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Abstract:

Background:

Transforming growth factor-beta1 (TGF-β1) is a pleiotropic cytokine with a double role in cancer through its capacity to inhibit early
stages  of  tumors  while  enhancing  tumor  progression  at  late  stages  of  tumor  progression.  Moreover,  TGF-β1  is  a  potent
immunosuppressive cytokine within the tumor microenvironment that allows cancer cells to escape from immune surveillance, which
largely contributes to the tumor progression.

Method:

It has been established that the cancer progression is commonly associated with increased number of Myeloid-derived suppressor
cells (MDSC) that are a hallmark of cancer and a key mechanism of immune evasion.

Result:

MDSC  represent  a  population  of  heterogeneous  myeloid  cells  comprised  of  macrophages,  granulocytes  and  dendritic  cells  at
immature stages of development. MDSC promote tumor progression by regulating immune responses as well as tumor angiogenesis
and cancer metastasis.

Conclusion:

In this review, we present an overview of the main key functions of both TGF-β1 and MDSC in cancer and in the immune system.
Furthermore, the mutual contribution between TGF-β1 and MDSC in the regulation of immune system and cancer development will
be analyzed.
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1. INTRODUCTION

TGF-β1 is a pleiotropic cytokine implicated in almost all aspects of cell biology including cell proliferation, survival
and  migration,  and  cell  differentiation.  TGF-β1,  depending  on  the  cell  context,  can  modulate  either  negatively  or
positively the transcription of target genes [1]. In cancer, TGF-β can act either as a tumor suppressor in the early stages
of tumorigenesis or as a tumor promoter in the late stages of tumor progression. TGF-β1 plays a key role in promoting
cancer progression at multiple stages of  the metastatic  process,  including epithelial to  mesenchymal transition (EMT)
[2, 3]. TGF-β1 expression  is increased  within the  tumor compared  with the normal  surrounding tissue  and elevated
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expression of TGF-β1 is a poor prognosis marker. Actually, TGF-β1 is implicated in the increased malignancy features
of cancer cells due to its capacities to induce cell motility, extracellular matrix degradation and angiogenesis [4, 5].
Within  the  tumor  microenvironment  (TM),  TGF-β1  is  considered  to  be  one  of  the  main  factors  regulating  the
inflammatory response by modulating the activity of the innate and adaptive immune systems. Furthermore, TGF-β1 is
produced  and  it  acts  on  the  different  types  of  immune  cells  such  as  T  and  B  cells,  natural  killer  (NK)  cells  and
macrophages among others [6].

In tumors, Myeloid-derived suppressor cells (MDSC) are considered as one of the main orchestrators of cancer-
related inflammation. Within TM, MDSC can express different polarized features that contribute to the inflammatory
milieu and cancer cell out-growth promotion. Moreover, MDSC in both human cancer and cancer mouse models are
implicated in the subversion of the immune surveillance by downregulating T cell immunity.  Furthermore,  MDSC  can
be recruited and expanded by cancer cells-expressed factors, while the pathological increase of MDSC frequency into
TM  establishes  an  immune  permissive  microenvironment  that  contributes  to  the  tumor  progression  [7,  8].  In  this
review,  we attempt  to  describe  the  main  aspects  in  the  interplay  of  TGF-β1  and MDSC in  cancer,  and the  positive
pernicious loop between TGF-β1 and MDSC that contributes to the escape of cancer cells from immune surveillance,
which finally increases tumor malignancy.

