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Abstract: It is of great significance to timely and accurately forecast the safety state of the bridge as far as the 

maintenance is concerned. Bayesian forecasting is a method of deriving posterior distribution in accord with the sampling 

information and prior information, where real time online forecasting is realized by means of recursive algorithm and the 

stationary assumption. Bayesian dynamic linear model is created to forecast the reliability of the bridge on the basis of the 

observed stress information of a bridge structure. According to the observed information, the model created is a 

superposition of constant mean model and seasonal effect model. The analysis of a practical example illustrates that 

Bayesian dynamic linear modes can provide an accurate real time forecast of the reliability of the bridge. 
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1. INTRODUCTION 

Conventionally, the researches on the reliability of bridge 
structure implement reliability parameters to reflect the 
safety state, not considering the possible changes caused as 
the time passes on. As a matter of fact, the safety state of a 
bridge is intensely relevant to the traffic condition, that is to 
say compared to the late night when the traffic flow is small 
bridges are under much more pressure in the daytime when 
the traffic load is heavy. Many bridge collapse accidents are 
caused by overload traffic, which makes it important to be 
informed of the instantaneous safety state of the bridge 
besides the entire bridge structure state in light of a healthy 
operation [1-4]. 

Nowadays the reliability forecast and estimation based on 
the real time observed information on the bridge structure is 
still on a primary state at home and abroad. Developing fast 
in recent years, the Bayesian forecasting is a sequential 
forecast method with dynamic models as the target, the basic 
idea behind which is to incorporate the forecasters’ 
subjective experience as known conditions, create dynamic 
models given information on the models, data and prior (the 
entire distribution information of the unknown parameters) 
and deduce the Bayesian posterior probability of the state 
parameters [5-7]. Needless of the stationary assumption, the 
dynamic models can keep updating as the observed 
information updates and thus distinguishes itself in the 
application of real time forecast. Given the many good 
properties of this method, this article creates Bayesian 
dynamic linear models on the basis of the observed stress 
data to verity its application in the reliability forecast of the 
bridge structure. 

 

2. THE BAYESIAN DYNAMIC LINEAR MODEL 
FORECAST OF THE OBSERVED STRESS 

2.1. The Fundamental Equations of Bayesian Dynamic 
Linear Models 

The basic idea of Bayesian forecasting is to create 
dynamic linear models and describe the research by means of 
observation equations and state equations. Observation 
equations reflect the way the measured data randomly relies 
on the current state parameters; state equations reflect the 
change of the system, representing the internal dynamic 
change and random intervention [8-10]. Below is the 
detailed description:  

Observation equation: 

( )],0[~
'

tttttt VNy += F                                     (1) 

State equation: 

( )],[~1 t
W0G N

ttttt
+=                             (2) 

where, 
t
y  refers to the observed stress value (scalar); t  

refers to the n-dimensional state parameter vector; t
F refers 

to n-dimensional regression vector; t
G refers to nn -

dimensional state-transition matrix; t  and t  refer to stress 

observational error and state-transition error variable, 

respectively, t
V  and t

W  are corresponding distributional 

parameters. Usually t
W is difficult to be obtained, thus 

discount factor )10( << is introduced here, leading to [10, 

11] 

)1( 1
1=
tttt

GCGW                                             (3) 

In the above model, if the prior distribution of  t is 
known or can be derived on the basis of prior information, 
then according to the observed data calculate the posterior 
information with the application of Bayesian theorem, the 
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result of which will be the prior distribution for the next step. 
Then it is able to forecast by means of recursion algorithm. 
Fig. (1) is the flow chart of the algorithm [12, 13].  
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Fig.(1). The recursion algorithm of Bayesian dynamic model [14]. 

 

The Bayesian dynamic linear model comprises four 

elements },,,,{
tttt

V WGF , noting DLM },,,,{
tttt

V WGF , 

among which the formation of t
F  and t

G  determines the 

class of models. 

2.2. The Decomposition and Superposition of 
Observational Stress Bayesian Dynamic Linear Model 

The linear combination of the independent Bayesian 
dynamic linear models complies with the superposition 
principle. The decomposition of complex models into simple 
component models can simplify the analysis. The load 
adopted in the bridge reliability calculation is a probability 
combination of permanent load and variable load, where 
variable load is intensely relevant to the traffic flow and 
changes in one day cycle. Thus the observed stress can be 
decomposed into two parts: a mean value of the stress and a 
relative cyclic deviation. The former can be described by 
constant mean model 

1
M  and the latter can be described by 

seasonal model
2

M . Suppose below are the regular 
representation of 

1
M  and 

2
M  [8, 15]: 

},,,{: 11111 tttt
V WGFM , the state variable is

t1
; 

},,,{: 22222 tttt
V WGFM , the state variable is

t2
. 

