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Abstract: For reliable identification of modal parameters, it is important to distinguish between abnormal data due to de-
fects, malfunctioning, and anomalies in the sensors, from that of precise data. In case of long-term continuous monitoring 
data, it is imperative to identify any defects in the raw data very quickly and accurately to ensure that the identification is 
trustworthy. Exploratory Data Analysis (EDA) is employed for the purpose of quickly visualizing any defects and anoma-
lies in the sensor’s data. Outlier analysis is employed to make some data treatment followed by auto and cross correlation 
to further elucidate any defects and anomalies in the collected data. Finally, covariance driven stochastic subspace identi-
fication (CO-SSI) with some improvements is employed to carry out the continuous modal parameter identification. The 
Sutong Yangtze river bridge, a long span Y-shape pylon cable stayed bridge with a main span of 1088m was chosen as a 
case study and the above proposed methods were applied. The result showed that the suggested method is very effective 
and can provide better and more accurate real life results in the continuous health monitoring of bridges. 
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1. INTRODUCTION  

The advancement in technology and growing needs for 
sophisticated structures, specially bridges, has evolved 
significantly providing people with an opportunity for safer 
trade and communication, Viecili et al. [1], Chen et al. [2]. 
In the past three decades, researchers have tried to establish 
effective techniques for monitoring civil structures. How-
ever, the unpredictable nature of civil structures due to the 
anomalous data obtained from these structures and the non-
linear behavior of these structures makes the monitoring 
process more complex, Spark and Kasmarik [3], and so the 
data interpretation becomes more and more essential, Khan 
et al. [4]. The enormous amount of data obtained from these 
sophisticated measuring equipment installed at these civil 
structures, specially the long span cable stayed bridges, 
needs to be reliable, so that an accurate and detailed data 
analysis can be performed effectively, Cross et al. [5]. Since 
the data obtained from the health monitoring equipment is 
usually in a very raw form and because of the huge amount 
of time it takes to compute the data, it is not possible for the 
researcher to go through all the data which means that the 
researcher can very often ignore the initial check on the data, 
which in turn can lead to an erroneous analysis of the data. 
The inaccuracies in the data may be due to various reasons, 
like missing data, environmental effects on the data, and the 
malfunctioning of the sensors, etc. Wu et al. [6].  

In order to detect the anomalies very quickly and to en-
sure an accurate long-term continuous operational data  
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analysis of long span cable stayed bridges; it is vital to inves-
tigate the initial raw data so that the inner secrets of the data 
can be depicted in a more professional way. Therefore, a tool 
for making sense of the data is introduced, which can help 
the user to effectively visualize the data before they start to 
carry out any further detailed data analysis. The tool, which 
aids the understanding of the data by providing visualization 
of the huge amount of data information, and enables the us-
ers to get a feel for the data in a short period of time, is a 
process called Exploratory Data Analysis (EDA). 

Tukey [7] first presented the concept of EDA in 1971, 
and then several authors used it for data visualization, such 
as Chambers [8], Cleveland [9, 10], Tufte [11, 12], Buja et 
al. [13], Wainer et al. [14], etc. All of them, just focused on 
data visualization through making graphs, because the tech-
nology was not yet very advanced and fast modern process-
ing computers and software were not very common, and so 
EDA was just a tool for some simple data representation. 
The focus of Brillinger et al. [15] study was on paths show-
ing animals’ movement in a forest, and he used Rowland  
et al. [16] data, which was just experimental data whose data 
size was very small and not continuous, in his work which 
was only studying the movement of elk and deer. Thus, his 
methods are not really suitable or applicable for anomaly 
detection and for quick continuous large scale data analysis. 
Therefore, this paper introduces a new concept for quick data 
visualization of large scale continuous real life monitoring 
data sets by detecting the defects and anomalies through the 
introduction of EDA, outlier analysis and auto and cross cor-
relation.  