2. TRANSFORMING GROWTH FACTOR BETA-1, MICROENVIRONMENT AND IMMUNE SYSTEM IN
CANCER

2.1. Transforming Growth Factor Beta-1

Transforming growth factors (TGF-βs) were described according to their capacity to “transform” fibroblast rat cells
in vitro [9]. Three isoforms [TGF-β1, -β2, -β3] were found to be expressed in mammals sharing a degree of homology
from 64 to 82% [10]. To date, more than 40 secreted ligands have been described that comprise the TGF-β superfamily.
These include several subfamilies, such as TGF-βs per se, BMPs (bone morphogenetic proteins), GDFs (growth and
differentiation  factors),  MIF  (Müllerian  inhibitory  factor),  activins  and  inhibins.  Regardless  of  their  structural
similarities, TGF-β superfamily factors function as regulators of a variety of processes during embryogenesis and later
on in adult tissue homeostasis [11, 12].

Namely,  TGF-β1  has  been  involved  in  a  plethora  of  distinct  biological  process,  which  includes  cell  growth,
differentiation and development, angiogenesis, suppression of immune response and promotion of tumorigenesis [11,
13]. TGF-β1 is synthesized as precursor of 75kDa that comprises two main domains: The latency associated peptide
(LAP) and TGF-β1.  Later  on,  this  precursor  is  subjected to cleavage by the furin-type convertase,  this  produces an
inactive small latent complex (SLC) via a non covalent bond between mature TGF-β1 and LAP [14]. Moreover, a large
latent complex (LCC) can be produced by the binding of SLC with the latent TGF-β1 binding protein (LTBP). This
complex is secreted and remains covalently associated to the extracellular matrix (ECM) for further activation. Several
TGF-β1 activation mechanisms have been described, which include acidic microenvironments, proteolytic cleavage by
plasmin and metalloproteinases and oxidative stress [14, 15]. Bioavailable and active TGF-β1 binds first to cell-surface
serine/threonine kinase type II receptors (TβRII) which activate and form heteromeric complex with the TGF-β1 type I
receptor (TβRI) Fig. (1). Then, TβRI phosphorylates Smad2 and Smad3, which induces their release from the inner face
of plasma membrane to form a heteromeric complex with the common Smad4. Next, this complex is translocated into
the nucleus to regulate genes target expression [14, 16, 17]. In turn, TGF-β1 signaling is regulated by the expression of
other components of Smads, the inhibitory Smads proteins (Smad6 and Smad7 or I-Smads) [18].

Beyond the canonical Smad2,3 pathway, TGF-β1 activates several non-canonical intracellular signal pathways Fig.
(1), named also non-Smads pathways, which include: mitogen-activated protein kinases (MAPK) ERK1,2, JNK and
p38;  PI3K  (phosphoinositide  3-kinase)/  AKT1,2  and  mTOR;  NF-κB  (nuclear  factor  κB),  Cyclooxygenase-2  and
prostaglandins; the small GTPase proteins Ras, Rho family of GTPases, among others [19]. The plethora of the TGF-β1

signal  transduction  pathways  in  part  explains  the  capacity  of  TGF-β1  to  regulate  many  cellular  functions  at  both
molecularand biological levels.

2.2. Tumor Microenvironment Overview

The  tumor  microenvironment  or  tumor  stroma  consists  mainly  of  the  cellular  components,  the  surrounding
extracellular matrix, and interstitial fluid. These factors interact with each other, contributing to the hallmarks of cancer
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having significant influence on immune responses against the tumor [20]. In this sense, cancer cells avoid recognition
by the immune surveillance and simultaneously secrete inflammatory mediators to establish and maintain a constant
state of inflammation [21]. In turn, the cellular components in the tumor include tumor cells themselves, associated
stromal cells such as fibroblasts and mesenchymal stromal cells, endothelial cells, and infiltrating immune cells. In this
aspect,  it  is  important  to  note  that  TM  infiltrating  immune  cells  play  essential  and  paradoxical  roles  in  immune
responses  against  cancer.  For  instance,  particular  subsets  of  immune  cells,  such  as  cytotoxic  T  lymphocytes,  NK,
mature dendritic cells (DC) or M1 tumor-associated macrophages (TAM), participate in tumor growth and progression
restrain.  Conversely,  other  infiltrating  immune  cells,  such  as  M2  TAM,  neutrophils,  mast  cells,  regulatory  T  cells
(Treg), immature DC or MDSC, tumor growth and progression [22 - 24].