The superposition of 
1

M  and 
2

M  leads to the load 

model: 

},,,{:
tttt

V WGFM , the state variable is
t
. 

Where 
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2.3. Specific Forms of Constant Mean Model and 
Seasonal Model 

2.3.1. Constant Mean Model 

The observed stress mean keep changing regularly for a 
long time. As is mentioned above constant mean model can 
be applied to analyze it. The specific form of constant mean 
model is },,1,1{

tt
WVDLM , the equations are: 

Observation equation: 

( )],0[~ ttttt VNy +=  

State equation: 

( )],0[~1 ttttt
WN+=  

The remarkable feature of constant mean model 
is ttktyE =

+
)|( , ttkt

E =
+

)|(  , ),2,1( =k . 

2.3.2. Seasonal Model 

The variable load mainly comprises vehicle load, 
presenting an obvious periodicity, which makes it suitable to 
implement seasonal model to study the observed stress mean 
periodic deviation. The technical term season here describes 
the time series periodic features. Assume the stress deviation 
corresponds to mean level is time series ( )g t  and cycle 
p=2q (q>0), then the seasonal vector 

T

ntttt
),,,( 1,10= at time t, leading to the Fourier 

form of the complete seasonal model: 
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The state variable
T

q
T
qt

T
t

T
tt ),,,,( 1,21= , the 

element of t  comprises the Fourier coefficient of t . 

From the form of the seasonal model we can know this 

model is a superposition of q adaptive component 

model },,,{ ••
rr

DLM Hh . Ignoring harmonic components of 

less significance by means of significant hypothesis test can 

simplify the model. For additional simplifying steps please 

refer to Literature [8]. The form of dynamic model p=2q-
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1(the cycle is an odd) is similar to that of dynamic model 

p=2q. 

2.4. The Recursion and Correction Algorithm of 
Bayesian Dynamic Linear Model 

Assume the posterior distribution information of state 
parameter at time t-1 is: 

],[~)|( 1111 1 ttntt
t

T CmD                                      (8) 

)2/,2/(~)|( 111
1
1 tttt

dnV D                                    (9) 

111
/=
ttt
ndS                                                       (10) 

Where 1t
D is a set of effective information at and before 

time t-1, },{ 1= ttt y DD , 1t
S is the estimation of the 

observation variance of 1t
V . Conditional on a large 1t

n , 

],[],[ 11111 ttttn
NT

t

CmCm , 11 tt
VS , leading to the 

below recursion relations: 

2.4.1. The prior distribution at time t 

],[~)|(
11 ttntt

t
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where  

1
=

ttt
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t
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2.4.2. The one-step ahead forecast distribution at time t 

( ) ],[~|
11 ttntt QfTy

t
D                                            (12) 

Where  

t
T
ttf aF= , 

1
+= ttt

T
tt SQ FRF  

According to the definition of HPD (the Highest 
Posterior Density) confidence interval, the HPD confidence 
interval with a guaranteed rate of 90% is:  

[ ]tttt QfQf 645.1,645.1 +                                   (13) 

2.4.3. The posterior distribution for time t 

],[~)|(
ttntt

t

T CmD                                               (14) 

Where  

tttt
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T
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1
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1
+=
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2.5. K-Step Lead Time Forecast and Backward 
Smoothing 

K-step(k>1) lead time forecast refers to the calculation of 
the future state distribution on the basis of the information at 
time t, that is to say calculate )|(

tkt
DP

+  on the basis of 

)|(
tt
DP . The k-step lead time forecast tells the future 

change trend of the state variable. 

Backward smoothing refers to the past state distribution 
on the basis of information at time t, namely calculate 

)|(
tkt
DP  on the basis of )|(

tt
DP . The smoothing 

analysis provides a review of the evolution of each 
component of the superposition model, such as the evolution 
of observed stress mean level. For specific operational 
formula please refer to Literature [8]. 

