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Abstract: Our genetic material is constantly damaged by internal sources such as reactive oxygen species and external 

sources such as ionizing radiation and sunlight. However, we seldom notice these injuries because our cells possess 

elegant DNA surveillance networks that serve to maintain cellular homeostasis. These networks are complex signal 

transduction pathways that coordinate cell cycle checkpoints and DNA repair processes to eliminate DNA damage, as 

well as invoking pathways such as sustained growth arrest (i.e., accelerated senescence) and apoptotic cell death to 

eliminate injured cells from the proliferating population. The p53 tumor suppressor protein and its downstream effector 

p21 are key regulators of these various responses. Failure of cells to properly activate p53/p21-mediated events following 

genotoxic stress may lead to the development of genomic instability and the emergence of malignant cells which exhibit 

stem cell-like properties. It is therefore not surprising that defects in major players of the DNA surveillance networks are 

the underlying cause for numerous debilitating human genetic disorders that are characterized by genomic instability, 

premature aging, and cancer proneness. In this article, we first provide an update on the role of the p53 signaling pathway 

in determining the fate of human cells following exposure to DNA-damaging agents. We next review the clinical and 

laboratory features of the most extensively studied human genome instability disorders including xeroderma 

pigmentosum, Cockayne syndrome, ataxia telangiectasia, and Li-Fraumeni syndrome, and discuss the current knowledge 

on the biological consequences of deregulated p53 signaling in cells derived from patients with such disorders. 
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INTRODUCTION 

 Our genome is continuously exposed to potentially 
deleterious genotoxic events from both endogenous sources, 
resulting from cellular metabolism or routine errors in DNA 
replication and recombination, and exogenous sources such 
as ionizing radiation, ultraviolet light (UV), and chemical 
mutagens. Genome integrity and cellular homeostasis are 
maintained through elegant DNA surveillance networks that 
serve to recognize the DNA damage and facilitate DNA 
repair, or to eliminate highly injured cells from the 
proliferating population. Mutations in the genes that encode 
the key players of the DNA surveillance networks are the 
underlying cause for a number of genome-instability 
syndromes, disorders that are often associated with a 
heightened predisposition to cancer (Table 1). 

 The focus of this review is to: (i) provide an update on 
the roles of the p53 tumor suppressor protein and its key 
downstream effector p21 in determining the fate of human 
cells following genotoxic stress; (ii) highlight the clinical 
and laboratory characteristics of genomic-instability 
syndromes such as xeroderma pigmentosum and related 
disorders, ataxia telangiectasia and related disorders, Li-
Fraumeni syndrome, Werner syndrome and related 
disorders; and (iii) discuss the biological consequences of the 
aberrant activation of p53 signaling in cells derived from 
patients with some of these disorders. 
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P53 SIGNALING AND CELLULAR RESPONSE TO 
DNA DAMAGE 

 The human p53 tumor suppressor is a 393 amino acid 
tetrameric transcription factor consisting of five structural 
and functional domains: an N-terminal acidic transcriptional 
transactivation domain, a proline-rich regulatory domain, a 
central DNA-binding domain, an oligomerization domain, 
and a C-terminal domain involved in the regulation of DNA 
binding [1]. The N-terminal domain is required for activating 
downstream target genes. The proline-rich domain is 
responsible for interaction with various proteins that activate 
apoptotic signaling. The central DNA-binding domain is 
comprised of -sheets that support flexible loops and helices 
that facilitate sequence-specific DNA binding. The 
oligomerization domain is comprised of a -strand, a tight 
turn, and an -helix, through which p53 molecules interact 
to form dimers, and dimers interact to form tetramers. 
Tetramerization of p53 is essential for its ability to function 
as a transcription factor. The C-terminal domain contains 
nuclear localization sequences as well as a negative 
regulatory region that binds short non-specific DNA 
sequences and prevents the binding of sequence-specific 
DNA to the central domain of p53. 

 In unstressed cells, the p53 protein undergoes rapid 
turnover, and is thus maintained at low steady state levels 
that restrict its impact on cell fate [2]. DNA damage and 
other forms of stress trigger a series of post-translational 
modifications on p53 that contribute to its stabilization, 
nuclear accumulation and biochemical activation [3, 4]. 
These modifications include phosphorylation, acetylation, 
ribosylation, O-glycosylation, ubiquitination and sumoy-
lation [5-7]. The phosphorylation sites Ser15, Thr18 and 
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Ser20 are critical for stabilization of the p53 protein. A 
number of kinases have been implicated

 
in phosphorylation 

of p53, including members of the phosphatidylinositol 3-
kinase superfamily of protein kinases [8, 9].  