Fig.  (1).  TGF-β1  intracellular  signaling.  TGF-β1  signalizes  through  interaction  with  TGF-β1  receptor-type  II  (TβRII)  and
subsequently  with  TGF-β1  receptor-type  I  (TβRI).  The  activated  ligand  and  receptors  complex  proceeds  to  the  activation  by
phosphorylation of the canonical effectors Smad2 and Smad3 that then forms a heteromeric complex to translocate into the nucleus
and mediate the regulation of the genes target expression. Furthermore, TGF-β1 is able to activate several non-canonical intracellular
signaling including MAP kinases (ERK1,2, p38 and JNK), NF-κB, PI3 kinase pathways, and small Rho GTPases, among others. The
canonical and non-canonical signal transductions together regulate many of the cellular and molecular functions of TGF-β1.

Importantly,  the  TM is  predominantly  infiltrated  with  immunosuppressive  factors  that  cripple  T  cell  responses
against the tumor. These factors are not present in normal tissues, but are components of tumor regulatory pathways in
response to inflammatory or infectious etiologies [25]. Thus, a balance between pro- and anti-malignancy factors in the
microenvironment regulates the growth of the tumor [26].

2.3. TGF-β1 and Immune System

The immune system is a complex and well developed organized structure whose strict balance is required for a
normal homeostasis along the human life. The immune system regulation requires a complex crosstalk between the
innate and adaptive system by secretion of cytokines, growth factors and cell-cell interactions. Dysregulation of the
immune system responses results in autoimmune diseases, inflammatory diseases and cancer [27].
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In cancer, TGF-β1 is the most potent immune-suppressive cytokine; it can act on cancer cells, on “non-transformed
cells” associated to tumor stroma and on distal cells in the host. TGF-β1 suppresses antitumor immune responses and
creates  an  immune-tolerant  microenvironment  allowing  cancer  cells  to  escape  from  immune  surveillance,  which
contributes to the tumor progression Fig. (2) [28 - 31]. TGF-β1 importance as master regulator of mammalian immune
system function and homeostasis was not highlighted until observing that tgfβ1-knockout mice exhibit a lethal multi-
organ  inflammation,  primarily  as  consequence  of  deregulation  in  T  cells  responses  [28,  32].  This  observation  was
further  supported  by  Smad3-deficient  mice,  which  exhibited  multi-organ  inflammatory  injuries,  as  well  as  severe
defects in the responsiveness and chemotaxis of neutrophils, T and B cells, and this primary defect in immune function
results to be lethal [33]. In addition, the transgenic targeting of T cells with a truncated TβRII expression results in a
severe autoimmune reaction characterized by multi-organ inflammation similar to that seen in TGF-β1 deficient mice,
concomitantly to the autoantibody production [28, 34].

Fig. (2). Overview of TGF-β1 regulation of immune system. TGF-β1 as a potent immune-suppressive cytokine regulates many
cellular components of the immune system. TGF-β1 inhibits the activation and function of T lymphocytes (T cell) and induces them
to differentiate to Tregulatory (Treg) and Th17 phenotypes. Also, it inhibits B lymphocytes (B cell) proliferation, classical dendritic
cells  (cDC)  maturation  and  natural  killer  (NK)  functions.  Furthermore,  TGF-β1  promotes  the  switch  of  tumor-associated
macrophages M1 and neutrophils N1 towards M2 and N2 respectively. Also, TGF-β functions as chemotactic factor for mast cells, as
well as it contributes to the generation of γδ T cells and regulatory DC (regDC). By these regulations, TGF-β1 induces an immune-
permissive  tumor  stroma that  contributes  to  the  tumor  progression.  Dotted line  arrows indicate  inhibition and solid  line  arrows
indicate induction.
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Although  cancer  cells  may  express  tumor  specific  antigens,  potentially  recognized  by  immune  system,  tumor
immunotherapy is  frequently unsuccessful  as a result  of cancer cells  capacity to evade the immune surveillance by
diverse strategies [29]. For instance, in malignant cells TGF-β1 downregulates the MHC Class I molecules making them
invisible  to  the  immune  system.  Moreover,  TGF-β1  profoundly  regulates  the  innate  immune  cells  compartment.  In
tumors,  TGF-β1  promotes  both  monocyte  recruitment  and  macrophage  differentiation  [35].  Moreover,  TGF-β1