The ambient excitation method for extracting the struc-
tural modal parameters in the frequency as well as in the 
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time domain is of extreme significance for bridge engineer-
ing. In order to extract these operational modal parameters, a 
number of stochastic identification techniques have been 
established previously, but amongst them the stochastic sub-
space identification (SSI) is known to be a very effective and 
multivariate identification technique. The SSI algorithm is a 
sophisticated technique for identification of operational mo-
dal parameter, Liu et al. [17]. SSI uses the ambient dynamic 
data to extract the structure model through linear algebraic 
manipulations, Shan and Li [18]. The SSI consists of two 
methods: i) data driven stochastic subspace identification 
(DATA-SSI); and ii) covariance driven stochastic subspace 
identification (CO-SSI), Magalhães et al. [19]. The reference 
based SSI algorithm was developed by Peeters and De Ro-
eck [20, 21] for the identification of steel transmitter masts 
and pre-stressed concrete bridges. It is not suitable for long 
span cable stayed bridges as the vibrations are more frequent 
and it is an offline technique unsuitable for continuous moni-
toring. This paper adopts the covariance driven stochastic 
sub-space (CO-SSI) because of its inherent advantages of 
numerical stability, robustness and because it avoids the 
computations of orthogonal projections which are replaced 
by converting raw time histories in an assemble of block 
covariances called Toeplitz matrix, from which the system 
dynamic characteristics can be extracted, Overschee and 
Moor. [22], Liu et al. [17], Bassville et al. [23], Weng et al. 
[24]. Bonyapinyo et al. [25] applied CO-SSI to extract de-
rivatives, Goethals et al. [26] used CO-SSI to extract flutter, 
but the identified flutter derivatives were scattered and un-
stable. Another major drawback of CO-SSI is that, it is not 
an online technique and does not continuously process the 
data, thus making it unfeasible for continuous bridge health 
monitoring. Goethals et al. [26] come up with sliding win-
dow technique (SWT), which turned out to be not so effec-
tive, and which also had stabilization problems when extract-
ing the continuous modal parameters from the actual long 
term continuous data. Thus, in this paper visualization of 
data is first carried out by employing EDA, to quickly ex-
plore the inner secrets of the enormous data sets, because one 
of the keys for continuous monitoring is quick data visuali-
zation. Then, based on the results of defective data, some 
treatments are done to the data using outlier analysis. This is 
followed by a further verification and visualization of the 
data through auto and cross correlation to cross check the 
data visualization. Finally, CO-SSI is used with some im-
provements, because CO-SSI is usually only ever used for 
offline analysis. To make CO-SSI more suitable for continu-
ous modal parameter identification, SWT is introduced to 
identify the continuous modal parameter such as the fre-
quency and the damping ratio. 

2. DATA INTERPRETATION  

2.1. Exploratory Data Analysis 

Over the past few decades, statistical tools have become 
more and more important, but due to the standard paradigms 
of estimation and time consumption they cannot be used 
very effectively for the analysis of long-term continuous 
data. Therefore, EDA and data visualization have grown in 
importance as tools for real life continuous data monitoring. 
EDA is a philosophy on how to carry out data analysis in a 
more professional way. EDA is different from statistical 

graphs, in that statistical graphs are all graphically based 
with an emphasis on data characterization, Tukey [7]. EDA 
encompasses a broad venue, and it helps in depicting the 
model selections and in choosing the calculation techniques 
according to data trends that are the most suitable by explor-
ing within the data structures and helping in deciding which 
techniques are the most appropriate for the analysis, with a 
minimum of error and more accuracy. In case of EDA, high 
resolution graphs, and a more sophisticated interactive user 
interface with powerful software have given it more impor-
tance and space for graphical methods to help elaborate the 
data faster and more precisely.  

In case of continuous data where little is known about the 
probability density functions (PDF’s), it is usually recom-
mended that the data should be first examined quickly to 
identify any underlying structures before engaging in more 
quantitative techniques. EDA can process physical reason-
ing, data filtering, hypotheses testing and anomalies detec-
tion, Huston [27]. The primary objective of EDA is to de-
scribe the overall appearance of data. EDA techniques are 
usually used for determining the location and extent of the 
spread of the data, and smoothing and transferring the data 
into a format which can be easily used for further viewing 
and analysis. There are various methods in graphical repre-
sentation of data sets, and some of them are very diverse, 
like histograms, normal cumulative distribution function 
(CDF) plots, quartile-quartile (QQ) plots, box plots, scattered 
plots, etc. The main reason for its dependence on graphical 
representation is to explore the data more open-mindedly, 
and thus help the data to reveal its structural secrets, helping 
to gain some new and unsuspected insight into the data, 
Freehafer [28].  

2.2. Outlier Analysis 

An outlier is an observation in a data set that is astonish-
ingly dissimilar from the remaining data and is supposed to 
influence the rest of data drastically, Sohn et al. [29], Farrar 
and Worden [30]. The treatment of outlier is a flourishing 
area in modern day probability and statistics and many tech-
niques are available for detecting if the given observation is 
in fact an outlier, Sohn et al. [29], Farrar and Worden [30]. 
Outlier analysis is very important for anomaly detection, 
because anomalies in measured values may be due to reasons 
such as noise, operational and environmental variation, or 
sensor malfunctions, and will thus lead the matrices to ex-
ceed the thresholds and result in false data analysis. How-
ever, outliers often contain useful information, especially 
about the abnormal characteristic of system and so can im-
pact the data generation process. After performing the EDA, 
outlier analysis is therefore carried out to further verify the 
data. This process will make the data flawless which will 
enable it to be used for the extraction of the continuous mo-
dal parameters. Additionally, the pauta criterion is adopted to 
further verify our collected data. 