Table 1. Some Clinical and Molecular Characteristics of the most Extensively Studied Human Genome Instability Disorders 

Disorder Mode of Transmission Cancer Proneness Defective Protein Defective Function 

Xeroderma pigmentosum Autosomal recessive Yes XPA through XPG; 
DNA polymerase  

NER (XPA through XPG); 
Postreplication repair (XPV) 

Cockayne syndrome Autosomal recessive No CSA, CSB NER (TCR) 

Tricothiodystrophy Autosomal recessive No XPB; XPD, TTDA NER (GGR) 

Ataxia telangiectasia Autosomal recessive Yes ATM ATM signaling 

Nijmegen breakage syndrome Autosomal recessive Yes NBS1 DSB repair 

AT-like disorder Autosomal recessive No Mre11 DSB repair 

Li-Fraumeni syndrome Autosomal dominant Yes p53; Chk2 p53/Chk2 signaling 

Werner syndrome Autosomal recessive Yes WRN DNA helicase 

Bloom syndrome Autosomal recessive Yes BS DNA helicase 

Rothmund-Thompson syndrome Autosomal recessive Yes RTS DNA helicase 

Fanconi Anemia Autosomal recessive Yes FANCA, B, C, D1, D2, 
E, F, G, I, J, L and M 

DNA helicase;  
DNA cross-link repair 

 
Fig. (1). Responses triggered by ionizing radiation in human cells. Arrows indicate stimulation and T-shaped lines indicate inhibition. DNA 

double-strand breaks (DSB) induce rapid activation of the ATM protein kinase through a posttranslational mechanism, which then mediates 

the phosphorylation of target proteins including p53, CHK2 and WRN (defective in Werner syndrome patients). Phosphorylation of p53 

results in its accumulation in the nucleus and transcriptional activation of p21
WAF1

 and other p53-responsive genes. Depending on the extent 

of genomic injury and the genetic background of the cells, activation of the p53 pathway may promote survival through activating G1/S and 

G2/M checkpoints and DNA repair processes, or may lead to p53-directed apoptosis or p21-directed accelerated senescence. WRN and 

CHK2 also contribute to phosphorylation of p53 and activation of downstream events [93, 94]. The radiation-responsive S-phase checkpoint 

is dependent on WRN [95] and Ca
2+

/calmodulin-dependent protein kinase II (CaMKII) [118], but not the p53-p21 axis [118]. Failure of the 

cells to implement these responses can lead to the development of mononucleated and multinucleated “giant” cells, which have the potential 

of undergoing neotic cell division, eventually leading to the emergence of malignant and therapy-resistant progenies [37]. 
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Multiple Functions of p53 

 Activation of the p53 network following genotoxic stress 
either serves to promote cell survival by activating cell cycle 
checkpoints and facilitating DNA repair, or eliminates the 
injured cells from the proliferating population, for example 
by inducing apoptotic cell death or a senescence-like growth 
arrest (herein called accelerated senescence) (Fig. (1)). Many 
of the effects of p53 are attributed to transcriptional 
activation of p53-responsive genes in general, and p21

WAF1
 in 

particular [10-13]. The protein encoded by this gene (p21) is 
known to down-regulate apoptosis, to activate cell cycle 
checkpoints, and to switch on the senescence program (see 
below). In addition to p21, several other proteins that are 
transcriptionally regulated by p53 also influence apoptosis. 
These include the pro-apoptotic proteins PUMA (p53 
upregulated modulator of apoptosis), BAX (BCL-2-
Associated X Protein) and NOXA (the Latin word for 
damage) [14, 15]. 

 Accumulating evidence indicates that p53 also directly 
modulates the transmission of specific signals by interacting 
with other cellular proteins. For example, p53 interacts with 
key players of different DNA repair pathways, including 
DNA double strand break (DSB) repair [16-19] and 
nucleotide excision repair [20]. In addition, the proline-rich 
domain of p53 directly mediates apoptotic signaling 
independent of the transcriptional transactivation domain of 
the protein [21]. This proline-rich domain also contains a 
motif that serves as a docking site in the transmission of 
signals that inhibit DNA synthesis, resulting in 
transactivation-independent inhibition of growth [22]. The 
p53 protein also functions as a regulator of the complex 
intercellular communication network that is now well 

documented to play a pivotal role in determining cell fate 
following genotoxic stress [23]. 

Multiple Functions of p21 

 The p21 protein is a member of the CIP/KIP family of 
protein kinase inhibitors. It exerts its effect on the cell by 
various mechanisms (Fig. (2)). The C-terminus of p21 
suppresses DNA synthesis by interacting with proliferating 
cell nuclear antigen (PCNA), an auxiliary factor for DNA 
polymerase  [24]. The N-terminus of p21 binds to cyclin-
dependent kinases (CDKs) and inhibits their ability to 
phosphorylate the retinoblastoma protein (pRB), an activity 
that is required for progression of cells from G1 to S phase 
[24]. Prolonged nuclear accumulation of p21 following 
genotoxic stress is known to drive accelerated senescence, 
and this response is associated with p21-dependent down-
regulation of genes involved in mitosis and up-regulation of 
genes mediating cellular senescence [25, 26]. In addition to 
exerting these responses, under certain conditions (e.g., 
activation of the phosphatidylinositol 3-kinase/AKT 
signaling pathway) the p21 protein may be sequestered in the 
cytoplasm, where it interacts with apoptosis signal-
regulating kinase 1 (ASK-1), down-regulates the stress-
induced mitogen-activated protein kinase (MAPK) cascade, 
and results in resistance of cells to apoptosis induced by 
genotoxic agents [27]. Another mechanism by which p21 
might down-regulate apoptosis is through interaction with 
procaspase 3, resulting in suppression of caspase 3-mediaed 
apoptosis [28]. The p21 protein has also been reported to 
dephosphorylate pRB, as well as to inactivate pRB through 
proteasome-mediated degradation [29]. In short, p21 plays a 
key role in determining cell fate following genotoxic stress 
not only as an activator of the G1/S cell cycle checkpoint, 