suppresses  mouse  macrophage  expression  of  TNF-α,  MIP-1α,  MIP-2  and  it  contributes  to  the  resolution  phase  of
inflammation [36]. Furthermore, TGF-β1 induces the polarization of TAMs M1 toward a protumorigenic M2 phenotype.
Additionally, TAMs contribute to a tolerant tumor immunity microenvironment by producing TGF-β1 and supporting
tumor growth [37, 38]. In neutrophils, TGF-β1 may inhibit the ability of these cells to eliminate cancer cells-expressing
Fas-Ligand,  and  similarly  to  macrophages  TGF-β1  promotes  tumor-associated  neutrophils  switch  from  N1  to  a
protumorigenic N2 phenotype, thus further fomenting a permissive tumor microenvironment [39]. Besides, in tumor
associated classical (c)DC, TGF-β1 represses the expression of MHC class II, CD40, CD80, and CD86, and TNF-α,
IL-12, and CCL5/Rantes, and these DC become functionally defective because of their immature phenotype. Whereas,
TGF-β is able to induce DC to adopt a tolerogenic phenotype, defined as regulatory (reg)DC [40 - 42]. Finally, TGF-β
is a potent chemo attractant for mast cells, which depending of milieu can produce pro-tumorigenic or anti-tumorigenic
factors [43, 44].

Furthermore,  TGF-β1  regulates  also  lymphoid  compartment,  this  factor  largely  inhibits  both  T  cells  B  cells
responses, and hinders the effector cytokines production (including IL-2, IL-4 and IFN-γ); reduces NK cell proliferation
and cytotoxicity; meanwhile, it  induces the conversion of naive T-cells toward Tregs, and Th17 differentiation that
increases the production and secretion of pro-inflammatory cytokine IL-17, which contributes to the immune tolerance
as well as to tumor progression and metastasis [42, 45 - 48]. Furthermore, TGF-β1 contributes to the generation of γδ T
cells,  which  are  the  major  IL-17-producing  cells  in  naïve  animals,  and  tumor-infiltrating  γδ  T  cells  may  promote
tumorigenesis via IL-17 and PD-L1 upregulation [49, 50] Accordingly, TGF-β1 affects the initiation and stimulation of
both primary and secondary immune responses and it also suppresses antitumor effectors cells [51, 52].

Therefore, active TGF-β1 produced by the tumor and local stroma cells contributes to the cancer progression and
metastatic potential through autocrine and paracrine effects [53]. Importantly, elevated TGF-β1 plasma levels have been
associated with the advanced stage and poorer clinical outcome. For instance, in breast, prostate, pancreatic and renal
cancer  the  increase  in  plasma  TGF-β1  levels  areassociated  with  the  advanced  stage  of  metastases  [54].  Moreover,
elevated serum levels of TGF-β1 have been observed in patients with myeloma, being both malignant cells and bone
marrow stromal  cells  the  source  of  TGF-β1.  TGF-β1  levels  also  are  elevated  in  non–Hodgkin’s  lymphoma  and  are
markedly  elevated  in  high-grade  lymphomas,  cutaneous  T  cell  lymphomas  with  a  T-regulatory  phenotype,  and  in
splenic marginal zone lymphomas presented as myelofibrosis [30 and references therein].