3. THE RELIABILITY FORECAST BASED ON 
BAYESIAN DYNAMIC LINEAR MODEL 

This article takes a three-span continuous steel-deck 
bridge as an example, monitoring the stress of the bottom 
surface of middle span, and chooses stress as performance 
function to calculate its reliability. As to this demo, the 
reliability can be computed with sufficient accuracy by using 
first-order second-moment method. Equation (15) illustrates 
the calculation: 

( )222

MMDR

MMDR
μμμ

++

=                                       (15) 

where R
μ and R refer to the mean value and the 

standard deviation by means of standard calculation, 
respectively; D

μ and D refer to stress mean value and the 
standard deviation caused by permanent load, respectively; 

M
μ and M refer to the observed stress mean and the 
standard deviation, respectively; M  refers to correction 
coefficient of  sensors. 

4. AN EXAMPLE 

Table 1 and Fig. (2) are one-week observed data and 
corresponding change curve of stress of the middle span 
bottom surface of the above-mentioned three-span 
continuous steel deck bridge, respectively. 

From Table 1 and Fig. (2), we can see the change of the 
stress is obviously cyclic, and the whole stress model of can 
be decomposed into two component models: a constant mean 
model and a seasonal model. 

According to the design information, the formula of the 
reliability is equation (16): 

( )

( )222

222

15.192.51.29

15.11.219380

M

M

MMDR

MMDR

μ

μμμ

++

=

++

=

                                 (16) 

where M
μ and M are one-step forecast stress mean and 

one-step forecast stress standard deviation by means of 
Bayesian dynamic linear model, respectively. It can be seen 
from the equation that the reliability is only relevant to one-
step forecast stress mean M

μ and standard deviation M . 
Thus the reliability forecast can be realized only on the basis 
of the mean value of the observed limiting stress derived 
with the application of Bayesian dynamic linear model. 

Having created the model and determining the prior 
distribution, this article corrects the observed data in the 
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Table 1.  The observed stress data of the bottom surface. 

Time 
Stress at each time (MPa) 

0:00 4:00 8:00 12:00 16:00 20:00 

Day 1 11.95 13.62 25.68 29.19 26.70 26.40 

Day 2 16.49 8.72 25.71 28.54 24.56 26.37 

Day 3 15.61 12.88 25.77 27.13 23.51 29.38 

Day 4 16.85 11.63 23.33 25.43 23.07 27.95 

Day 5 16.75 9.75 22.69 26.53 28.02 27.56 

Day 6 13.21 12.02 27.62 24.80 25.05 28.07 

Day 7 12.68 13.21 22.68 26.04 26.24 27.00 

Day 8 14.20 - - - - - 

 

 

Fig. (2). The change curves of the stress of the bottom surface. 

 
former four days and verifies the forecast of the corrected 
model with the observed data in the latter three days. 

4.1. Creating Stress Forecast Model 

The first component is a constant mean 

model },,1,1{: 111 ••== GFM , describing the trend of the 

stress change, the prior mean of state vector 19:
011
=m , 

scale 3.3
01
=C . 

The second component is the seasonal model 2
M , 

describing the stress fluctuation around the trend, cycle p=6. 

The prior mean vector *

02
M of the seasonal  and prior scale 

matrix *

02
C  are: 

T)14.4,44.4,94.6,42.3,64.8,30.10(*
02 =M  

)10,10,10,10,10,10(*
02 diag=C  

The mean vector and scale matrix of transformed Fourier 
state vector 2 : 

T)81.0,40.3,68.1,99.3,81.7(02 =m  

Tdiag )3.3,3.3,3.3,3.3,3.3(02 =C  

The Fourier seasonal model comprises p/2=3 harmonic 
components. According to F distribution test, the former two 
components are more obvious while the last component can 
be ignored. The simplification leads to: 

T)40.3,68.1,99.3,81.7(02 =m  

Tdiag )3.3,3.3,3.3,3.3(02 =C  

Superimpose 1
M  and 2

M  , then we get a five-
dimensional model: 

},,,{: ••GFM  

Where 

T)0,1,0,1,1(=F  

),,1( 21 HHG diag=  

)2,1(
3/cos3/sin

3/sin3/cos
== r

rr

rr

r
H  

Initial prior information: 

6
0
=n , 9

0
=S ,

000
nSd = , 
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( ) ( )2/,2/~| 000
1

dnV D , 

( ) ( )0000 ,~|
0

CmD
n
T , 

T)81.0,40.3,68.1,99.3,81.7,19(0 =m  
Tdiag )3.3,3.3,3.3,3.3,3.3,3.3(0 =C . 

Discount factor 9.0= . 

4.2. No Data K-Step Lead Time Forecast 

Conduct the k(k=1,2,…, 25) step lead time forecast 
conditional on D0 ( no observed data imported) and the result 
is in Fig.3. The forecasting error is presented in Fig 4. 