 

Fig. (2). Multiple functions of p21. Exposure of p53-proficient human cells to DNA-damaging agents results in p53-dependent 

transcriptional activation of p21. In the nucleus, p21 inhibits DNA synthesis by interacting with PCNA and cyclin/CDK complexes [24], 

down-regulates pRB [29], interferes with DNA methyltransferase (MeTase) activity [123], stimulates transcription of a series of genes 

involved in senescence, and suppresses the transcription of numerous genes involved in mitosis [25, 26]. In the cytoplasm, p21 interacts with 

ASK-1, down-regulates the MAPK cascade, and results in resistance of cells to undergoing apoptotic cell death [27]. In addition, p21 forms a 

complex with procaspase 3, resulting in suppression of caspase 3-mediaed apoptosis [28].  
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but also as a regulator of transcription, activator of 
accelerated senescence, down-regulator of apoptosis, and 
regulator of the pRB tumor suppressor. 

Biological Consequences of the Failure to Implement 
p53/p21-Mediated Responses 

 Cells that fail to properly activate the p53 pathway in 
response to genotoxic stress may replicate their genome and 
execute mitosis despite carrying high levels of DNA damage 
and chromosomal aberrations [30]. This can result in the 
development of micronucleated giant cells (containing sub-
genomic fragments in multiple micronuclei), as well as 
endopolyploid giant cells, encompassing cells with a single, 
but markedly enlarged, nucleus (with a DNA content at least 
four times greater than that of unirradiated cells), and cells 
with several nuclei (sometimes as many as ten). Such 
features of “mitotic catastrophe” were originally considered 
to represent aberrations of dying cells (reviewed in [30]). 
However, studies with p53-deficient human cell lines 
exposed to ionizing radiation (10 Gy) have revealed that a 
subset of endopolyploid giant cells are protected against 
apoptosis [33], exhibit efficient repair of DSBs [33], and 
undergo a complex breakdown and sub-nuclear reorg-

anization, ultimately resulting in the genesis of rapidly 
propagating progenies [30-34]. The Aurora B kinase has 
been recently demonstrated to play a crucial role in 
supporting the long-lasting reproductive potential of 
endopolyploid giants [34]. Unlike endopolyploidy that may 
provide a survival advantage, micronucleation appears to be 
associated with death, as totally micronucleated cells do not 
express Aurora B kinase and fail to undergo mitosis [34]. 

 There is also evidence that the progeny of endopolyploid 
giant cells might be generated not by the classical types of 
cell division (mitosis), but rather through the process of 
neosis, which resembles division of the budding yeast [35-
43]. Computerized video time-lapse microscopy has revealed 
that although many of these endopolyploid cells cease to 
divide, some endopolyploid cells may produce numerous (50 
or more) small cells with little cytoplasm (called 
“karyoplast” or “Raju” cells) via the nuclear budding process 
of neosis [35, 38]. As extensively discussed by Rajaraman 
and his colleagues [35, 38], karyoplast cells that emerge 
from each neotic endopolyploid cell might regain mitotic 
activity and transiently display certain stem cell-like 
properties (e.g., extended mitotic life span, expression of 
telomerase, and potential to differentiate), and subsequently 

 

Fig. (3). Fate of endopolyploid giant cells. Failure of cells to properly activate cell cycle checkpoints following exposure to DNA-damaging 

agents may lead to the development of endopolyploid giant cells with massive DNA contents [30]. The majority of such giant cells may be 

eliminated from the proliferating population by accelerated senescence, apoptosis or other modes of cell death. A small proportion of giant 

cells, however, may retain viability and undergo neotic cell division, which is characterized by karyokinesis via nuclear budding followed by 

asymmetric cytokinesis, resulting in the generation of small mononuclear “karyoplasts” (also called Raju” cells) [32-37]. These karyoplasts 

cells may undergo multiple cycles of cell fusion/neosis/mitosis, eventually giving rise to highly metastatic and therapy resistant descendants 

[36, 37]. 
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experience a complex life cycle eventually leading to the 
development of highly metastatic cells (also see Fig. (3)). 
This parasexual mode of somatic reduction division is now 
fairly well characterized and has been documented for a 
variety of p53-deficient murine and human cell lines [36, 38-
40]. In addition, exposure of p53-deficient cell cultures to 
DNA-damaging agents has been demonstrated to yield 
neosis-derived karyoplast cells that exhibit marked resistance 
to cancer therapeutic agents, suggesting that such events may 
contribute to the recurrence of therapy-resistant malignancies 
[35-38, 41, 42]. The finding that the development of 
endopolyploid cells can represent a mechanism of survival in 
p53-deficient cultures has been the subject a special review 
issue of Cell Biology International, with an Editorial article 
entitled “Endopolyploidy…survival of the fattest” [43]. 