3.  MYELOID-DERIVED  SUPPRESSORS  CELLS  IN  CANCER  AND  TRANSFORMING  GROWTH
FACTOR-B1 INTERPLAY

3.1. Myeloid-Derived Suppressor Cells

It  has been established that  the cancer progression is  commonly associated with increased number of  immature
myeloid cells, at various stages of differentiation, in spleen, peripheral blood and within TM. Currently these cells are
recognized as MDSC, and they are a hallmark of cancer and a central mechanism of immune evasion [55, 56]. MDSC
were described first in mouse models bearing human tumor cells and later on they were described in the patients with
head and neck squamous cancer [57].

MDSC primarily include immature myeloid cells (IMC), which in steady-state conditions, leave the bone marrow as
myeloid  precursor  cells  and  migrate  to  peripheral  tissues,  such  as  the  spleen,  where  they  differentiate  into  mature
myeloid cells in response to the specific tissue molecules. Whereas, under pathologic conditions associated with chronic
inflammation  IMC  become  to  differentiate  into  functional  immunosuppressive  MDSC.  Nevertheless,
immunosuppressive  MDSC  do  not  expand  under  healthy  conditions  [58,  59].

In general, MDSC include a small group of myeloid progenitors as well as immature mononuclear cells, that in
humans  can  be  identified  as  CD11b+,CD33+,  CD15+  or  CD66b+,  CD14-for  polymorphonuclear  (PMN)-MSC,  while
monocytic(M)-MDSC  are  CD11b+  or  CD33+,CD14+,  HLA-DRlow  which  distinguish  from  HLA-DRhi  monocytes.
Moreover, the Lin− (including CD3, CD14, CD15, CD19, and CD56) and HLA-DR−CD33+ cells contain mixed groups
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of  MDSC,  which  comprise  more  immature  progenitors  [60].  Meanwhile,  in  mice  MDSC  are  characterized  by  the
expression of Gr-1 (that share common epitope to Ly6C and Ly6G) and CD11b. Two categories can be defined in mice,
the PMN-MDSC as CD11b+Ly6G+Ly6Clo and M-MDSC as CD11b+Ly6G−Ly6Chi [1, 60].

Currently, it is accepted that MDSC expansion and accumulation is regulated by two sequential set of factors: first
the factors that are implicated in the expansion of MDSC such as GM-CSF, M-CSF and G-CSF, and also by factors
produced by cancer cells and tumor stroma including TGF-β1; the second set of factors, such as IFN-γ, TNF-α, IL-4/13,
IL-1β and COX2 significantly upregulates MDSC immunosuppressive functions [61, 62].

Several  studies  reported the  immunosuppressive  effects  of  MDSC in  HCC, melanoma,  prostate  cancer,  bladder
cancer, non–small cell lung cancer and head and neck squamous cell carcinoma, breast cancer, gastric cancer, colorectal
cancer and others, which evidences their clinical significance [60]. The capacity of MDSC to support tumor growth and
metastases can be defined according to the next functions: (i) protection of tumor cells from immune-surveillance; (ii)
remodeling of the tumor microenvironment, (ii) participating in the formation of a pre-metastatic niche; and (iv) by
their interaction with cancer cells facilitating the EMT [61].

3.2. Immunomodulatory Role of MDSC

The ability to suppress immune cells is one of the main characteristic of MDSC. Although MDSC are implicated in
the suppression of different cells of the immune system such as NK and B cells the inhibition of T cells is the key for
evaluation of MDSC function. Moreover, T-cell inhibition appears to be sufficient functional criteria for designation of
cells as MDSC [58, 60].