2.2.1. Pauta Criterion 

In this paper, pauta criterion is adopted to determine ab-
normal values so that some possible treatment can be done 
on those values which are probably not outliers and which 
have a very little influence on our data analysis. These values 
are made useable after a little treatment and are used in con-
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tinuous modal parameter identification. Finally, the bessel’s 
formula is used to point out any abnormal values in the sen-
sor’s data. Some improvements have been made to the bas-
sel’s formula to help it suit the data. The details of the pro-
cedure are as follows:  

Step (1): Let’s suppose the original data obtained is X, 
then the average of it as A can be found, and then the stan-
dard deviation S is calculated using the Bessel formula as: 

  

S =
1

n 1
[ iX
i=1

n 1

n
( iX
i=1

n
)2]         (1) 

where Xi is the original data ( i =1, 2, …, n), and S is the 
standard deviation.  

Step (2): If |
iX A |> 3S , then Xi will delete one bit of 

data,
  

X (i 1)+ X (i+1)

2
is used in order to make up a new bit 

of data. The value obtained is compared with 3 time the 
standard deviation as this is considered to be a threshold for 
the discordancy value for an outlier detection. 

2.3. Auto and Cross Correlation Functions 

2.3.1. Auto Correlation 

The auto correlation function of an ordered dataset is 
considered to be a time series correlation with its own past 
and future values, Karimi et al. [31], Fischer and Jensen 
[32]. It is also sometimes called a “lagged correlation” or a 
“serial correlation”, which refers to the correlation between 
members of a series of numbers arranged in time, Farrar and 
Worden [31], and it can be written as:  

  xx
( ) = E[x(t+ )x(t)]           (2) 

where “E” is expected value and 
  xx

( )  is the auto corre-

lation function in the above equation. When a signal is 
shifted in the time domain by an amount , it can be used to 
find irregularities in the data. If the time lag x(t) approaches 
zero, the variance equals the auto correlation, Farrar and 
Worden [30], and can be expressed as: 

  xx
(0) = E[x(t)2]=

x

2           (3) 

  xx
( ) =

xx
( )               (4) 

Therefore, 
x
( )  is considered to be a function of “ ”.  

2.3.2. Cross Correlation 

The cross correlation function is considered to be relative 
information between data sets with a time lag, Sohn et al. 
[29]. Let say x and y are two data sets, then the cross correla-
tion function 

xx
( )  can be written as: 

  
yx

( ) = E[y(t+ )x(t)]            (5) 

yx
( ) =

xy
( ),

xy
( ) =

yx
( )       (6) 

In this way, 
  xx

( )  detects any unusual relationship 

between the sensor signals and can very accurately detect the 
anomalies in the sensors data. 

 

Fig. (1). Modal parameters identification process. 

3. COVARIANCE DRIVEN STOCHASTIC SUBSPACE 

IDENTIFICATION 

3.1. Mathematical Representation 

The ambient vibrations of a linear time invariant dynamic 
system of a bridge structure can be written as, Khan et al. [33]: 

   
Mx t( ) + cx t( ) + Kx t( ) = Lu(t)            (7) 

where “M”, “c” and “K” are the mass, damping coefficient 
and the stiffness, respectively, and   x (t) is the acceleration 
vector, (t) is the velocity vector and x(t) is the displacement 
vector at time instant t. “L” is the input location matrix and 
u(t) is vector that expresses “m” input as a function of time t. 

By assuming that the white noise is the excitation and as-
suming that all data is sampled in a discrete time form, the 
CO-SSI utilizes the state space model to calculate the modal 
parameters. Therefore, the discrete time stochastic state 
space model, Magalhães et al. [19], can be written as: 

  

x
k+1

= A.x
k
+ w

k

y
k
= C.x

k
+ v

k

               (8) 

where 2 1n

k
w R are anticipated as the zero mean, spatially 

white noise and 
1k

x
+

 is a time state vector at the time instant 

k, ky is a vector with the sampled outputs, A and C are the 

discrete state and output matrices, respectively and
k

v is the 

modelling inaccuracies vectors, Khan et al. [33]. 

3.2. CO-SSI Algorithms 

The CO-SSI techniques utilize the covariance matrix as a 
comparison to the data driven technique which starts from 
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the raw time series. Secondly, the results provided by the 
CO-SSI are very robust and exhibit quick computation effi-
ciency. In the case of CO-SSI, the Hankel matrix plays a 
very important role, and thus the number of block rows and 
columns have a direct influence on the modal parameter 
identification process, Khan et al. [33].  

H =
1

N

1
y

2
y Ny

2
y

3
y N+1

y

iy i+1
y i+N+1

y

i+1
y i+2

y i+Ny

i+2
y i+3

y i+N+1
y

2iy
2i+1

y
2i+N+1

y

=
pY

fY
      (9) 

The block Toeplitz matrix can be obtained by multiplica-
tion between the future and the transpose of past measure-
ment, and the Toeplitz matrix can be written as, Liu et al. 
[17]: 

T =

R
i

R
i 1

R
1

R
i+1

R
i

R
2

R
2i 1

R
2i 2

R
i

= fY ( pY )T        (10) 

T =

C

CA

CA
2

G AG A
2
G = O

i i
      (11) 

Let 
  
G = E[x

k+1
y

k

T
] , 

  
R

i
= E[

k+iy k

T

y ] , and 
  
R

i
= CA

i 1
G   (12) 

This is how CO-SSI can be derived, where the observ-

ability matrix 2

i
O

li n
R and 2

i

n li
R is the reversed ex-

tended stochastic controllability matrix and E is expectation 

operator, (A and C) are the system matrices, 2
G

n l
R is the 

next step output covariance matrix and l l

i
R R is the out-

put covariance matrix of arbitrary time lag i , Liu et al. [17]. 

