Deflection 

(mm) 

1 -0.78 13 1.93 

2 -3.94 14 8.28 

3 6.03 15 5.09 

4 2.14 16 12.06 

5 6.39 17 10.44 

6 4.08 18 5.40 

7 8.33 19 9.14 

8 5.32 20 11.24 

9 6.32 21 10.12 

10 7.53 22 15.28 

11 2.74 23 9.54 

12 3.90 24 10.44 

 

 
Fig. (3). Monitored deflection data of a middle-span. 
 

Present the monitored data in the form of Fig. (3). As we 
can see the monitored data fluctuate randomly and change 
steadily. Thus, constant mean discount Bayesian model is 
suitable to be applied in the bridge deflection forecasting. 
The above has pointed out that state error variance Wt re-
flects the data’s random change, and it can be expressed by 
means of discount factor δ. Choose 0.1, 0.2,…, 0.9 as the 
value of δ and suppose the initial prior distribution parame-
ters m0=0, C0=100, n0=1, d0=100 (This supposition is quite 
blurry, but it can be seen from later recursion that the distri-
bution parameters are corrected constantly). Calculate the 
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MAD and MSE of different δ values (see Fig. 2), draw δ-
MAD curve (Fig. (4)) and 和δ-MSE curve (Fig. (5)) and 
compare the forecasting performance of corresponding mod-
els. When δ1=0.5, MAD has the minimum value; when 
δ2=0.6, MSE has the minimum value. Then choose 
δ=(δ1+δ2)/2=0.55 as the discount factor for the experimental 
model (Table 2).  
 
Table 2.  The comparison of the forecasting performance of 

different models. 

δ MAD/mm MSE/mm2 

0.1  3.50  19.15  

0.2  3.27  17.89  

0.3  3.12  17.02  

0.4  3.04  16.46  

0.5  2.99  16.15  

0.6  3.01  16.05  

0.7  3.08  16.18  

0.8  3.22  16.72  

0.9  3.54  18.39  

 

 
Fig. (4). δ-MAD curve. 
 

 
Fig. (5). δ-MSE Curve. 
 

Table 3 is the state parameters’ updating process when 
δ=0.55. As can be seen from the table that different from the 
regression coefficient in linear regression model where the 
coefficient is fixed, Bayesian state parameters (similar to 
regression coefficient) are wavy and keep updating, as new 
deflection data are imported. Meanwhile posterior variance 
Ct converges rapidly, which means that the importing of de-
flection information decreases the model’s uncertainty. Also 
from Table 3, when t=25, the forecasting result of cumula-
tive deflection of the middle span of the bridge is 10.78, and 
the confidence interval of 95% HPD is [3.73, 17.82]. 

Further analyze the model. Fig. (6) is the curve of con-
stant mean discount Bayesian model one-step forecasting 
variance Qt as time changes with δ=0.55. Fig. (7) is constant 
mean discount Bayesian model one-step forward forecasting 
series and the confidence interval of 95% HPD (including 
the one-step forward forecasting when t=25). Fig. (6) shows 
that Qt converges rapidly and tends to stabilize as time in-
creases; Fig. (7) shows that the confidence interval of 95% 
HPD used to be wide and as time increases it converges rap-
idly and tends to stabilize; Table 3 shows that correction 
coefficient At converges rapidly and tends to stabilize in the 
recursion process. Generally speaking, the primary importing 
and updating of data have obviously improves the model’s 
performance; finite monitoring includes enough update and 
define the model; the information updating has obviously 
improved the forecasting performance.  
 

 
Fig. (6). One-step forward forecasting variance Qt(δ=0.55). 

 

 
Fig. (7). One-step forward forecasting and the confidence interval 
of 95% HPD. 
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Table 3.  The updating process of state parameters (δ=0.55). 

t (day) 