MDSC express  enzymes  and  metabolic  by-products  contributing  to  their  immune-regulatory  functions,  such  as
arginase-1 (Arg-1) inducible nitric oxide synthase (iNOS)/ nitric oxide (NO), reactive nitrogen species (RNS), reactive
oxygen species (ROS), Indoleamine 2, 3-dioxygenase (IDO) and programmed death-ligand 1 (PD-L1), among others.
Furthermore, they produce high levels of anti-inflammatory cytokines, such as IL-10 and TGF-β1 [60, 61]. Namely, T-
cell expansion is highly susceptible and linked to the catabolism of L-arginine (Arg). In this sense, iNOS uses Arg as
precursor for NO production; meanwhile Arg-1 catabolizes Arg to urea and ornithine. Therefore, the depletion of the T-
cell  essential  nutrient  Arg  by  elevated  expression  of  iNOS  and  Arg-1  in  tumor  microenvironment  inhibits  T-cell
proliferation. The main mechanisms of Arg depletion-induced T-cell inhibition are the downregulation of ζ-chains on T-
cell receptors and the inhibition of cyclin D3 and cdk4 expression [26, 63]. In turn, the increase of iNOS expression in
MDSC and therefore higher levels of NO contributes to T-cell proliferation arrest by blocking IL-2 production [64]. In a
similar way, IDO expression, which is a critical rate-limiting enzyme of tryptophan catabolism through the kynurenine
pathway, produces tryptophan depletion and halts the effector T cell proliferation [65]

Furthermore,  the  production  of  RNS,  such  as  perioxynitrites,  drives  T-cells  apoptosis  by  nitrotyrosylating  key
proteins  involved in  the  signaling of  T-cell  activation.  For  instance,  the  nitration of  T-cell  receptor  (TCR) induces
conformational changes in TCR-CD3 complex that diminishes the interaction between CD8 and TCR that results in the
loss of antigen-specific stimulation [66]. Whereas, the CD3 theta chain expression is reduced by MDSC through ROS
(H2O2) dependant mechanisms [67]. Moreover, by cell-cell contact MDSC may suppress T-cell activation via induction
of T-cell apoptosis through interaction of programmed death-1 (PD-1) molecules with its cognate ligands PD-L1 and
PD-L2 [68].

Additionally  to  direct  T-cell  inhibition,  MDSC cells  are  able  to  induce  and recruit  Tregs  by  TGF-β1  and  IL-10
expression [63]. Moreover, M-MDSC-derived TGF-β1 and retinoic acid participates in the transdifferentiation of TH17
cell towards Tregs [69]. Furthermore, MDSC inhibit cytotoxicity of NK Cells towards autologous activated T cells in
an in vitro model [70]. Finally, MDSC inhibit DC function via IL-10 by reducing the DC-mediated T-cells activation
[71].

Thus, MDSC possesses several mechanisms to counteract T-cell activation and response that contributes to produce
a supportive TM for cancer cell development.

3.3. MDSC Contribution to Cancer Progression

One  of  the  main  aspects,  beyond  immunomodulatory  functions,  that  support  tumor  growth  is  the  MDSC
contribution to the remodeling of tumor microenvironment by producing VEGF, bFGF and Matrix metalloproteinases
(MMPs), which contribute to tumor neoangiogenesis and to the increase of cancer cell motility and invasion [58, 61].
Intriguingly, MDSC can also contribute to the tumor endothelium by transdifferentiation toward endothelial cells as is
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demonstrated by VEGFR2 expression [72].  Moreover,  MDSC may contribute to the cancer-associated EMT by the
expression of TGF-β1, HGF, EGF, and IL-6. In in vitro studies it has been demonstrated that co-culture of cancer cells
with MDSC produces a stem-like phenotype of cancer cells, whereas in vivo depletion of PMN-MDSC decreases the
frequency of cancer cell displaying EMT phenotype in the primary tumor [73].