After performing the Singular Value Decomposition 
(SVD), for Eq. (11), it can be written as: 

  

T = USV
T
= U

1
U

2( )
S

1
0

0 0

 
V

1

T

V
2

T
=U

1
S

1
V

1

T     (13) 

After comparing Eq. (7) and Eq. (8), the SVD can be 
split into two parts and can be written as: 

i 1 1
O

T
U S T=  and 

1 1/2

i 1 1

T
T S V=        (14) 

For original state space transformation, T can be simply a 
unit matrix, hence the above equation can be written as: 

i 1 1
O

T
U S= and 

1/2

i 1 1

T
S V=         (15) 

where 

  
C = O

i
(1: l,:)               (16) 

In MATLAB notation, the C matrix is just the first block 
of 

i
O and the structural discrete state matrix A can be writ-

ten as follows: 

  

A =
1

S
1

U
1

T
T

2

i+1

V
1

1

S
1

          (17) 

where T
2

i+1

 is also called the Toeplitz matrix for covariance 

from 2 to i + 1 Therefore, the eigenvalues and the eigenvectors 
can be obtained by the decomposition of the state matrix A.  

1
A Ë=               (18) 

Hence, the values of A, G and C can be calculated by us-
ing MATLAB. After calculating these matrices, the next step 
is to identify the modal parameters. The diagonal matrix can 
be given as: 

 
= diag μ

i
            (19) 

where the matrix  is composed of the complex eigenvalue 

 
μ

i
 with arbitrary time lag i , and the relation between the 

eigenvalues of matrix A and systematic one is given as: 

 
i
=

lnμ
i

t
             (20) 

where the eigenvalue of the system is 
 i

, with a sampling 

time interval of  t . The relation between the systematic 

eigenvalues and 
 i

 and the systematic intrinsic frequency 

 i
 and the systematic damping ratio 

 i
 is given as: 

  i
,

i
=

i i
±

i

2
1          (21) 

Hence, the frequency and the damping ratio can be found 
from the equations given below: 

2

i

if =

              (22) 

i
î

2

i

i

Re

f
=               (23) 

3.3. Sliding Window Technique (SWT) 

The CO-SSI method is generally an offline identification 
technique and can only be used to process the data in one 
batch, and therefore it cannot be used as an online health 
monitoring technique. To overcome this drawback, a novel 
stabilization method to incorporate the continuous bridge 
monitoring data called SWT has been adopted to transform 
the CO-SSI into a continuous online modal parameter identi-
fication technique. In this paper, the length of sliding win-
dow is 6000 points (5 minutes), with an overlap of 3 min-
utes, and because it utilizes one hour data, so the total num-
ber of windows are 23. 
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Since the CO-SSI has been transformed so that it can 
handle the continuous monitoring data, it is therefore neces-
sary that the old Hankel matrix also changed to incorporate 
the new continuous data. The new Hankel covariance matrix 
factorization form can thus be written as: 

H

^

=

R
1

R
2

R
i

R
2

R
3

R
i+1

R
i

R
i+1

R
2i 1

= O
i i

        (24) 

where 2

i
O

li n
R observability matrix and 2n li

i
R  is 

the stochastic controllability matrix, which is similar to 

the
 i

as discussed previously, but with its entries in reversed 

order.  

The observability matrix can be obtained by performing 
SVD to the Hankel covariance matrix, which means that the 
system matrices and the modal parameters can be extracted 
in the same manner as presented in section 3.2, in the CO-
SSI offline analysis. The Hankel covariance matrix can now 
be formulated by ordering the output measurement data vec-
tors as follows: 

   

y
k

+

y
k i+1

y
k i+2

y
k

, y
k

T y
k i

T y
k i 1

T y
k 2i+1

T

   (25) 

where 1l

ky R , 1il

ky R+  and 1T il

ky R are the output 

measurements vectors,  is the number of sensors and “i” is 
the number of block rows which constitute the Hankel co-

variance matrix. Thus, the new Hankel matrix H  can be 
built and can be expressed as: 

  

H
^

= E[y
k

+ y
k

T
]

1

p
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H

^

=
k

+

Y k

T

Y               (27) 

where K is the limit of available data and p is an optional 
normalization parameter and is based on the order of the 
covariance matric and the data length of the Hankel matrix is 
N. 