GENOME INSTABILITY DISORDERS 

 The best-studied human genome instability disorders are 
listed in Table 1. These disorders can be loosely divided into 
four groups. The sunlight hypersensitivity disorders 
xeroderma pigmentosum, Cockayne syndrome, and 
tricothiodystrophy; the ionizing radiation hypersensitivity 
disorders ataxia telangiectasia, Nijmegen breakage 
syndrome, and ataxia telangiectasia-like disorder; the Li-
Fraumeni syndrome, characterized by a wide spectrum of 
tumors affecting children and young adults; and the 
progeroid disorders Werner syndrome, Bloom syndrome, 
Rothmund-Thompson syndrome, and Fanconi Anemia, all of 
which are associated with a deficiency in a DNA helicase 
activity. Whereas the Li-Fraumeni syndrome is an autosomal 
dominantly transmitted disorder, all other conditions listed in 
Table 1 are inherited in an autosomal recessive pattern. The 
clinical and laboratory (i.e., cellular and molecular) 
characteristics of these disorders are described blow. 

Sunlight Hypersensitivity Disorders 

 Xeroderma pigmentosum (XP) is characterized by 
extreme sensitivity to UV resulting in greater than 1000-fold 
increased risk of developing sunlight-induced skin cancer. 
Other clinical features of XP include blistering or freckling 
on minimal sun exposure, premature aging of skin, lips, 
eyes, mouth and tongue, blindness, progressive neurological 
complications such as developmental disabilities and mental 
retardation [44-46]. Cells cultured from XP patients are 
hypersensitive to UV in terms of cell killing, mutagenesis 
and in vitro transformation [44, 47, 48]. Eight genetic forms 
of XP have been identified, designated groups A through G, 
that are deficient in early steps of nucleotide excision repair 
(NER), and group variant, that is deficient in postreplication 
repair. The NER process employs an array of over 30 
proteins that detect bulky DNA lesions such as UV-induced 
cyclobutane pyrimidine dimers and 6-4 photoproducts, 
excise the damaged strand, and synthesize new DNA using 
the complementary strand as a template. Two sub-pathways 
of NER function in human cells: global genome repair 
(GGR) and transcription-coupled repair (TCR), which 
operate on the whole genome and the transcribed strand of 
expressed genes, respectively [49]. XP complementation 
groups A, B, D, E, F and G are deficient in both GGR and 
TCR, whereas XP-C is deficient in GGR only. The XP 
variant group, on the other hand, is defective in DNA 

polymerase , which catalyzes the efficient
 
and accurate 

translesion synthesis of DNA past bulky lesions induced by 
UV and UV-mimetic chemicals [50]. 

 Cockayne syndrome (CS) is characterized by postnatal 
growth failure, neurological dysfunction, cachectic 
dwarfism, photosensitivity, sensorineural hearing loss and 
retinal degradation [51, 52]. The skin of CS patients is frail, 
slightly wrinkled and sensitive to light. Over time, sun 
exposure causes characteristic skin changes. The head of CS 
patients is small and their eyes deeply set as a result of their 
brain failing to grow normally. Two genetic forms of CS 
have been identified, designated CSA and CSB [53]. The 
protein defective in CSA patients belongs to the “WD 
repeat” family of structural and regulatory proteins that lack 
enzymatic activity [54]. The protein defective in CSB 
patients is a member of the SW1/SNF family of ATPases, 
which facilitate transcription by altering the structure of the 
chromatin [55]. Cells derived from all CS patients are 
defective in the TCR subpathway of NER, but carry out the 
GGR subpathway with normal efficiency. However, not all 
clinical and cellular features of CS can be explained by 
defective TCR of bulky DNA lesions. The basis for this 
conclusion is that CS patients, with a specific defect in TCR, 
nonetheless display more severe symptoms than most XP 
patients (e.g., groups A and G) in which both the TCR and 
GGR subpathways of NER are affected. Accordingly, a role 
of the CS proteins outside NER has been suggested, such as 
an auxiliary function in transcription [56, 57] and/or in the 
TCR of non-bulky DNA lesions [58-61]. Indeed, CS cells 
exhibit a defect in the TCR of

 
oxidative DNA damage [60, 

61], underscoring the possible contribution of unrepaired 
oxidative DNA lesions in the etiology of CS. 