It can be seen from Fig. (3). The measured data are 
within the 90% HPD forecasting interval by and large. 
However the large and diffuse intervals lead to the 
uncertainty of the forecast. From Fig. (4), we can see that 
almost all the forecasting errors are positive, which implies a 
low forecast value and the calls for the correcting the model 
with measured data. 
 

 

Fig. (3). The k-step lead time forecast conditional on D0. 

 

 

Fig. (4). No data k-step lead time forecast error. 

 
4.3. One-Step Ahead Forecast 

Import the observed data and correct the model. Fig. (5) 
is the one-step ahead forecasting. The measured data are 
mainly covered by the forecast interval. With the increase of 
observed information, the forecast interval tends to 
converge, leading to a small uncertainty. The one-step ahead 
forecast error curve (Fig. 6) fluctuates around 0 and the 
model matches the measured data well.  

 

Fig. (5). One-step ahead forecast. 

 

 

Fig. (6). One-step ahead forecast error. 

 

4.4. Backward Smoothing Analysis 

Conduct the backward smoothing analysis conditional on 

D25 (day 5 zero o’clock, 25 observed data imported). 

Suppose the distribution of state variable 

is ],[~)|(
ktktntkt

kt
T CmD , k=1,2,…,24, at time t-k; 

the filter vector X is five-dimensional, 
kt

T

kt
x = X then 

according to statistics there is 

( ) ( )XCXmX
kt

T

kt

T

ntkt kt
TDx ,~| . Thus by creating 

different X can review the evolution of each component or 

the combination of components. 

Conditional on FX = , then 
t
x  is the smoothing 

estimation of the whole model at time t. See Fig.7. A 

comparison of Fig. (7) and Fig. (5) shows the backward 

smoothing curve is better in matching the measured data 

than one-step ahead forecast curve and the forecast interval 

is more converged than that of one-step ahead forecast. That 

is because during the backward smoothing analysis enough 

information has been derived, leading to smaller uncertainty.  

Conditional on T)0,0,0,0,1(=X , 
t
x refers to the 

smoothing estimation of the non-seasonal component 

(namely constant mean model component). See Fig.8. As is 

presented in Fig. (8), the non-seasonal components mainly 

keeps at the same level, corresponding to the whole trend of 

stress change in Table 1. 
t
x  is the smoothing estimated value 

of the seasonal component (namely seasonal model 
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component) conditional on T)0,1,0,1,0(=X . See Fig. (9). 

The seasonal components periodically fluctuate around 0, 

which corresponds to Table 1 where a periodic deviation can 

be seen between stress and the whole trend. Fig. (7) is the 

superposition of Figs. (8, 9). 

 

 

Fig. (7) . The backward smoothing of the stress. 

 

 

Fig. (8) . The non-seasonal change of the stress. 

 

 

Fig. (9). The seasonal change of the stress. 

 

4.5. The Verification of the Forecasting Performance of 
The Dynamic Models 

Fig.10 is the k (k=1,2,…,18) step lead time forecast on 
day 5-7 conditional on D25. It can be seen from the Fig. (10) 
that the forecast curve matches the measured data well; the 
measured data are all covered by the forecast interval and the 
model show great forecast performance. 

 

Fig.(10). The k-step lead time forecast conditional on D25. 

 

4.6. The Bayesian Forecasting of the Reliability 

Fig. (11) is the one-step ahead forecast of the bridge 
structure reliability utilizing equation (16), and it reflects the 
real time change. Fig. (12) is the non-seasonal component 
change conditional on D43. The component basically keeps 
at the same level, which corresponds to the whole reliability 
change trend of this demo.  

 

 

Fig. (11). The one-step ahead forecast of the reliability. 

 

 

Fig. (12). The non-seasonal change of the reliability. 

 

CONCLUSION 

(1) This example adopts Bayesian dynamic forecast and 
provides an accurate stress and reliability forecast. This 
method is recursive Bayesian estimation, making it 
unnecessary to keep all the data, which saves much 
memory and realize an online real time forecast. 
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(2) Besides the forecast value, the Bayesian forecasting 
comprises the confidence interval, the width of which 
determining the uncertainty of the forecast value, making 
the forecast more instructive. 

(3) The Bayesian dynamic linear model created in this article 
is based on the observed stress data, supposing all the 
data are normal. As to the inevitable abnormal data 
occurring in the practice, it is necessary to establish data 
monitoring system to improve the accuracy. This 
problem will be further studied later on.  
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