In the end SWT is used on the data that is obtained by 
data interpretation. The new continuous data is assimilated 

into   H  at the same rate as the old data is eradicated, so that 
the new formula can be written as: 

  
H
^

N+1 = H
^

N + y
N+1 i

+ ( y
N+1 i

)T
y

i

+
y

i

T        (28) 

 
(a) Layout of accelerometer on main girder (Unit:m) 

 
(b) Cross section of sutong yangtze river bridge deck (unit:mm) 

Fig. (2). Sutong yangtze river bridge. 
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where all the manipulations of H  amount to update of the 
formula:  

  
H
^

t+1 = μH t+ y
t+1

+ ( y
t+1

)T           (29) 

The above formula is used for the sliding window and is 
repeated twice to complete the subspace updating for each 
new bit of incoming data. The same formula as shown above 
i.e. Eq. (29), can be applied for downdating by setting the 

forgetting factor to μ =1, thus the data vectors
1t

y
+

+
 and 

1

T

t
y

+
are replaced by the oldest data vectors in the moving 

window. For example, if the moving window length is L, 

these can be expressed as: 
2t L i

y
+

+
and

2

T

t L i
y

+
. Thus, the 

updating task for the time varying subspace is accomplished 
and the system information can be extracted from the previ-
ously discussed section 3.2. The downdating can be ex-
pressed as: 

  
H t+1 = μH

^

t+1 y
t L+2i

+ ( y
t L+2i

)T         (30) 

4. RESULTS AND DISCUSSION 

4.1. Sutong Yangtze River Bridge 

The Sutong Yangtze river bridge is located in China on 
Yangtze River and is one of the longest spanning cable-
stayed bridges and connects the cities of Suzhou and Nan-
tong. The bridge is a seven span double Y-shape pylon and 
double cable plane steel box girder cabled-stayed bridge hav-
ing a main span of 1088m, while the total length of the 
bridge is 2088m as shown in Fig. (2a), and the cross section 
is shown in Fig. (2b). In order to extract the continuous mo-
dal parameters of the Sutong Yangtze river bridge, data was 
obtained from 14 accelerometers sensors that were installed 
on the bridge for a period of 1 week form 01-07-2011 to 07-
07-2011. This one week data is used for performing the EDA 
and one hour data is utilized for modal parameters identifica-
tion to make the figures more clear. The layout of the verti-
cal accelerometer sensors is shown in Fig. (2a). The sam-
pling frequency for data collection was 20Hz. 

The data was first visualized using EDA. When continu-
ous monitoring is used, the collected data is always very 
large, generally in 100’s of Giga Bites, and so it is not possi-
ble for a researcher to go through the complete data set to 
find any anomalies in the data. A fast and accurate technique 
is therefore needed to help detect the anomalies in the data, 
which in turn helps avoiding any erroneous data analysis in 
the later stages. The technique proposed in this paper is to 
utilize EDA to deal with this kind of problem, which is the 
first time this concept has been introduced and used on long-
term continuous monitoring data. After the EDA was done, 
based on the recognized faulty data, outlier analysis was then 
performed and any abnormal values were discarded and 
those values that had important information and were close 
to the limits were kept and used for the analysis. After that, 
auto and cross correlation was performed to further investi-
gate the pattern of the data. Finally, after carrying out the 
data interpretation of the data, the continuous CO-SSI tech-
nique based on SWT was utilized in MATLAB to get the 
requisite continuous modal parameters, i.e. the frequency 
and damping ratios. The flow chart is shown in Fig. (1). The 
layout of the 14 accelerometer sensors installed on the Su-
tong Yangtze river cable stayed bridge is shown in Fig. (2a). 

4.2. Exploratory Data Analysis 

4.2.1. Histograms 

Histograms are a graphical representation of the data to 
convey its distribution in vertical bars, and the height of bars 
correspond to the frequency. Histograms are very useful for 
the acquisition of a quick pictorial distribution of the data by 
superimposing the normal distribution over relative fre-
quency histograms. The histograms shown in Fig. (3), are 
from the acceleration data of 4 sensors on Sutong Yangtze 
cable stayed bridge, although there are 14 accelerometer 
installed at the Sutong Yangtze cable stayed bridge, but due 
to space limitations only 4 sensors results are shown in  
Fig. (3). The results show that the histograms for sensor#3, 
sensor#4, sensor#5, sensor#6, sensor#7, sensor#8, sensor#10 
and sensor#11 all follow a Gaussian distribution, whereas for 
sensor#1, sensor#2, sensor#9, sensor#12, sensor#13 and sen-
sor#14 the bars do not follow a normal distribution, thus 
showing that the obtained data from these sensors is incor-

 
Fig. (3). Histograms plots for sensor #3, 4, 13 and sensor #14.  
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rect due to malfunctioning or due to damaged sensors, which 
means this data cannot be used for the continuous modal 
parameter identification. 