Due to the increasing evidences that support the relation between MDSC frequency and clinical outcome in cancer,
these cells have been postulated as cellular biomarkers for monitoring tumor progression and cancer patients response
to chemotherapy [74]. Circulating MDSC number is elevated in cancer patients and can be inversely correlated with
clinical response. For instance, in renal cell carcinoma the resistance to the TK inhibitor sunitinib is associated with
elevated peripheral blood MDSC levels [75], while in small cell lung cancer they predict a poorer response to cisplatin
chemotherapy, the level of M-MDSC is associated with poor response to bevacizumab and disease progression [76, 77].
Similarly, in breast cancer patients M-MDSC levels may represent biomarker for monitoring disease progression [78].
Meanwhile, in B cell acute lymphoblastic leukemia (B-ALL), PMN-MDSC levels correlated positively with therapeutic
responses and B-ALL prognostic markers, including minimal residual disease, and the frequencies of CD20+ and blast
cells [79]. Furthermore, MDSC also seems to impact the clinical course and prognosis of adult acute myeloid leukemia
[80].

3.4. TGF-β1 and MDSC

Clinical  data  demonstrated  that  TM–associated  TGF-β1  levels  correlate  with  poor  prognosis  in  cancer  patients.
Beyond cancer cell production of TGF-β1, several stromal cells are also able to increase the level of TGF-β1 the tumor,
which include cancer associated fibroblast , mesenchymal stromal cells, and also the innate immune system cooperates
to the augment of TGF-β1 tumor levels [31, 81].

Tumor production of TGF-β1 can contribute to the increment of MDSC frequency and function Fig. (3). In vitro
TGF-β1  is  able  to  induce  functional  M-MDSC  from  purified  human  monocytes  [82].  One  interesting  mechanism
implicated tumor exosomes (TEXs) in the induction and accumulation of MDSC. Generally, exosomes are described as
30  to  100 nm  size  vesicles  originated  from  the  endosome  organelles  carrying  different  genes,  lipids,  proteins,  and
microRNAs (miRS).  Many cells,  including tumor cells,  have the capacity to release exosomes. Recently,  increased
evidence has suggested that TEXs might act as a vehicle for transmitting signals for suppression thus having negative
effects  on  antitumor  immune  responses  [83].  Furthermore,  TEXs-associated  TGF-β1  also  contributes  to  MDSC
expansion. Namely, in breast cancer mouse model, TEXs-associated TGF-β1, in addition to PGE2, contributes to in vivo
MDSC induction and tumor growth [84].

One of the mechanisms involved in TGF-β-induced MDSC is its capacity to regulate miRs expression. MiRs are
noncoding single-stranded RNAs with an average of 22 nucleotides long, which post-transcriptionally regulate gene
expression trough its capacity to interfere RNAs by binding either to the 3′UTR or 5′UTR or the coding sequence of
mRNAs [85]. Specifically, TGF-β1 induces both M-MDSC and PMN-MDSC from mouse bone marrow mononuclear
cells by up-regulating the expression of miR-21 and miR-155 [86]. In addition, TGF-β1 is able to regulate mouse MDSC
proliferation by induction of miR-494 in a Smad3 dependent way [87].

The capacity of TGF-β to contribute to MDSC immunosuppressive properties is also pictured by the capacity of B
regulatory cells (Breg) to educate the MDSC. Cancer associated Breg can educate both M- MDSC and PMN-MDSC
subpopulations to suppress T cell proliferation. This relays in part to the presence and activation of TGF-β1 receptors in
MDSC, since the use of TβRI inhibitor or mice with TβRII deficient myeloid cells reduces the capacity of Bregs to fully
activate the regulatory capacity of MDSC concomitantly to the inhibition of metastasis [88].