 Tricothiodystrophy (TTD) is characterized by brittle hair 
and nails with reduced sulfur content, mental retardation, 
ichthyotic skin, and reduced

 
stature [62]. Most TTD patients 

present with UV sensitivity but no increased incidence of 
cancer. Cells derived from UV-photosensitive TTD patients 
have a defect in GGR but not in TCR, similar to XP 
complementation group C. Surprisingly, however, genetic 
analysis has revealed that some photosensitive TTD patients 
have mutations in the XPB gene, and some in the XPD gene; 
such TTD patients have therefore been designated XPB and 
XPD, respectively [63, 64]. Another group of TTD patients 
carry normal alleles of the genes that are mutated in all 
complementation groups of XP; this group is designated 
TTDA [63, 64]. The basis for the paradoxical observations 
that mutations in a single gene (e.g., XPD) can affect only 
GGR in TTD patients but both GGR and TCR in XP 
patients, and that mutations in a single gene can be 
associated with two clinically diverse disorders (i.e., XP and 
TTD), remains largely unexplained.  

Ionizing Radiation Hypersensitivity Disorders 

 Ataxia telangiectasia (AT) is characterized by 
progressive neurovascular degeneration, immunodeficiency, 
impaired organogenesis, premature aging and endocrine 
dysfunction [65-67]. AT patients are also prone to 
lymphoproliferative neoplasia and respond untowardly to 
radiotherapy for cancer treatment [67, 68]. The gene mutated 
in AT, called ATM (AT mutated), encodes a 350-kDa serine-
specific protein kinase. The C-terminal domain of the ATM 
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protein shares the kinase signature of the phosphati-
dylinositol 3-kinase superfamily of proteins, which are 
involved in the regulation of cell cycle progression, DNA 
damage processing, and maintenance of genomic stability 
and cellular homeostasis [8, 69]. The ATM protein plays a 
central role in orchestrating the various responses triggered 
by ionizing radiation and other agents that induce DNA 
DSBs (Fig. (1)). Exposure of normal human cells to such 
agents results in rapid activation of ATM, which then 
phosphorylates hundreds of target proteins involved in DNA 
repair and replication [70], including p53 (mutated in most 
Li-Fraumeni syndrome patients) and WRN (defective in 
Werner syndrome patients). ATM also phosphorylates the C-
terminal tail of the core histone H2AX molecules 
surrounding DSBs [71, 72]. This phosphorylation marks the 
site of damage and nucleates the formation of damage 
response and repair complexes. Consistent with these 
properties of ATM, cells derived from AT patients exhibit 
defective clonogenic survival, excessive genetic instability, 
impaired activation of cell cycle checkpoints, and defective 
repair of DSBs following exposure to ionizing radiation and 
radiomimetic agents [66, 67, 73, 74]. A prominent feature of 
AT cells is their failure to suppress DNA synthesis following 
exposure to ionizing radiation. We have reported that this so-
called radioresistant DNA synthesis phenotype of AT cells 
can be corrected by diffusible factors secreted from normal 
cells into the culture medium, or by simply treating AT cells 
with prostaglandin E2 [75]. These findings suggest that 
eicosanoids such as prostaglandin E2 may assume the role of 
an extracellular signaling modulator of the S-phase 
checkpoint in AT cells exposed to ionizing radiation, 
mediating DNA synthesis shutdown via an alternative, 
ATM-independent signal transduction pathway [75]. 
Identification of exogenous factors capable of compensating 
for the ATM function could potentially provide a practical 
strategy for improved management of AT patients without 
the need for ATM gene replacement. 

 Nijmegen breakage syndrome (NBS) is characterized by 
immunodeficiency, microcephaly, mental retardation, 
increased incidence of lymphoid cancers and extreme 
sensitivity

 
to ionizing radiation [76, 77]. The gene mutated in 

NBS, NBS1, encodes a protein that is a downstream 
substrate of ATM and is involved in the repair of DSBs.  

 AT-like disorder (ATLD) is characterized by cerebellar 
degeneration, chromosomal instability, and ionizing 
radiation sensitivity. Unlike AT and NBS patients, ATLD 
patients are not immunodeficient and show no increased 
incidence of cancer. The gene defective in ATLD encodes 
the MRE11 protein, which forms a trimer with NBS1 and 
RAD50 proteins and participates in DSB rejoining [78, 79]. 

Li-Fraumeni Syndrome 

 Li-Fraumeni Syndrome (LFS) is characterized
 

by a 
marked increase in familial disposition to cancers, including 
sarcomas, carcinomas of the breast, brain, and adrenal gland, 
and acute leukemia [80]. The majority of LFS patients 
harbor germline mutations in one allele of the p53 gene, with 
the mutant protein often causing transdominant inhibition of 
the wild-type p53 function [81, 82]. Germline mutations in 
the CHK2 gene, which encodes the CHK2 checkpoint 
kinase, have also been found in some members of LFS 

families [83]. Despite the presence of such mutations in 
affected members of most LFS kindreds, the molecular 
genetics of LFS are still not completely understood. It is 
likely that p53/CHK2 mutations are only one major event, 
and that LFS may be associated with abnormal functioning 
of multiple DNA-damage response pathways. Non-
cancerous dermal fibroblast strains derived from LFS 
patients that harbor p53 mutations have been instrumental in 
demonstrating a role for wild-type p53 in the repair of DNA 
damage induced by UV [84-87] and ionizing radiation [74, 
86]. LFS strains with compromised or absence of wild-type 
p53 function exhibited DNA repair deficiencies after 
exposure to these agents. 