4.2.2. Scattered Plots 

For multivariate data or higher level structured data 
where there are two or more variables, scattered plots are a 
very successful tool for the diagnosis of any anomalies in 
these multivariate continuous data. As shown in Fig. (4), QQ 
plots have been obtained for the 14 sensors, but due to space 
limitations results of only four sensors are shown here. There 
are some abnormal data patterns in the data obtained from 
sensor#1, sensor#2, sensor#9, sensor#12, sensor#13 and sen-
sor#14, because the data of these sensors is scattered and the 
histograms in the diagonal of the figure prove that it does not 
follow the Gaussian distribution of the above mentioned sen-
sors. Thus, from scattered charts a person can judge the pat-
tern of the data, and can perform an analysis according to the 
quality of the data obtained from the sensors installed at 
these structures. 

4.2.3. QQ Plots 

QQ plots are used to visually evaluate two distributions 
by plotting the quantities of one against the quantities of the 

other. QQ plots were drawn for the 14 accelerometers sen-
sors installed at the Sutong Yangtze cable stayed bridge, but 
due to space limitation results of only six sensors are shown 
here in Fig. (5). The results show that sensor#1, sensor#2, 
sensor#9, sensor#12, sensor#13 and sensor#14 do not follow 
the normal distribution as compared to the other sensors such 
as sensor#3, sensor#4, sensor#5, sensor#6, sensor#7, sen-
sor#8, sensor#10 and sensor#11, where the QQ plots distri-
bution is normal. It can also be observed that, in case of sen-
sor#13 and sensor#14 the data seems to be discontinuous 
that is why it does not follow the normal distribution trend; 
in sensor#9 and sensor#12 the data is not normally distri-
buted, hence the data obtained from sensor#1, sensor#2, sen-
sor#9, sensor#12, sensor#13 and sensor#14 cannot be used 
for continuous modal parameter identification. 

4.2.4. Normal CDF Plots 

Lognormal CDF plots are a very effective method for 
dealing simultaneously with more than one random variable 
such as with our continuous data. As shown in Fig. (6), the 
lognormal CDF plots show the explicit appearance of all the 
14 accelerometer sensors installed at the Sutong Yangtze 
cable stayed bridge. It can be observed that there is no log-

 
Fig. (4). Scattered plots for sensor #3, 4, 13 and sensor #14.  

 
Fig. (5). QQ plots for sensor #1, 4, 5, 9, 13 and sensor #14. 
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normal CDF for sensor#1, sensor#2, sensor#9 and sen-
sor#12, because the data is so poor that the lognormal CDF 
cannot even be drawn. For sensor#13 and sensor#14, the 
lognormal CDF curve is incomplete and also the tail is very 
heavy at the beginning of the curve, and it also suddenly 
ruptures before completion. Therefore, the above mentioned 
six sensors cannot be used for further continuous data analy-
sis. 

4.2.5. Skewness and Kurtosis 

Skewness is the measure or lack of symmetry, whereas 
kurtosis is the extent to which the data peaks or is in a flat 
form relative to the normal distribution. As shown in  
Fig. (7), the skewness of sensor#1, sensor#2, sensor#9, sen-
sor#12, sensor#13 and sensor#14 is abnormal and does not 
follow the normal distribution, because their values are 
greater than zero. The value of sensor#3, sensor#4, sensor#5, 
sensor#6, sensor#7, sensor#8, sensor#10 and sensor#11 are 
ideal and are almost zero. As for as the kurtosis of the sen-

sors’ data is concerned, it shows a value of 3 for all the sen-
sors except sensor#9, where the kurtosis is 80 and for sen-
sor#12 where the kurtosis is 240, which is extremely abnor-
mal. Thus, these two sensors show some anomalies or de-
fects, and so their data cannot be used for modal parameter 
identification.  

4.2.6. Box and Whisker Plot 

Box and whisker plots are also called boxplots. Boxplots 
are an excellent way to visualize the median, data distribu-
tion and to supplement multivariate displays with univariate 
information. The boxplots illustrated for the 14 accelerom-
eter sensors of Sutong Yangtze river bridge are shown in 
Fig. (8). It can be perceived that sensor#1, sensor#2, sen-
sor#9 and sensor#12, do not show any median and also their 
data distribution is poor and so the data spread is misleading, 
whereas for sensor#13 and sensor#14 the data distribution 
and spread is abnormal, and so these sensors cannot be used 
for further data analysis. However,  the data obtained from  

 

Fig. (6). Normal CDF plots for sensor #1 to sensor #14.  
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Fig. (7). Skewness and kurtosis for sensor #1 to sensor #14.  
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Fig. (8). Box plot for sensor #1 to sensor #14.  

 
(a) Original data of sensor #8 

 
(b) Outlier analysis of sensor #8 

Fig. (9). Outlier analysis.  
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sensor#3, sensor#4, sensor#5, sensor#6, sensor#7, sensor#8, 
sensor#10 and sensor#11 show relatively good results, and 
so the data obtained from these sensors will be used for con-
tinuous modal parameter identification. 