TGF-β1, beyond its capacity to induce MDSC, also contributes to the immune suppressive capacity of MDSC, as
well  as  to  their  contribution to  tumor malignancy.  For  instance,  mouse mammary carcinomas with Tgfbr2  deletion
provoke  increased  infiltration  of  Gr-1+CD11b+  MDSC to  the  invasive  front,  moreover  these  MDSC were  the  main
source of TGF-β1 within the tumors. The increment in TGF-β1 levels within the tumor contribute to the enhancement of
invasive  capacities  of  mammary  cancer  cells  [89].  Human  peripheral  blood  CD14+HLA-DR−  MDSC  subset  in
squamous cell carcinoma of the head and neck are high producers of TGF-β1 and by blocking this factor with anti-TGF-
β1 monoclonal antibody the T-cell immunosuppression is reduced [90]. Also, IL-13 activation of CD11b+Gr-1int MDSC
induces TGF-β1 production, and the inhibition of IL-13 receptor alpha restores in vivo tumor immunosurveillance in a
murine syngeneic model of colon carcinoma [91]. Interestingly, the exposition of C57BL6/J mice to an acute dose of
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single-walled carbon nanotubes (CNT) provokes the recruitment and accumulation of MDSC into the lung. These CNT-
induced  MDSC  produce  TGF-β1  resulting  in  an  immunosuppressive  microenvironment  and  increased  lung  tumor
burden. However, in TGF-β1-deficient mice the CNT do not enhance the tumor growth. In this model, TGF-β1 was not
involved in the initial recruitment of MDSC to exposed lungs to CNT, while it was critical to the MDSC-dependant
stimulation of tumor growth [92].

Fig. (3). TGF-β1 and MDSC collaboration in the regulation of tumor associated immune responses. Tumor production of TGF-
β1 contributes to the induction and accumulation of MDSC frequency and function within stroma. Moreover, MDSC and TGF-β1

strongly contribute to an immunosuppressive microenvironment by regulation of many components of immune system. One of the
hallmarks  of  MDSC  is  their  suppressor  function  of  T  lymphocytes  (T  cell)  responses.MDSC  induce  T  regulatory  (Treg)  cells,
whereas they inhibit NK functions via cell-associated TGF-β1. Furthermore, MDSC are educated by B regulatory (Breg) lymphocytes
by TGF-β1 signaling. Also MDSC contribute to cancer cells increase of the levels of tumor TGF-β1, whose increase participates in the
enhancement of cancer cell malignancy by inducing tumor progression.Dotted line arrows indicate inhibition and solid line arrows
indicate induction.
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Although the immunosuppressive capacity of the MDSC is in part due to its capacity to produce TGF-β1, they can
also  use  TGF-β1  to  regulate  other  immunoregulatory  cells.  As  aforementioned,  TGF-β1  induces  the  potent
immunosuppressive cells Treg cells [93]. In this aspect, mouse MDSC, in an IL-10 and TGF-β1  dependant manner,
induce Tregs cells in tumor-bearing host model, which contributes to the downregulation of T-cell mediate immunity
[94]. Conversely, PMN-MDSC obtained from tumor bearing mice have been shown to inhibit the in vitro capacity of
TGF-β1  to  induce  Tregs  cells  in  ROS/IDO-dependant  pathways.  These  data  point  out  that  PMN-MDSC  plays
fundamental roles in the generation of Tregs cells during tumorigenesis [95]. In addition, MDSC are able to regulate
NK cells  activity  in  mouse  model  of  liver  cancer.  Furthermore,  MDSC by  membrane  bounded  TGF-β1  impair  NK
function in orthotropic liver cancer-bearing mice, therefore MDSC induce an immune-tolerant tumor microenvironment
by also inhibiting NK cytotoxic activity [96, 97].

CONCLUSION

In  tumor  microenvironment  TGF−β1  plays  an  important  role  by  contributing  to  the  reduction  of
immunosurveillance, either by direct induction of MDSC, or by contributing to MDSC regulation of T-cell mediate
immune-responses as well as indirectly by mediating the capacity of MDSC to modulate Tregs and cytotoxic NK cells.
However, the capacity of MDSC to produce TGF-β1 suggests a positive feedback that amplifies the role of MDSC in
establishing an immune-tolerant microenvironment to promote tumor progression.
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