Progeroid Disorders Exhibiting DNA Helicase Deficiency 

 Werner syndrome (WS) is the prototype progeroid 
disorder, characterized by graying and thinning of the hair, 
scleroderma-like skin changes, ocular cataracts, diabetes, 
atherosclerosis, osteoporosis, and high incidence of thyroid 
cancer, melanoma, and various sarcomas [88, 89]. The 
protein defective in WS patients (WRN) belongs to the RecQ 
family of helicases and possesses multiple DNA-metabolic 
functions such as 3 5  exonuclease, DNA helicase and 
DNA-dependent ATPase activities [90-93]. WRN also 
directly interacts with p53 in response to genotoxic stress 
[94, 95]. This interaction contributes to p53 activation, 
resulting in increased expression of p53 target genes such as 
p21

WAF1
, BAX, p53R2, and eventual phenotypic outcomes; 

namely, accelerated senescence, apoptosis, or repair. WRN 
undergoes phosphorylation by ATM and ATR (ATM and 
Rad3-related) specifically in response to agents that induce 
replication fork stalling [96], suggesting a role for WRN in 
the S-phase checkpoint. These and related findings have 
therefore established the existence of a cross-talk between 
WRN and key players of the DNA-damage surveillance 
network (e.g., ATM, ATR, CHK2, p53), suggesting the 
possibility that such cross talk may be important for 
maintaining genomic integrity and cellular homeostasis, and 
for preventing the accumulation of genetic abnormalities that 
can lead to cancer.  

 Bloom Syndrome (BS) is characterized by short stature, a 
narrow face with prominent nose, skin color changes in the 
face which are more noticeable after sunlight exposure, 
butterfly-shaped facial rash, a high pitched voice, an 
increased susceptibility to infection and respiratory diseases 
and a markedly increased susceptibility to a wide range of 
cancers, especially to leukemia and lymphoma [97, 98]. 
Cells derived from BS patients exhibit cytogenetic 
abnormalities including excessive chromosome breaks and 
sister chromatid exchanges [99]. The gene defective in 
Bloom syndrome is called BLM, which encodes a 3 5  
DNA helicase identified as a member of the RecQ family 
[100]. The BLM protein is phosphorylated and accumulates 
through an ATM-dependent pathway and appears to play a 
role in the G2/M checkpoint following exposure to ionizing 
radiation [101]. 

 Rothmund-Thompson syndrome (RTS) is characterized 
by growth retardation, photosensitivity with poikilo-
dermatous skin changes (i.e., combination of atrophy, 
telangiectasia, and pigmentary changes), juvenile cataracts, 
early graying and hair loss, hypogonadism, and an increased 
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prevalence of skin cancer and sarcomas [102]. Like the 
WRN and BLM proteins, the protein defective in RTS 
patients is a member of the RecQ family of helicases [103]. 

 Fanconi anemia (FA) is characterized by congenital 
defects, bone marrow failure, short stature, infertility, 
skeletal anomalies, and increased incidence of solid tumors 
and leukemias [104]. FA patients are diagnosed on the basis 
of haematological abnormalities such as aplastic anemia, 
myelodysplastic syndrome, and acute myeloid leukaemia 
[105]. At the cellular level, a distinguishing and diagnostic 
feature of FA is chromosomal instability and cellular 
hypersensitivity to mitomycin C and other agents that induce 
DNA interstrand crosslinks [106]. Patients with FA are 
categorized into several complementation groups, including 
FANCA, B, C, D1, D2, E, F, G, I, J, L and M [107]. Eight 
FA proteins (FANCA, B, C, E, F, G, L, and M) appear to 
form a nuclear core complex possessing a putative DNA 
helicase (FANCM) and an E3 ubiquitin ligase (FANCL) 
subunit. Following formation of DNA crosslinks, the core 
complex mediates mono-ubiquitination of FANCD2, 
resulting in translocation of FANCD2 to DNA damage foci 
containing BRCA1 [108], BRCA2 [109], and the MRE11-
RAD50-NBS1 complex [110]. The precise role of FANCD2 
in DNA repair remains unknown. 

BIOLOGICAL CONSEQUENCES OF DEREGU-
LATED P53 SIGNALING IN PATIENTS WITH 

GENOME INSTABILITY SYNDROMES  

 Our laboratory has contributed to the understanding of 
the biological consequences of the aberrant activation of the 
p53 signaling pathway following exposure to DNA-
damaging agents in cells derived from XP, CS, LFS and AT 
patients. The outcome of these and related studies are 
discussed below. 