4.3. Outlier Analysis 

In this paper, data was collected from the 14 accelerome-
ters installed at the Sutong Yangtze river bridge, but for out-
lier analysis only the data treatment of sensor#8 will be ex-
hibited in this paper due to space limitations. Outlier analysis 
is quantified by the extent to which the values do not fall 
outside the thresholds limits, otherwise they will generate 
huge problems in the data analysis. In the outlier analysis in 
this paper, the accelerometers data were investigated with the 
pauta criterion and those values which had some sort of in-
formation were treated and the useful information was util-
ized in the data analysis. However, those outliers which were 
of no use and which affected the data analysis were dis-
carded as shown in Fig. (9b). The original data for sensor#8 
is shown in Fig. (9a). Thus, an accurate and reliable data 
analysis can be performed by properly treating the outliers. 

4.4. Auto and Cross Correlation Functions 

Auto and cross correlation was performed on the data ob-
tained from the 14 accelerometers installed on the girders of 
the Sutong Yangtze river bridge. Their purpose was to detect 
anomalies in a very speedy way and introduce the novel con-
cept of auto and cross-correlation, as this technique has 
never been used to detect anomalies in huge amounts of con-
tinuous monitoring data. In Fig. (10), the autocorrelation for 
sensor #1 to sensor#14 are shown, and the auto correlation in 
the sensor data can depict the inner secrets of the data. It can 
easily be seen that, the data obtained from sensor#3, sen-
sor#4, sensor#5, sensor#6, sensor#7, sensor#8, sensor#10 
and sensor#11 are all good, whereas the data obtained from 
the sensor#1, sensor#2, sensor#9, sensor#12, sensor#13 and 
sensor#14 is in an abnormal condition. Therefore, anomalies 
can be identified at first glance by performing the auto corre-
lation. Thus, based on this autocorrelation technique, anoma-
lies can be detected and any abnormal data can be discarded, 
so that the analysis is free from false and defected data. 

Similarly, a 3D cross correlation coefficient analysis was 
performed on the data collected from the 14 accelerometers 
sensors installed on the girders of Sutong Yangtze river 
bridge. As can be seen in Fig. (11), the cross correlation co-
efficients are very good except for sensor#1, sensor#2, sen-
sor#13 and sensor#14, where the cross correlation coefficient 
are more than 0.5. The diagonal is considered to be perfect if 
the cross correlation coefficient is 1, and 0 for the other val-
ues not in the diagonal. In Fig. (11), there are also correla-
tions and the values other than diagonal which are not zero, 
especially for sensor#1, sensor#2, sensor#13 and sensor#14, 
thus showing anomalies in sensor#1, sensor#2, sensor#13 
and sensor#14. This proves that the cross correlation coeffi-
cient analysis is an easy non-physical model technique which 
can be used to ascertain the calculated retort from time, and 
which may be a first step in identifying any damage. At the 
same time, all the correlation values must be steady which is 
indicative of the normal condition, as is the case in the di-
agonal as shown in Fig. (11). When damage or the malfunc-

tioning of the sensors occurs, these values will change, as 
can be seen in Fig. (11) for sensor#1, sensor#2, sensor#13 
and sensor#14. 

4.5. Modal Parameter Identification 

In order to identify the continuous modal parameters, the 
collected data from the 14 sensors were first processed by 
performing EDA. Then, outlier analysis was performed to 
detect the outliers in the data and possible treatments were 
carried out on the data which were not outliers in order to 
make the data usable. After this, auto and cross correlation 
was performed to further identify the anomalies and defects 
in the sensors’ data. Finally, the continuous modal parame-
ters, such as frequency and damping ratios were identified 
for a period of one hour using the CO-SSI technique based 
on SWT. For more stability and accuracy, the window length 
was kept at 6000 points and block row i at 200. 

Fig. (12) shows the frequency values obtained before and 
after the newly suggested method through using MATLAB. 
Fig. (12a) shows that the frequency is scattered and unstable, 
and thus the frequency order cannot be determined very ac-
curately. In addition, the lower modes cannot be identified 
due to anomalies in the data, and so false and unwanted fre-
quency estimates are obtained, which will eventually lead to 
wrong structural information due to the absence of first few 
modes. The main reason behind its instability is because of 
the wrong data from these sensors, thus detection of such 
anomalies at early stage is very important, because it will 
make the whole identification process nastiest at later stage 
as can be seen in Fig. (12a). In case of Fig. (12b), the fre-
quencies are stable and frequency modes are clear and visi-
ble and a regular trend can be seen from left to right and we 
can very accurately determine the frequency orders, for in-
stance the first 12 orders are shown in Table 1. It thus shows 
us that the obtained results are very accurate and useful. As 
the identified accuracy of the frequency gradually decreases 
along with the increasing order in the engineering measure-
ment, the first few orders therefore carry more information 
and are considered to be more reliable when compared to the 
higher order frequencies. In our proposed method, we can 
identify the first few orders very accurately, which illustrate 
the supremacy of our novel suggested method, whereas be-
fore our proposed method the first six order cannot be identi-
fied as shown in Table 1. It can also be deduced from the 
successful outcomes that sensor’s data is more robust in 
terms of vibration, because there are generally more vibra-
tion in cable stayed bridges, and so the results are an accu-
rate depiction of the real life conditions. 