Distribution parameters 

of one-step prediction Correction 
factor At 

Obs val 

yt/mm 

Error 

et/mm 

Post information 

Error Qt/mm2 Mean 
ft/mm 

95%HPD 

conf itvl 
mt/mm Ct/mm2 

0 - - - - - - 0 100 

1 281.82 0.00 [-27.62,27.62] 0.65 -0.78 -0.78 -0.50 32.33 

2 108.89 -0.50 [-17.67,16.66] 0.54 -3.94 -3.44 -2.36 19.01 

3 69.78 -2.36 [-16.10,11.38] 0.50 6.03 8.39 1.80 17.48 

4 67.07 1.80 [-11.68,15.27] 0.47 2.14 0.34 1.96 13.38 

5 52.58 1.96 [-9.97,13.89] 0.46 6.39 4.43 4.01 11.71 

6 46.58 4.01 [-7.22,15.24] 0.46 4.08 0.07 4.04 9.91 

7 39.70 4.04 [-6.32,14.41] 0.45 8.33 4.29 5.99 9.18 

8 36.92 5.99 [-4.01,15.98] 0.45 5.32 -0.67 5.69 8.14 

9 32.81 5.69 [-3.74,15.11] 0.45 6.32 0.63 5.97 7.32 

10 29.54 5.97 [-2.97,14.91] 0.45 7.53 1.56 6.67 6.70 

11 27.06 6.67 [-1.88,15.23] 0.45 2.74 -3.93 4.90 6.46 

12 26.09 4.90 [-3.50,13.30] 0.45 3.90 -1.00 4.45 5.98 

13 24.15 4.45 [-3.63,12.54] 0.45 1.93 -2.52 3.32 5.66 

14 22.88 3.32 [-4.55,11.19] 0.45 8.28 4.96 5.55 5.69 

15 23.00 5.55 [-2.34,13.44] 0.45 5.09 -0.46 5.34 5.34 

16 21.57 5.34 [-2.30,12.98] 0.45 12.06 6.72 8.37 5.68 

17 22.96 8.37 [0.48,16.25] 0.45 10.44 2.07 9.30 5.43 

18 21.92 9.30 [1.60,17.00] 0.45 5.40 -3.90 7.54 5.34 

19 21.57 7.54 [-0.09,15.18] 0.45 9.14 1.60 8.26 5.10 

20 20.62 8.26 [0.79,15.73] 0.45 11.24 2.98 9.60 4.96 

21 20.06 9.60 [2.24,16.97] 0.45 10.12 0.52 9.84 4.74 

22 19.16 9.84 [2.64,17.04] 0.45 15.28 5.44 12.29 4.85 

23 19.61 12.29 [5.00,19.57] 0.45 9.54 -2.75 11.05 4.73 

24 19.11 11.05 [3.86,18.24] 0.45 10.44 -0.61 10.78 4.54 

25 18.36 10.78 [3.73,17.82] 0.45 - - - - 

 
Prior information is of paramount importance to model 

one-step forecasting at an early stage. However, as time in-
creases prior information decays rapidly. For example, when 
t=1, correction coefficient A1=0.65, m1=0.65e1+m0=0.65y1+ 
0.35m0; when t=2, A2=0.41, m2=0.41y2+0.59m1=0.41y2+ 
0.38y1+0.21m0. From t=1 to t=2, the weight of prior mean m0 
in posterior mean mt has decayed from 0.35 to 0.21. See m0 
weight curve in Fig. (8). It can be seen that the weight of m0 
in mt is monotonically decreasing as time increases. As a 
matter of fact, it is easy to get the weight wm(t)=(1-A1) (1-A2) 
· · · (1-At) of m0 in mt from mt recursion equation, wm(25)≈0 
when t=25. As time increases, the prior information has few-

er and fewer influence over the forecasting and at a certain 
point the influence is close to zero. 

We can also see from the above analysis that the weight 
of y1 in m1 is 0.65, however the weight of y1 in m2 decreases 
to 0.38. Fig. (9) is the weight curve of yi in mt (for the pur-
pose of clearness only draw the weight curve with 
i=1,6,11,16,21). Fig. (9) shows that the weight of yi mono-
tonically decreases as time increases. It is easy to prove that 
the importance of the yi weight wi(t)=Ai(1-Ai+1) (1-Ai+2) · · 
·(1-At) in mt (i<t)decreases as time increases. Thus, even if 
several unusual data might occur and intervene the model 
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accuracy in a short term as time increases the accuracy of the 
model can be restored. Compared with conventional fore-
casting method, Bayesian forecasting has the advantage of 
coping with unusual data which conventional static model 
fails to do and it also has better robustness. 
 

 
Fig. (8). Change curve of m0 weight in mt 

 

 
Fig. (9). Change curve of yi in mt  
 

CONCLUSION 

Starting with blurry prior information, Bayesian dynamic 
model keeps updating recursive data. The updating results 
have shown that the model performance has been greatly 
improved after primarily importing the deflection data for 
several times and parameters such as state variance, one-step 
forecasting variance, correction coefficient and the confi-
dence interval of 95% HPD converge rapidly and tend to 
stabilize during the recursion process, resulting in more sub-
jective forecasting results. The forecasting results include 
deflection value and confidence interval. This method of 
forecasting can quantify the forecasting uncertainty, which 
makes it more instructive. 

Different from the conventional forecasting methods, 
which treat all the data in the same way, Bayesian forecast-
ing is based on the fact that the importance of data decrease 
as time increases. Thus even if one or two unusual data may 
intervene the model’s accuracy, as data cumulate the accura-
cy can be restored. It has better ability of self-correction and 
better robustness. As for the case with many unusual data, 
great error might occur if we only rely on the model’s self-
correction ability. In this case, we need to create Bayesian 
model monitoring mechanism to conduct feedback interven-
tion. This matter needs further studies. 
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