UV-Triggered Apoptosis and Accelerated Senescence in 
NER-Proficient and -Deficient Cells 

 Compared to NER-proficient cells, NER-deficient cells 
from XP and CS patients exhibit a markedly increased 
ability to up-regulate p53 following exposure to UVC (254 
nm) or the UV-mimetic agent 4-nitroquinoline-1-oxide [87, 
111, 112]. NER-deficient cells also show abnormally 
increased sensitivity to the killing effects of these agents 
when evaluated by the clonogenic assay. This 
hypersensitivity response has often been ascribed to p53-
mediated apoptotic cell death. However, ten years ago we 
reported a threshold effect for UVC-induced apoptosis in 
normal human fibroblasts. Thus, normal fibroblast cultures 
contained a significant proportion of apoptotic cells after 
exposure to supralethal fluences of UVC (e.g., 30 J/m

2
, 

resulting in >99% loss of clonogenic potential), but not after 
exposure to 15 J/m

2
 or lower fluences [87]. In addition, we 

have recently demonstrated the existence of a threshold for 
UVC-induced apoptosis in NER-deficient fibroblast strains 
representing the XP-A, XP-G, CS-A and CS-B 
complementation groups, albeit shifted to lower fluences as 
compared to the threshold seen with normal fibroblasts 
[113]. We observed little, if any, induction of apoptosis in 
normal human fibroblasts exposed to 15 J/m

2
, in XP-A and 

XP-G fibroblasts exposed to 2 J/m
2
, and in CS-A and CS-B 

fibroblasts exposed to 4 J/m
2
. These fluences of UVC cause 

more than 90% overall cell killing in the clonogenic assay 
[87, 113]. On the other hand, exposure to these fluences 
triggered accelerated senescence, as evident from the 
sustained nuclear accumulation of p21 protein accompanied 
by the development of cells that exhibit flattened and 
enlarged morphology, cease to divide, retain viability and 
remain adherent for prolonged times (e.g., 7 days) after UVC 
exposure, and express high levels of the senescence marker 
senescence-associated- -galactosidase [113]. Collectively, 
these results demonstrated that: (i) sustained nuclear 
accumulation of p21 associated with a proliferative block 
through the process of accelerated senescence is an integral 
component of the response of NER-proficient and -deficient 
human fibroblast cultures to relatively low fluences of UVC 
that are typically used in the clonogenic assay; and (ii) 
apoptosis does not appear to contribute significantly to the 
loss of clonogenic potential of non-transformed human 
fibroblasts exposed to such fluences of UVC. 

 In short, our findings underscore accelerated senescence 
as an important response triggered by physiologically-
relevant fluences of UVC in human fibroblast cultures with 
differing NER capabilities. Further studies are warranted to 
elucidate the contribution of accelerated senescence in 
protecting against skin cancer and other deleterious effects of 
sunlight that are known to be associated with its UV 
component [114, 115]. 

 What is the consequence of UV exposure in LFS cells 
that fail to implement p53-mediated responses? We reported 
that LFS fibroblasts and XP complementation group E 
fibroblasts exhibit a similar DNA repair deficiency after UV 
exposure, suggesting a relationship between the p53 and 
XPE proteins [87]. Subsequently, p53 was shown to regulate 
the DDB-2 gene, which is mutated in a subset of XPE 
patients [116, 117]. NER deficiency in XPE fibroblasts is 
associated with increased UV sensitivity in the clonogenic 
assay as compared to normal fibroblasts. This response is 
consistent with the notion that slow removal of bulky lesions 
in the former cells will provide a stronger and more 
persistent signal, compared with NER-proficient cells, for 
p53 activation, resulting in an elevated loss of clonogenic 
potential through p53-mediated apoptosis/accelerated 
senescence. Paradoxically, however, when compared to 
normal fibroblasts, LFS fibroblasts with XPE-like NER 
deficiency exhibit UV resistance in the clonogenic assay 
[87]. We proposed that, upon UV exposure, the signal (i.e., 
bulky DNA damage) for activating the p53-mediated events 
in LFS fibroblasts is as strong and as persistent as in XPE 
fibroblasts. LFS fibroblasts, however, respond poorly to the 
signal as a result of their compromised wild-type p53 
function, resulting in the propagation of cells that retain 
clonogenic potential despite carrying high levels of genomic 
instability such as bulky DNA lesions. 