Fig. (13) shows the damping ratio estimates obtained be-
fore and after the proposed method by using MATLAB. The 
results obtained in Fig. (13b) show that the damping ratio is 
not more than 2% and is regular and stable when compared 
to the damping estimates obtained in Fig. (13a). In Fig. 
(13b), the damping ratio is stable and more pronounced, 
where as in Fig. (13a) the damping ratio is scattered and un-
stable. Visually it may not be seen clearly, but the first six 
damping ratios cannot be identified before the proposed 
method as shown in Table 1. Although damping ratios for 
real life continuous data are hard to be traced clearly, even if 
the window length and block rows are increased.  
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(a) Auto correlation for sensor #1 to #6 
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(b) Auto correlation for sensor #7 to #12 
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(c) Auto correlation for sensor #13 to #14 

Fig. (10). Auto correlation for sensor #1 to sensor #14. 
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Fig. (11). 3D cross correlation coefficient form sensor #1 to sensor #14. 

 
(a) Before the proposed method 

 
(b) After the proposed method 

Fig. (12). Frequency estimates. 
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Table 1. Frequency and damping ratio before and after the proposed method. 

 Frequency Damping 

Order Before After Before After 

1 0.43 1.005 

2 0.62 1.01 

3 0.69 1.019 

4 0.89 1.028 

5 1.04 1.041 

6 

Frequency Cannot be Identified 

1.44 

Damping Cannot be Identified 

1.047 

7 2.09 2.06 1.049 1.056 

8 2.26 2.34 1.094 1.069 

9 2.38 2.48 1.112 1.10 

10 2.47 2.94 1.175 1.118 

11 2.98 3.07 1.215 1.2 

12 3.14 3.15 1.267 1.277 

 

 
(a) Before the proposed method 

 
(b) After the proposed method 

Fig. (13). Damping ratio estimates. 
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Achieving this much minute accuracy in the Frequency 

estimates and the damping ratios obtained in Figs. (12) and 
(13) is very meaningful and coherent, as it shows the effi-
ciency and robustness of our proposed method for identify-
ing the continuous modal parameters. In the end, this paper 
suggests that more detailed research is required to better un-
derstand the influence of the environmental factors, espe-
cially the effect of temperature on the natural frequencies 
and the damping estimates in order to better understand the 
identification process. 

CONCLUSION 

In this study, continuous modal parameter identification 
for a cable stayed bridge was carried out by exploiting the 
approach to the interpretation of data. Firstly, the data was 
collected from the 14 accelerometers sensors installed at the 
Sutong Yangtze river cable stayed bridge. EDA was then 
performed on the data to quickly detect any anomalies in the 
long term continuous data, by plotting the histograms, scat-
tered, QQ’s, normal CDF’s, skewness and kurtosis and box 
plots, to visualize any abnormal sensor’s data. The results 
showed that sensor#3, sensor#4, sensor#5, sensor#6, sen-
sor#7, sensor#8, sensor#10 and sensor#11 were reliable and 
were free from anomalies, whereas sensor#1, sensor#2, sen-
sor#9, sensor#12, sensor#13 and sensor#14 were defective 
and probably unsuitable for continuous monitoring. Outlier 
analysis was then performed as a pre-treatment of the data 
and those data points which exhibited abnormal behavior 
were detected as outlier and discarded, then to further verify 
the data by detecting the anomalies and malfunctioning of 
the sensors’ data, auto and cross correlation was performed. 
This paper thus introduces a new concept for the quick long-
term data visualization of long term health monitoring data, 
because if such anomalies are not detected at the early 
stages, they will instigate a huge amount of complications at 
the later stages. 

Finally, in order to identify the continuous modal pa-
rameters, CO-SSI was used because CO-SSI is a robust, 
clear and more accurate technique which suffer from only 
one drawback, that of processing the data in one batch, and 
therefore it cannot be used as a continuous identification 
technique. SWT was introduced in this paper to remedy this 
drawback and to accurately identify the continuous modal 
parameter. The above proposed method combines the advan-
tages of two methods; firstly, any anomalies can be detected 
through quick visualization to ensure that only accurate data 
is used to ensure an accurate analysis; secondly, it can be 
used to perform the continuous modal parameter identifica-
tion in a very robust manner due to its numerical stability, by 
employing the SWT based CO-SSI method. In the end, con-
tinuous modal parameters such as the frequency and the 
damping ratios were identified using the above technique 
which indicates the increase in tracking stability with the 
introduction of SWT. This shows that the obtained results of 
the new method are very effective as they can provide con-
structive information regarding the long-term identification 
of the state of civil structures; it also means that the new 
method can be substantiated as a very effective tool in the 
real life health monitoring of bridges. 
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