Ionizing Radiation-Triggered Apoptosis and Accelerated 
Senescence in ATM-Proficient and -Deficient Cells 

 It is well documented that activation of the p53 pathway 
after exposure to ionizing radiation is triggered by DSBs and 
is primarily mediated by the ATM kinase (Fig. (1)). 
Accordingly, AT cells show a marked deficiency in 
activating p53 and p53-mediated responses such as DNA 
repair [8, 74] and cell cycle checkpoints [8, 69, 118] after 
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radiation exposure. In the same vein, AT cells would be 
expected to display a low propensity, compared to ATM-
proficient cells, to undergo p53-mediated apoptosis in 
response to radiation exposure. This expectation, together 
with the well-established radiation hyper-sensitivity response 
of AT cells when evaluated by the clonogenic assay, led to 
the notion that radiation exposure may result in persistent 
DNA lesions in AT cells due to defective ATM/p53-
mediated DNA repair, resulting in accumulation of 
“secondary” DNA lesions capable of triggering p53 
accumulation at late times post-irradiation through an ATM-
independent mechanism, followed by p53-mediated 
apoptosis [119]. In apparent support of this model, some 
reports observed AT cells to be more sensitive than normal 
cells to undergo apoptosis after exposure to ionizing 
radiation [120, 121]. These studies, however, involved 
SV40-transformed fibroblast cell lines in which the wild-
type p53 function is severely compromised, if not absent. In 
studies reported by us, however, we were unable to 
demonstrate any significant apoptosis in non-transformed 
ATM-proficient and -deficient human fibroblast strains after 
exposure to a wide range of radiation doses that cause 99% 
loss of colony forming ability [122]. It is possible that the 
increased clonogenic radiosensitivity of AT cells might 
reflect an elevated, ATM-independent, nuclear accumulation 
of p21 at late time after radiation exposure, resulting in 
down-regulation of apoptosis coupled with growth arrest 
through accelerated senescence, leading to increased loss of 
clonogenic potential post-irradiation as compared to normal 
cells. We are currently testing this model. 

Endopolyploidy in Genome-Instability Syndrome 
Patients 

 Although apoptosis has been the focus of most studies on 
cellular responses to genotoxic stress, it is becoming 
increasingly clear that accelerated senescence is also a major 
event triggered by relatively low doses of genotoxic agents 
in a variety of cell types, particularly in cells derived from 
patients with premature aging disorders which have a low 
threshold for undergoing senescence. It is also widely 
understood that bypass of apoptosis and accelerated 
senescence following genotoxic stress can lead to the 
development of cells with extensive genetic abnormalities, 
encompassing mononucleated and multinucleated endo-
polyploid giant cells [37-43]. As alluded to earlier, a subset 
of endopolyploid cells may undergo a complex series of 
neotic/mitotic cycles, resulting in the genesis of karyoplast 
cells that exhibit stem cell-like properties, which may in turn 
give rise to malignant and therapy-resistant descendents (Fig. 
(3)). In addition, like endopolyploid cells, human cells that 
have undergone senescence might also enter the 
neotic/mitotic cycles leading to the emergence of karyoplasts 
[39]. 

 Whether this complex fate of endopolyploid and 
senescent cells leading to the genesis of karyoplast cells is an 
artifact of tissue culture or it also occurs in vivo is currently 
unknown. Assuming that these processes also take place in 
vivo, then it is reasonable to speculate that the highly cancer-
prone nature of some human genome instability disorders 
might be, at least in part, associated with the genesis of 

karyoplast cells and their progenies. This intriguing 
hypothesis remains to be tested. 

CONCLUDING REMARKS 

 Defects in major players in the DNA surveillance 
networks are the underlying cause for numerous debilitating 
human genetic disorders that are characterized by genomic 
instability, premature aging, and cancer proneness. Cells 
derived from patients with such disorders exhibit aberrant 
responses to genotoxic agents as a result of deregulated p53 
signaling in general, and p21-mediated accelerated 
senescence in particular. Recent studies with different 
murine and human cell lines have revealed that genotoxic 
stress can trigger the development of endopolyploid giant 
cells, a subset of which can serve as a “factory” for the 
genesis of karyoplasts exhibiting certain stem cell-like 
properties, which can in turn give rise to malignant 
descendents. Further research is warranted to test the 
intriguing possibility that marked cancer proneness of 
patients with some genome instability disorders might be 
associated with the emergence of karyoplasts and their 
progenies.  
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ABBREVIATIONS 

ASK-1 = Apoptosis signal-regulating kinase 1 

AT = Ataxia telangiectasia 

ATLD  = AT-like disorder 

ATM  = AT mutated 

ATR  = ATM and Rad3-related 

BAX  = BCL-2-Associated X Protein 

BS = Bloom Syndrome 

CDK = Cyclin-dependent kinase 

CS = Cockayne syndrome 

DSB = DNA double strand break 

FA = Fanconi anemia 

GGR = Global genome repair 

LFS = Li-Fraumeni syndrome 

MAPK = Mitogen-activated protein kinase 

NBS = Nijmegen breakage syndrome 

NER = Nucleotide excision repair 

PCNA = Proliferating cell nuclear antigen  

pRB = Retinoblastoma protein 

PUMA = p53 upregulated modulator of apoptosis 

RTS = Rothmund-Thompson syndrome 

TCR = Transcription-coupled repair 
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TTD = Tricothiodystrophy 

UV = Ultraviolet light 

WS = Werner syndrome 

XP = Xeroderma pigmentosum 
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